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1. MULTIPLE INTEGRALS IN 2D

1.1 Preliminaries

Definition 1 By a scalar field φ on R3 we shall mean a map φ : R3 → R.

Definition 2 By a vector field F on R3 we shall mean a map F : R3 → R
3.

• We will typically assume that scalar and vector fields are smooth — their partial derivatives
exist with respect to x, y and z to all orders — for brevity, this will not always be stated.

• Occasionally we may consider more general scalar fields φ : Rn → R and vector fields
F : Rn → R

m.

Example 3 The three co-ordinates x, y, z are each scalar fields on R3. The position vector
r =(x, y, z) is a vector field; its magnitude r = |r| =

�
x2 + y2 + z2 is a scalar field, though

note it is not smooth at (0, 0, 0) .

We shall also consider scalar and vector fields defined on proper subsets of R3 (or more generally
R

n). The domains of these fields will usually be open, so we can define their partial derivatives.

Definition 4 A set U ⊆ Rn is said to be open if for every x ∈ U there exists ε > 0 such that

B(x, ε) = {y ∈ Rn : |y− x| < ε} ⊆ U.

and where

|y− x|2 =
n�

i=1

|yi − xi|2 .

We refer to B(x, ε) as the open ball of radius r,centred at x.

Remark 5 (Integrals in one dimension) An informal definition of the integral
� b

a

f(x) dx,

is as follows: Suppose f : [a, b]→ R is a function. Subdivide [a, b] into m sub-intervals of equal
length δx and let x1, . . . , xm be points in the respective intervals. On partitioning with smaller
and smaller intervals by taking the limit δx→ 0, we have

� b

a

f (x) dx = lim
δx→0

m�

r=1

f (xr)δx,

provided the limit exists. This will always be the case if f is continuous (also, alternative
subdivisions will not change the limit when f is continuous). A rigorous treatment of the
Riemann integral will be given next term in Analysis III.
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1.2 Multiple Integrals in Two Dimensions: A Brief Intro-

duction

1. A square element of area δxδy in a region R.

Consider a region of the plane, R, such as depicted in Figure 1, together with a scalar field
ψ(x, y).

• Partition the region into N square elements of equal area δA = δxδy; difficulties with
boundary elements extending outside the region R will disappear below.

• Suppose the scalar field ψ(r) takes the value ψi at the centre of the ith element.

• On partitioning with smaller and smaller squares, by taking the limit δA→ 0, we have

lim
N�

i=1

ψiδA = lim
N�

i=1

ψiδxδy
def
=

��

R

ψdA =

��

R

ψdxdy,

noting the region with boundary elements extending outside the region R yields no con-
tribution to the integral in the limit.

• This is an informal definition of a double integral; a rigorous approach would, for
example, verify the limit is independent of the details of the elements used to decompose
R. If ψ is piecewise continuous and R is a suitable region (we only ever consider such
cases), there are no difficulties. In general, which is not the objective here, complexities
can emerge (e.g. fractal boundaries).

Note: ψ(r) = 1 ∀ r ⇒
��

R
ψdA =

��
R
dxdy = (area of R).

Properties of double integrals The following properties are inherited from integration with
respect to one variable.

• Linearity: Let a, b be constants.
��

R

(af(x, y) + bg(x, y)) dA = a

��

R

f (x, y) dA+ b

��

R

g(x, y) dA.
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• Order : If f(x, y) � g(x, y) for all (x, y) ∈ R then

��

R

f(x, y) dA �

��

R

g(x, y) dA.

• Domain splitting: If R = R1 ∪R2 and R1 ∩R2 = ∅ then

��

R

f (x, y) dA =

��

R1

f(x, y) dA+

��

R2

f (x, y) dA.

Interpretation.

Depending on the significance ψ(x, y) the integral

��

R

ψ(x, y) dxdy will signify different

things. If ψ(x, y) is the area density of a plate at the point (x, y), then the integral gives the
total mass of the plate. If ψ(x, y), defined on all of R2, is a probability density function then the
integral represents the probability of a randomly chosen point (x, y) being in R. Alternatively,
we can interpret the integral as the volume under the surface ψ(x, y) (provided ψ(x, y) � 0).
Short cuts and sanity checks. Occasionally it is clear that an integral is zero because of
algebraic properties of the integrand and geometric properties of the domain. For example,

��

unit disc

sin(x+ y) dA,

��

[0,1]2

x− y dA,

��

R2

xye−x2−y2 dA,

are all zero. The first integrand is odd. The second integrand at (y, x) takes negative the value
at (x, y), so is "odd" about the line y = x. The third integrand is actually even, but at (−x, y)
takes negative the value at (x, y), so is "odd" about y-axis.

Even if the value of an integral is not immediately clear then estimates or bounds for it may
be, and these can be useful sanity checks when an answer is found. So the integrals

��

unit disc

sin2(x+ y) dA,

��

unit disc

(x2 + y2)n dA,

��

unit disc

(ax+ by)2n dA,

may not be immediately clear, but the first should be between 0 and π as the integrand is
bounded by 0 and 1 and π is the area of the domain. The same reasoning applies to second
integral and moreover the answer should be a decreasing function of n. The third integral should
give an answer that is symmetric in a and b — consider swapping the variables x and y.

Further, if an integral represents a probability then it should take a value between 0 and 1.
An integral representing a mass should be positive. Etc.

Example 6 Take R = [0, 2]× [1, 3] and evaluate

I =

��

R

(x+ y2) dxdy.
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Solution. We compute (first integrating with respect to x and keeping y constant)

I =

� y=3

y=1

�� x=2

x=0

(x+ y2)dx

�
dy =

� y=3

y=1

�
x2

2
+ y2x

�x=2

x=0

dy,

=

� y=3

y=1

�
4

2
+ 2y2 − 0

�
dy =

�
2y +

2y3

3

�y=3

y=1

=
64

3
,

or (first integrating with respect to y and keeping x constant)

I =

� x=2

x=0

�� y=3

y=1

(x+ y2)dy

�
dx,

=

� x=2

x=0

�
xy +

y3

3

�y=3

y=1

dx =

� x=2

x=0

�
3x+

27

3
−
�
x+

1

3

��
dx,

=

� x=2

x=0

�
2x+

26

3

�
dx =

�
2x2

2
+

26x

3

�x=2

x=0

=
64

3
.

Note: We get the same answer regardless of the order in which we do the integrals (as one
would expect!).

Example 7 Let R be the unit square. Determine

��

R

y cos2(πxy) dA.

Solution. We can represent the domain by x ∈ [0, 1], y ∈ [0, 1], and thus

��

R

y cos(πxy)dA =

� 1

0

	� 1

0

y cos(πxy) dx



dy

=
1

π

� 1

0

[sin (πxy)]10 dy

=
1

π

� 1

0

sin(πy) dy

= − 1

π2
[cos(πy)]10

= − 1

π2
(−1− 1) =

2

π2
.

Note: It is much easier to do the x integral first, even though the answer is independent of the
order of integration.

Remark 8 Given a continuous, bounded function f (x, y) on a rectangular domain (a1, b1) ×
(a2, b2) then it is the case that

� x=b1

x=a1

� y=b2

y=a2

f(x, y) dy dx =

� y=b2

y=a2

� x=b1

x=a1

f(x, y) dx dy, (1.1)
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but this need not be the case if the integrand is continuous, but unbounded (Sheet 1, Exercise
2). However if either of the integrals

� x=b1

x=a1

� y=b2

y=a2

|f(x, y)| dy dx or

� y=b2

y=a2

� x=b1

x=a1

|f (x, y)| dx dy

exist, then we do have equality of the integrals in (1.1). This is a consequence of Tonelli’s and
Fubini’s theorems.

For general domains, domains that aren’t simply rectangles, then we need to be careful
determining the limits of the integrals, and it may well be that one of the orders of integration
is more sensible.

2. Region bounded by lines and parabola

Example 9 Calculate the area of the region R bounded by the parabola y =
√
x, the x-axis,

and the line y = x− 2.

Solution. We can calculate this area using Cartesian co-ordinates in two ways, with y as
the external variable and x as the internal variable, or vice versa. The first of these ways is
preferable as we will see.

To work out the limits of the external variable, we simply need to determine the maximum
and minimum values for that variable. In this case the variable is y and we see that 0 � y � 2
on R.

However for a particular choice of y (in the range 0 � y � 2) the values of x are limited in
a way that depends on y. Integrating this way we are dividing R into infinitesimal, horizontal
slithers. And for specific y we then have

y2 � x � y + 2.

Hence the area is given by the multiple integral
� y=2

y=0

� x=y+2

x=y2
1dx dy =

� y=2

y=0

(y + 2− y2) dy

=

�
y2

2
+ 2y − y3

3

�2

0

=
4

2
+ 4− 8

3
=

10

3
.
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Instead we might take x as the external variable, and on R we have 0 � x � 4. As before, for a
particular choice of x (in the range 0 � x � 4) the values of y are limited in a way that depends
on x. Integrating this way we are dividing R into infinitesimal, vertical slithers. However the
formulas for these bounds differ for 0 � x � 2 and for 2 � x � 4. Note

if 0 � x � 2 then 0 � y �
√
x;

if 2 � x � 4 then x− 2 � y �
√
x.

So the area is given by the two multiple integrals
� x=2

x=0

� y=
√
x

y=0

1 dy dx+

� x=4

x=2

� y=
√
x

y=x−2
1 dy dx

=

� x=2

x=0

√
x dx+

� x=4

x=2

�√
x− x+ 2

�
dx

=

�
2x3/2

3

�2

0

+

�
2x3/2

3
− x2

2
+ 2x

�4

2

=
4
√
2

3
+

�
16

3
− 16

2
+ 8

�
−

4
√
2

3
− 4

2
+ 4

�

=
16

3
− 2 =

10

3
.

Example 10 Calculate the area of the disc x2 + y2 � a2.

Solution. Again, we know the answer: πa2. If we wish to pick up all of the disc’s area we can
let x vary over the range −a to a and, at each x, we need to let y vary from −

√
a2 − x2 to√

a2 − x2. So we have

A =

� x=a

x=−a

� y=
√
a2−x2

y=−
√
a2−x2

dy dx

=

� x=a

x=−a

2
√
a2 − x2 dx

=

� θ=π/2

θ=−π/2

2
�

a2 − a2 sin2 θ a cos θ dθ [x = a sin θ]

= a2
� π/2

−π/2

2 cos2 θ dθ = a2
� π/2

−π/2

1 + cos 2θ dθ = a2
�
θ +

1

2
sin 2θ

�π/2

−π/2

= πa2.

Definition 11 Given a plate occupying a region R of the plane, with density ρ(x, y) per unit
area, then the moment of inertia of the plate about an axis vertically through a point (x0, y0)
equals ��

R

ρ(x, y)
�
(x− x0)

2 + (y − y0)
2
�
dA.
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Example 12 Find the moment of inertia of a uniform rectangle, with sides of length a and b
and mass m about a corner of the rectangle.

Solution. Note m = ρab. Without loss of generality, we can take the corner to be (0, 0) and
then the moment of inertia equals

� a

x=0

� b

y=0

�m

ab

� �
(x− 0)2 + (y − 0)2

�
dy dx

=
m

ab

� a

x=0

�
x2y +

y3

3

�b

0

dx

=
m

ab

� a

x=0

�
x2b+

b3

3

�
dx

=
m

ab

�
x3b

3
+

b3x

3

�a

0

=
m

ab

�
a3b

3
+

b3a

3

�

=
m

3

�
a2 + b2

�
.

In the first example, it is simpler to do x-integration before y-integration (to avoid splitting
the internal integral). For the example of the disc, it would be more natural to use polar
co-ordinates – if we knew how to calculate areas with them!

1.3 Change of Variables and Jacobians.

The Jacobian, or rather its modulus, is a measure of how a general mapping stretches space
locally, near a particular point, even when this stretching effect varies from point to point.
The Jacobian takes its name from the German mathematician Carl Jacobi (1804-1851).

Definition 13 Given two co-ordinates u(x, y) and v(x, y) which depend on variables x and y,
we define the Jacobian

∂(u, v)

∂(x, y)

to be the determinant ����
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

���� .

In 3D, we define the Jacobian
∂(u, v, w)

∂(x, y, z)
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to be the determinant ������

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

������

Example 14 Let x = r cos θ and y = r sin θ where r and θ are polar co-ordinates. Then

∂ (x, y)

∂ (r, θ)
= det

�
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

�

= det

�
cos θ −r sin θ
sin θ r cos θ

�

= r
�
cos2 θ + sin2 θ

�
= r.

Example 15 In reverse, r =
�

x2 + y2 and θ = tan−1 (y/x) and

∂ (r, θ)

∂ (x, y)
= det

� ∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

�

= det


x√

x2+y2
y√

x2+y2

−y
x2+y2

x
x2+y2

�

=
x2 + y2

(x2 + y2)3/2

=
1

�
x2 + y2

=
1

r
.

Theorem 16 Let f : R → S be a bijection between two regions of R2, which is differentiable
and has differentiable inverse with

∂ (u, v)

∂ (x, y)
,

∂ (x, y)

∂ (u, v)
,

defined and non-zero everywhere. Further, write (u, v) = f (x, y) and let ψ(x, y) = Ψ(u, v).
Then

��

(u,v)∈S

Ψ(u, v)du dv =

��

(x,y)∈R

ψ(x, y)

����
∂ (u, v)

∂ (x, y)

���� dx dy,

��

(x,y)∈R

ψ(x, y)dx dy =

��

(u,v)∈S

Ψ(u, v)

����
∂ (x, y)

∂ (u, v)

���� du dv.

Proof. (Sketch proof.) It is sufficient to prove the first integral identity. Divide the region R
into N square elements of equal area δxδy as previously with ψi the scalar field at the centre
of the ith element, i ∈ {1, . . . N}.
Consider the mapping of the ith element, which is bounded by the co-ordinate lines x = xi and
x = xi + δx and y = yi and y = yi + δy. The value of the scalar field at the mapped element
centre is

Ψi = Ψ(f(xi + δx/2, yi + δy/2)) = ψi = ψ(xi + δx/2, yi + δy/2).
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Also, given sufficiently small δx, δy the ith element maps to an image region, denoted IMi,
which is a deformed parallelogram spanned by the vectors

a = f (xi + δx, yi)− f (xi, yi) ≈
∂f

∂x
(xi, yi) δx,

b = f (xi, yi + δy)− f (xi, yi) ≈
∂f

∂y
(xi, yi) δy,

and, thus, of area ����
∂f

∂x
δx ∧ ∂f

∂y
δy

���� =
����
∂f

∂x
∧ ∂f

∂y

���� δx δy.

Now f = (u, v), so fx = (ux, vx), fy = (uy, vy) and thus

����
∂f

∂x
∧ ∂f

∂y

���� δxδy = |(ux, vx) ∧ (uy, vy)| δxδy = |(uxvy − uyvx)k| δxδy =

����
∂ (u, v)

∂ (x, y)

���� δxδy.

Thus, before taking limits, partitioning S by the images IMi, we have an approximation for

��

(u,v)∈S

Ψ(u, v)du dv

which is
N�

i=1

ΨiArea(IMi) =
N�

i=1

Ψi

����
∂ (u, v)

∂ (x, y)

���� δxδy =
N�

i=1

ψi

����
∂ (u, v)

∂ (x, y)

���� δxδy.

Taking limits gives

��

(u,v)∈S

Ψ(u, v)dudv =

��

(x,y)∈R

ψ(x, y)

����
∂ (u, v)

∂ (x, y)

���� dxdy.

If the previous motivation for this formula seems somewhat non-rigorous, note that the chain
rule for Jacobians ensures that it is impossible that we might determine two different answers
for a double integral by using different sets of variables.
Note: to evaluate integrals over an infinite domain (e.g.,

�∞
−∞ exp(−x2)dx), we define

� ∞

−∞
f(x)dx = lim

X→∞
Y→−∞

� X

Y

f(x)dx.

Exercise 17 Evaluate ��

R2

exp[−(x2 + y2)] dA.

Hence, determine
�∞
−∞ exp[−t2]dt.
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Solution.

I =

��

R2

exp[−(x2 + y2)] dA =

��

R2

exp[−(x2 + y2)] dx dy

=

��

R2

exp[−(r2)]
����
∂ (x, y)

∂ (r, θ)

���� dr dθ =

� ∞

0

	� 2π

0

dθ



exp[−(r2)]r dr = π

� ∞

0

2r exp[−(r2)] dr

= π
�
exp[−(r2)]

�∞
0

= π.

Furthermore let J =
�∞
−∞ exp[−t2] dt. Then

J2 =

� ∞

−∞
exp[−x2] dx

� ∞

−∞
exp[−y2] dy =

��

R2

exp[−(x2 + y2)] dx dy = I.

Noting J > 0 to give the sign of the root, we thus have J =
√
π.

3. Using parabolic co-ordinates

Example 18 Calculate the area bounded by the curves

2x = 1− y2, 2x = y2 − 1, 8x = 16− y2, 8x = y2 − 16.

as shown in Figure 3.

Solution. We now change to (u, v), parabolic coordinates

x =
1

2

�
u2 − v2

�
, y = uv.

Note that when u = 1 then v = y and so 2x = 1− y2, which is the equation of the first curves.
Likewise if u = 2 then v = y/2 and so 2x = 4− y2/4 which is the third curve. By symmetry
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the second and fourth curves correspond to v = 1 and v = 2. The region of interest is therefore
1 � u � 2, 1 � v � 2. The Jacobian is given by

∂ (x, y)

∂ (u, v)
= det

�
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

�
= det

�
u −v
v u

�
= u2 + v2.

Hence, the area is given by

A =

� u=2

u=1

� v=2

v=1

����
∂ (x, y)

∂ (u, v)

���� dv du =

� u=2

u=1

� v=2

v=1

�
u2 + v2

�
dv du

=

� u=2

u=1

�
u2v +

v3

3

�v=2

v=1

du =

� u=2

u=1

�
u2 +

7

3

�
du

=

�
u3

3
+

7u

3

�2

1

=
7

3
+

7

3
=

14

3
.

Example 19 The cardioid with equation r = a(1 + cos θ) bounds a region S. Find the mean
value of r in S.

Solution. This mean value equals

1

area (S)

��

S

r dA.

The area of S equals

area (S) =

� 2π

θ=0

� a(1+cos θ)

r=0

r dr dθ

=
a2

2

� 2π

θ=0

(1 + cos θ)2 dθ

=
a2

2

� 2π

θ=0

�
1 + 2 cos θ + cos2 θ

�
dθ

=
a2

2
(2π + 0 + π) =

3πa2

2
.

And
��

S

r dA =

� 2π

θ=0

� a(1+cos θ)

r=0

r (rdr dθ)

=
a3

3

� 2π

θ=0

(1 + cos θ)3 dθ

=
a3

3

� 2π

θ=0

�
1 + 3 cos θ + 3cos2 θ + cos3 θ

�
dθ

=
a3

3
(2π + 0 + 3π + 0) =

5πa3

3
.
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Hence the mean value of r within the cardioid equals

5πa3/3

3πa2/2
=

10a

9
.
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2. VOLUME INTEGRALS

2.1 An Informal Definition of The Volume Integral

Consider a scalar field ψ(x, y, z), and a three-dimensional region R.

• Partition R into N cubic elements, of volume δV = δxδyδz and let ψi denote the value
of ψ at the centre of the ith cubic element, i ∈ {1, . . . N}.

• Then, on partitioning with smaller and smaller cubes, and taking the limit δV → 0,

lim

N�

i=1

ψiδV
def
=

���

R

ψdV =

���

R

ψdxdydz

• This is an informal definition. For the regions R and functions ψ we shall meet there
will never be any issue about whether the integral exists and we will usually determine
such integrals by calculating three definite integrals separately over co-ordinates x, y, z
(or other more appropriate co-ordinates). Again, complexities can emerge but these are
not our focus.

Note: If the scalar field ψ(x, y, z) = 1 then the integral

���

R

ψdV =

���

R

dV gives the

volume of the region R.

2.2 Examples

Example 20 A cone of height h occupies the region

x2 + y2 � z2, 0 � z � h.

and has density ρ (x, y, z) = (x2 + y2) z at each point. Find the mass of the cone using Cartesian
co-ordinates.

Solution. First, we must divide up the cone and find the corresponding limits. There are
many ways to proceed. For example, we might take cross-sections of the cones, decomposing
the cone into two- and then one-dimensional sections. Poorly chosen co-ordinates, whilst they
could be used in principle to determine the mass, may require calculation of a complicated set
of integrals.
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If we use z as our first variable to divide up the cone, then the cross-section of the cone with
a plane z = z0 gives a disc x2 + y2 � (z0)

2 , z = z0 (at least if 0 � z0 � h). We can then, say,
take cross-sections of such discs with the line y = y0 to produce horizontal slithers

x2 � (z0)
2 − (y0)

2 , y = y0, z = z0 (at least if |y0| � z0)

and calculating their contribution to the mass is a simple one-dimensional integral.
So, the mass M is given by the triple integral

M =

� h

z=0

� z

y=−z

� √z2−y2

x=−
√

z2−y2
ρ (x, y, z) dx dy dz

=

� h

z=0

� z

y=−z

� √z2−y2

x=−
√

z2−y2

�
x2 + y2

�
z dx dy dz.

We calculate the internal integrals in turn. We define

I1(z, y) =

� √z2−y2

x=−
√

z2−y2

�
x2 + y2

�
z dx =

�
z

�
x3

3
+ y2x

��√z2−y2

−
√

z2−y2

= 2z


(z2 − y2)

3/2

3
+ y2

�
z2 − y2

�

=
2z

3

�
z2 + 2y2

��
z2 − y2.

The next internal integral is then

I2(z) =

� z

y=−z

2z

3

�
z2 + 2y2

��
z2 − y2 dy.

If we make the substitution y = z sin t, where −π/2 � t � π/2, then I2(z) becomes

I2(z) =

� π/2

t=−π/2

2z

3

�
z2 + 2z2 sin2 t

��
z2 − z2 sin2 t (z cos t dt)

=

� π/2

t=−π/2

2z3

3

�
1 + 2 sin2 t

�
|z cos t| (z cos t dt)

=
2z5

3

� π/2

t=−π/2

�
1 + 2 sin2 t

�
cos2 t dt.

Now

� π/2

t=−π/2

�
cos2 t+ 2 sin2 t cos2 t

�
dt =

� π/2

t=−π/2

�
1

2
(1 + cos 2t) +

1

2
sin2 2t

�
dt

=

� π/2

t=−π/2

�
1

2
(1 + cos 2t) +

1

4
(1− cos 4t)

�
dt =

�
3t

4
+

1

4
sin 2t− 1

8
sin 4t

�π/2

−π/2

=
3π

4
.
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Finally, we have

M =

� h

z=0

I2(z) dz =

� h

z=0

2z5

3
× 3π

4
dz =

π

2

�
z6

6

�h

0

=
πh6

12
.

Solution. (Alternative method with cylindrical polars). IfD(0, z) denotes the disc x2+y2 � z2,
then the mass M could be written as

M =

� h

z=0

� �

D(0,z)

ρ (x, y, z) dx dy dz =

� h

z=0

� �

D(0,z)

�
x2 + y2

�
z dx dy dz.

We know how to change from Cartesian co-ordinates (x, y) to planar polar co-ordinates (r, θ):
the change of variable rule is

��
φdA =

��
φ dx dy =

��
φ (r dr dθ) ,

where the r appears as it is the Jacobian ∂ (x, y) /∂ (r, θ) . Thus

� �

D(0,z)

�
x2 + y2

�
z dx dy =

� z

r=0

� 2π

θ=0

r2z (r dθ dr) = 2πz

� z

r=0

r3 dr = 2πz

�
r4

4

�z

0

=
πz5

2
.

Hence,

M =

� h

z=0

πz5

2
dz =

�
πz6

12

�h

0

=
πh6

12
.

Note: This change of variable makes the calculation much simpler!

Remark 21 In the above example, we essentially used cylindrical polar co-ordinates, appreci-
ating that the volume element dV is given by

dV = dx dy dz = r dr dθ dz.

4. Volume under a paraboloid
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Example 22 Find the volume of the region R that lies above the paraboloid z = x2 + y2 and
beneath the plane x+ y + z = 1.

Solution. The (x, y) co-ordinates of a point (x, y, z) on the top planar surface of R satisfy

1− x− y � x2 + y2

and, so, the top planar surface projects vertically down to the set

W =
�
(x, y) ∈ R2 : x+ y + x2 + y2 � 1

�

=

�

(x, y) ∈ R2 :
�
x+

1

2

�2
+

�
y +

1

2

�2
�

3

2

�

which is a disc, centre (−1/2,−1/2) and radius
�

3/2. Hence we can determine the volume of
the region R as

V =

��

(x,y)∈W

�� 1−x−y

z=x2+y2
dz

�
dA

=

��

(x,y)∈W

�
1− x− y − x2 − y2

�
dA

=

��

(x,y)∈W


3

2
−
�
x+

1

2

�2
−
�
y +

1

2

�2�

dA.

Natural co-ordinates for parameterizing W are (r, θ) where

x = −1

2
+ r cos θ, y = −1

2
+ r sin θ, 0 � θ < 2π, 0 � r �

�
3/2.

Hence, we have

V =

� √3/2

r=0

� 2π

θ=0

�
3

2
− r2 cos2 θ − r2 sin2 θ

�
(r dθ dr)

= 2π

� √3/2

r=0

�
3r

2
− r3

�
dr = 2π

�
3r2

4
− r4

4

�√3/2

0

= 2π

�
9

8
− 9

16

�

=
9π

8
.

Once again we have used polar coordinates. We should, therefore, consider what happens with
a general change of variable.
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2.3 Changing Co-ordinates in Volume Integrals

Theorem 23 Let f : R → S be a bijection between subsets of R3 which is differentiable and
has differentiable inverse. Take co-ordinates xi on R and ui on S related by the formula

(u1, u2, u3) = f (x1, x2, x3) ,

and let ψ (x1, x2, x3) = Ψ (u1, u2, u3) be scalar fields. Then

���

S

Ψ(u1, u2, u3) du1 du2 du3 =

���

R

ψ (x1, x2, x3)

����
∂ (u1, u2, u3)

∂ (x1, x2, x3)

���� dx1 dx2 dx3.

Proof. (Sketch) Partition the region R into N cubic elements and let the ith cubic element be
given by

[x1, x1 + δx1]× [x2, x2 + δx2]× [x3, x3 + δx3]

which has volume δx1 δx2 δx3. The value of the scalar field at the centre of the mapped element
is

Ψi = Ψ(f(x1 + δx1/2, x2 + δx2/2, x3 + δx3/2)) = ψi = ψ(x1 + δx1/2, x2 + δx2/2, x3 + δx3/2).

Also, under the map f , the ith cubic element maps to a deformed parallelepiped, denoted IMi

below, with sides

f (x1 + δx1, x2, x3)− f (x1, x2, x3) ≈ ∂f

∂x1
δx1;

f (x1, x2 + δx2, x3)− f (x1, x2, x3) ≈ ∂f

∂x2
δx2;

f (x1, x2, x3 + δx3)− f (x1, x2, x3) ≈ ∂f

∂x3
δx3.

The volume of a parallelepiped with sides a,b, c is |a ·(b ∧ c) | and, so, as a first approximation,
the volume of the image of the ith element is

����

�
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

����� δx1 δx2 δx3 =
����
∂ (u1, u2, u3)

∂ (x1, x2, x3)

���� δx1 δx2 δx3.

Thus, before taking limits, partitioning S by the images IMi, an approximation for
���

S

Ψ(u1, u2, u3) du1 du2 du3

is

N�

i=1

ΨiVolume(IMi) =
N�

i=1

Ψi

����
∂ (u1, u2, u3)

∂ (x1, x2, x3)

���� δx1δx2δx3 =
N�

i=1

ψi

����
∂ (u1, u2, u3)

∂ (x1, x2, x3)

���� δx1δx2δx3.
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Taking limits gives
���

(u1,u2,u3)∈S

Ψ(u1, u2, u3)du1 du2du3 =

���

(x1,x2,x3)∈R

ψ (x1, x2, x3)

����
∂ (u1, u2, u3)

∂ (x1, x2, x3)

���� dx1 dx2dx3.

If the previous motivation for this formula seems non-rigorous, note that the chain rule for
Jacobians ensures that it is impossible to obtain different answers for a volume integral by
using different sets of variables.

Example 24 (Cylindrical Polar Co-ordinates)

x = r cos θ, y = r sin θ, z = z.

Then

∂ (x, y, z)

∂ (r, θ, z)
=

������

∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂r

������
=

������

cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

������
=

����
cos θ −r sin θ
sin θ r cos θ

���� = r.

Example 25 (Spherical Polar Co-ordinates)

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, θ ∈ [0, π], φ ∈ [0, 2π).

Then

∂ (x, y, z)

∂ (r, φ, θ)
=

�������

∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

�������

=

������

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sin φ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

������

= cos θ

����
r cos θ cosφ −r sin θ sinφ
r cos θ sin φ r sin θ cosφ

����+ r sin θ

����
sin θ cosφ −r sin θ sinφ
sin θ sinφ r sin θ cosφ

����

= r2 cos θ sin θ cos θ
�
cos2 φ+ sin2 φ

�
+ r2 sin3 θ

�
cos2 φ+ sin2 φ

�

= r2 sin θ
�
cos2 θ + sin2 θ

�

= r2 sin θ � 0 for 0 � θ � π.

Thus, for spherical polar co-ordinates, we have

dV = dxdydz = r2 sin θ dr dθ dφ.

Definition 26 The centre of mass of a body occupying a region R and with density ρ(r) at
the point with position vector r is

r̄ = (x̄, ȳ, z̄) =
1

M

���

R

rρ(r) dV.
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Example 27 Find the centre of mass of a uniform octant

�
(x, y, z) : x2 + y2 + z2 < a2, x, y, z > 0

�
.

Solution. By symmetry, the centre of mass lies at a point (x̄, x̄, x̄). Let ρ denote the density
of the hemisphere. Then its mass is 1

6
πa3ρ and

x̄ =
6

πa3ρ

� a

r=0

� π/2

φ=0

� θ=π/2

θ=0

(r sin θ cosφ)
�
ρr2 sin θ

�
dθ dφdr

=
6

πa3

�� a

r=0

r3 dr

�� θ=π/2

θ=0

sin2 θ dθ

�� φ=π/2

φ=0

cosφdφ

�

=
6

πa3
×
�
r4

4

�a

0

×
�
θ

2
+

sin 2θ

4

�π/2

0

× [sinφ]π/20

=
6

πa3
× a4

4
× π

4
× 1

=
3a

8
.

Definition 28 Given a function f on a region R ⊆ R
3, the median of f is the value of m

that satisfies

Vol ({(x, y, z) : f (x, y, z) � m}) = 1

2
Vol(R).

Example 29 Find the median value of z on the upper hemisphere of x2 + y2 + z2 � a2.

Solution. We will use cylindrical polar co-ordinates. Vol(R) = 2πa3/3. And the volume of the
hemisphere with 0 � z � h equals

� h

z=0

� 2π

θ=0

� √
a2−z2

r=0

r dr dθ dz

= 2π

� h

z=0

�
r2

2

�√a2−z2

0

dz

= π

� h

z=0

(a2 − z2) dz

= π

�
a2z − z3

3

�h

0

= π

�
a2h− h3

3

�
.

So we need that

π

�
a2h − h3

3

�
=

πa3

3
.
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So we can rearrange to
0 = h3 − 3a2h+ a3.

There is one solution to this in the range 0 < h < a and this approximately equals h =
0.347296a.

Example 30 Evaluate the integral ���

R

x dV

over the intersection of the unit ball x2 + y2 + z2 � 1 with the half-space x+ y � 3
√
2/5.

Solution. If we take as an orthonormal basis

e1 =
1√
2
(1,−1, 0) , e2 = (0, 0, 1) , e3 =

1√
2
(1, 1, 0) ,

with corresponding co-ordinates X, Y, Z so that

Xe1 + Y e2 + Ze3 = xi+ yj+ zk,

then we have x = (X + Z) /
√
2 and x+ y = Z

√
2.

So we are left considering the integral

��� �
X + Z√

2

�
dV

over the region X2 + Y 2 + Z2 � 1, Z � 3/5. By symmetry the integral

���
X dV = 0,

so we are left to calculate

1√
2

���
Z dV =

1√
2

� 2π

φ=0

� cos−1(3/5)

θ=0

� 1

r=(3/5) sec θ

(r cos θ) r2 sin θ dr dθ dφ

=
2π√
2

� cos−1(3/5)

θ=0

� 1

r=(3/5) sec θ

r3 cos θ sin θ dr dθ

= π
√
2

� cos−1(3/5)

θ=0

�
r4

4

�1

(3/5) sec θ

cos θ sin θ dθ

=
π
√
2

4

� cos−1(3/5)

θ=0

�
1− 81

625
sec4 θ

�
cos θ sin θ dθ

=
π
√
2

4

� cos−1(3/5)

θ=0

�
cos θ sin θ − 81

625

sin θ

cos3 θ

�
dθ
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=
π
√
2

4

�
−1

2
cos2 θ − 81

1250

1

cos2 θ

�cos−1(3/5)

0

=
π
√
2

4

�
−1

2
× 9

25
− 81

1250
× 25

9
+

1

2
+

81

1250

�

=
π
√
2

4

�
128

625

�
=

32π
√
2

625
.

Example 31 By a suitable rotation of co-ordinates, or otherwise, evaluate
���

(ax+ by + cz)4 dV

taken over the region x2 + y2 + z2 � 1, where a, b, c are positive constants.

Solution. Consider instead this integral as
���

((a, b, c) · r)4 dV.

We can rotate the axes to create new co-ordinates X, Y, Z in such a way that the Z axis points
in the direction of vector (a, b, c) and under this change of co-ordinates the integral becomes

���

unit ball

�√
a2 + b2 + c2 e3 · r

�4
dV =

���

unit ball

�
a2 + b2 + c2

�2
Z4 dV

where e3 is the unit vector pointing down the Z-axis; notice that we are still integrating over
the unit sphere as we have simply rotated the axes about the origin.

Now, by a change to spherical polar co-ordinates,
���

unit ball

(a2 + b2 + c2)2Z4 dV

=
�
a2 + b2 + c2

�2
� 1

r=0

� 2π

φ=0

� π

θ=0

(r cos θ)4
�
r2 sin θ

�
dθ dφdr

= 2π
�
a2 + b2 + c2

�2
�
r7

7

�1

0

�
−cos5 θ

5

�π

0

= 2π
�
a2 + b2 + c2

�2 × 1

7
× 2

5

=
4π

35

�
a2 + b2 + c2

�2
.

Example 32 Let a, b, c ∈ R. Determine

I =

���

unit ball

cos (ax+ by + cz) dx dy dz.

Show that your answer is consistent with the volume of the unit sphere being 4π/3.
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Solution. We can rewrite the integral as

I =

���

unit ball

cos (a · r) dx dy dz

where a = (a, b, c) .

The vector

e3 =
a

|a| =
(a, b, c)√

a2 + b2 + c2

is of unit length and so we can extend it to an orthonormal basis (e1, e2, e3), with associated
co-ordinates (X, Y,Z). In terms of these co-ordinates

a · r = (0, 0, |a|) · (X, Y, Z) = |a| Z.

The unit sphere x2+y2+z2 < 1 is still given as X2+Y 2+Z2 < 1 as e1,e2, e3 are an orthonormal
basis and dV = dX dY dZ. So

I =

���

unit ball

cos (|a| Z) dX dY dZ.

If we now change to spherical polar co-ordinates (r, θ, φ) associated with (X, Y, Z), then

I =

� 1

r=0

� π

θ=0

� 2π

φ=0

cos (|a| r cos θ) r2 sin θ dφdθ dr

= 2π

� 1

r=0

� π

θ=0

cos (|a| r cos θ) r2 sin θ dθ dr

= 2π

� 1

r=0

�− sin (|a| r cos θ)
|a| r r2

�π

0

dr

= 2π

� 1

r=0

r

|a| (2 sin (|a| r)) dr

=
4π

|a|

��−r cos (|a| r)
|a|

�1

r=0

+

� 1

r=0

cos (|a| r)
|a| dr

�

=
4π

|a|

�−r cos (|a| r)
|a| +

sin (|a| r)
|a|2

�1

r=0

=
4π

|a|

�− cos |a|
|a| +

sin (|a|)
|a|2

�

=
4π

|a|3
(sin |a| − |a| cos |a|) .
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We determine the volume of the unit sphere by setting a = b = c = 0. So letting |a| → 0 we
see

4π

|a|3
(sin |a| − |a| cos |a|) =

4π

|a|3



|a| − |a|
3

6
+O

�
|a|5

�
�

− |a|


1− |a|
2

2
+O

�
|a|4

�
��

=
4π

|a|3


|a|3
3

+O
�
|a|4

�
�

=
4π

3
+O (|a|)→ 4π

3
as |a| → 0.
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3. SURFACE INTEGRALS

3.1 Parameterized Surfaces

• Much of the following is a review from the Geometry course and will, at the most, be
quickly reviewed in this course.

We will now be interested in finding integrals over surfaces. We begin by considering different
ways to represent surfaces.

Representation of surfaces

5. A surface as a graph

Cartesian representation

In Cartesian coordinates we represent a surface by z = f(x, y), e.g. the paraboloid z = x2+y2.

6. A surface parametrized
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Parametric representation

In parametric coordinates we represent a surface by r = r(u, v) = (x(u, v), y(u, v), z(u, v))
where (u, v) ∈ D ⊂ R2. So r = r(u, v) maps D in the (u, v) plane to a surface S in R3.
Note If z = f(x, y) we can use x and y as parameters: r(x, y) = (x, y, f (x, y)).
To represent the point P = (x, y, z) in spherical polar coordinates (r, θ, φ) we have

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ,

where θ ∈ [0, π], φ ∈ [0, 2π). Thus we can parameterize the sphere x2 + y2 + z2 = a2 in u = θ,
v = φ by

r = r(θ, φ) = (a sin θ cosφ, a sin θ sin φ, a cos θ).

Example 33 The quadrics are standard parameterized surfaces:

• Sphere: x2 + y2 + z2 = a2 ;

• Ellipsoid: x2/a2 + y2/b2 + z2/c2 = 1;

• Hyperboloid of One Sheet: x2/a2 + y2/b2 − z2/c2 = 1;

• Hyperboloid of Two Sheets: x2/a2 − y2/b2 − z2/c2 = 1;

• Paraboloid: z = x2 + y2;

• Hyperbolic Paraboloid: z = x2 − y2;

• Cone: x2 + y2 = z2.

7. One-sheet hyperboloid; hyperbolic paraboloid
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Definition 34 A smooth parameterized surface is a map r, known as the parameteriza-
tion

r : U → R
3, (u, v) �→ (x(u, v), y(u, v), z(u, v))

from an open subset U ⊆ R2 to R3 such that

• x, y, z have continuous partial derivatives with respect to u and v of all orders;

• r is a bijection between U and r(U) with r−1 continuous and also possessing continuous
partial derivatives of all orders;

• at each point the vectors
∂r

∂u
and

∂r

∂v

are linearly independent (i.e. are not scalar multiples of one another). Equivalently,

∂r

∂u
∧ ∂r

∂v
�= 0.

We will not treat this definition with any generality. We shall simply parameterize some of the
“standard” surfaces previously described.

Definition 35 Let r : U → R
3 be a smooth parameterized surface and let p be a point on the

surface. The plane containing p and which is parallel to the vectors

∂r

∂u
(p) and

∂r

∂v
(p)

∂r/∂u and ∂r/∂v is called the tangent plane to r(U) at p. Because these vectors are inde-
pendent the tangent plane is well-defined, and can also be shown to be independent of the choice
of parameterization.

Any vector in the direction
∂r

∂u
(p) ∧ ∂r

∂v
(p)

is said to be normal to the surface at p. There are two unit normals of length one and we
will write n or n(p) for a choice of unit normal; having made that choice the other unit normal
is −n.

3.2 Surface Integrals

Let r : U → R
3 be a smooth parameterized surface with

r (u, v) = (x (u, v) , y (u, v) , z (u, v))
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and consider the small element of the plane that is bounded by the co-ordinate lines u = u0
and u = u0 + δu and v = v0 and v = v0+ δv. Then r maps this to a small region of the surface
r (U ) and we are interested in calculating the surface area of this small region. Note

r (u+ δu, v)− r (u, v) ≈ ∂r

∂u
(u, v) δu,

r (u, v + δv)− r (u, v) ≈ ∂r

∂v
(u, v) δv.

Recall that the area of a parallelogram with sides a and b is |a ∧ b| . So the element of surface
area we are considering is approximately

����
∂r

∂u
δu ∧ ∂r

∂v
δv

���� =
����
∂r

∂u
∧ ∂r

∂v

���� δu δv.

Thus, at this point we proceed as with double integrals. Partitioning U by smaller and smaller
elements, of area δA = δuδv, we have in the limit δA→ 0

lim
�

elements

����
∂r

∂u
∧ ∂r

∂v

���� δu δv
def
=

��

U

����
∂r

∂u
∧ ∂r

∂v

���� du dv.

This gives the surface area of the parameterized surface; as with double integrals the pre-limit
summation can be weighted with a scalar function ψ(r(u, v)) evaluated at the centre of the
elements to yield ��

U

ψ(r(u, v))

����
∂r

∂u
∧ ∂r

∂v

���� du dv.

Definition 36 We will often write

dS =

����
∂r

∂u
∧ ∂r

∂v

���� du dv

to denote an infinitesimal part of surface area. We will also write

dS =
∂r

∂u
∧ ∂r

∂v
du dv

This is also commonly written as ndS where n is the choice of unit normal in the direction of
∂r/∂u ∧ ∂r/∂v.

Proposition 37 The surface area of r (U) is independent of the choice of parameterization.

Proof. Let Σ = r (U ) = s (W ) be two different parameterizations of a surface X ; take u, v as
the co-ordinates on U and p, q as the co-ordinates on W . Let f = (f1, f2) : U → W be the
co-ordinate change map — i.e. for any (u, v) ∈ U we have

r (u, v) = s (f (u, v)) = s (f1 (u, v) , f2 (u, v)) = s(p, q).
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Then
∂r

∂u
=

∂s

∂p

∂f1
∂u

+
∂s

∂q

∂f2
∂u

,
∂r

∂v
=

∂s

∂p

∂f1
∂v

+
∂s

∂q

∂f2
∂v

.

Hence

∂r

∂u
∧ ∂r

∂v
=

∂s

∂p

∂f1
∂u

∧ ∂s

∂q

∂f2
∂v

+
∂s

∂q

∂f2
∂u

∧ ∂s

∂p

∂f1
∂v

=

�
∂f1
∂u

∂f2
∂v

− ∂f1
∂v

∂f2
∂u

�
∂s

∂p
∧ ∂s

∂q

=
∂ (p, q)

∂ (u, v)

∂s

∂p
∧ ∂s

∂q
.

Finally
��

U

����
∂r

∂u
∧ ∂r

∂v

���� du dv =

��

U

����
∂ (p, q)

∂ (u, v)

∂s

∂p
∧ ∂s

∂q

���� du dv

=

��

U

����
∂s

∂p
∧ ∂s

∂q

����

����
∂ (p, q)

∂ (u, v)

���� du dv

=

��

W

����
∂s

∂p
∧ ∂s

∂q

���� dpdq

by the two-dimensional rule for the change of variables in integrals.

Remark 38 General method of evaluation of surface integrals

1. find a suitable parameterization, in terms of some u, v;

2. find the domain of u, v, a set U ⊆ R2;

3. evaluate ∂r/∂u ∧ ∂r/∂v for (u, v) ∈ U ;

4. substitute into the relevant repeated integral and evaluate that integral.

Definition 39 If F and φ are a vector field and scalar field defined on a parameterized surface
Σ = r(U), then we may define the following surface integrals:

��

Σ

F · dS =

��

U

F(r(u, v)) ·
�
∂r

∂u
∧ ∂r

∂v

�
du dv;

��

Σ

F dS =

��

U

F(r(u, v))

����
∂r

∂u
∧ ∂r

∂v

���� du dv;

��

Σ

φdS =

��

U

φ(r(u, v))

�
∂r

∂u
∧ ∂r

∂v

�
du dv;

��

Σ

φdS =

��

U

φ(r(u, v))

����
∂r

∂u
∧ ∂r

∂v

���� du dv.
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Remark 40 When the surface Σ encloses a 3D region such as the surface of the unit sphere,
the standard convention is that

dS = ndS

has the normal, n pointing outwards from the body.

We will most commonly meet integrals of the first type and fourth types. The first type of
integral ��

Σ

F · dS

which is known as a flux integral.

8. Solid angle

Definition 41 The solid angle is the angle an object subtends at a point in three-dimensional
space. More precisely, half-lines from a fixed point (or observer) will either intersect with the
object in question or not; those lines of sight that are blocked by the object represent a subset
of the unit sphere centred on the observer. The solid angle is the area of this subset (strictly
it is the area of this subset divided by the unit of length squared to ensure the solid angle is
dimensionless). The unit of solid angle is the steradian. Given that the surface area of a
sphere is 4π(radius)2 then a whole solid angle is 4π.

If Σ∗ is a surface and Σ is the subset of Σ∗ facing the unit sphere, then the solid angle Ω
subtended at O by Σ∗ equals, by definition,

Ω =

��

Σ

er · dS
r2

=

��

Σ

r · dS
r3

.

Remark 42 If an element of surface area is viewed "full-on" at distance 1 away then it obscures
a solid angle of dS. In this case er and n are parallel so that er · dS = dS. However that same
area might be oblique to the viewer and so only a fraction/component of the potential solid angle
is obscured. In the extreme when er and n are perpendicular so that er · dS = 0, and the area
obscures none of the view. The term r−2 represents how a sphere’s area grows proportianately
to r2. The same area, at distance r now, will obscure r−2 of its previous solid angle.
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Example 43 Find the solid angle at the apex of a right pyramid with square base of side 2d
and height h.

Solution. Place the apex of the pyramid at the origin and orientate the axis of the pyramid
along the positive z-axis so that the square base of the pyramid has vertices (±d,±d, h) . By
symmetry the solid angle at the apex is 4 times the solid angle subtended by the smaller square
with vertices

(0, 0, h) , (0, d, h) , (d, d, h) (0, d, h) .

Hence the solid angle is

Ω = 4

� d

y=0

� d

x=0

(x, y, h) · k dx dy
(x2 + y2 + h2)3/2

= 4h

� d

y=0

� d

x=0

dx dy

(x2 + y2 + h2)3/2
.

If we set x =
�

y2 + h2 tan t and tan τ = d/
��

y2 + h2
�
then

Ω = 4h

� d

y=0

� τ

t=0

�
y2 + h2 sec2 t dt dy

((y2 + h2) tan2 t+ y2 + h2)
3/2

= 4h

� d

y=0

� τ

t=0

�
y2 + h2 sec2 t dt dy

(y2 + h2)3/2 (tan2 t+ 1)
3/2

= 4h

� d

y=0

� τ

t=0

cos t dt dy

(y2 + h2)
= 4h

� d

y=0

sin τ dy

(y2 + h2)

= 4hd

� d

y=0

dy

(y2 + h2)
�

y2 + h2 + d2

as sin τ = d (y2 + h2 + d2)
−1/2

.
If we make a similar substitution again, namely y =

√
h2 + d2 tan φ and tanα = d/

√
h2 + d2

then

Ω = 4hd

� α

φ=0

√
h2 + d2 sec2 φ dφ

((h2 + d2) tan2 φ+ h2)
√
h2 + d2 secφ

= 4hd

� α

φ=0

cosφdφ�
(h2 + d2) sin2 φ+ h2 cos2 φ

�

= 4hd

� α

φ=0

cosφdφ

d2 sin2 φ+ h2
.

Our final substitution is u = sin φ so that sinα = d/
√
h2 + 2d2 and

Ω = 4hd

� sinα

u=0

du

d2u2 + h2
=

4h

d

�
d

h
tan−1

�
du

h

��sinα

0

= 4 tan−1
�

d2

h
√
h2 + 2d2

�
.
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Example 44 Evaluate the integral ��

Σ

F ∧ dS

where in each case Σ is the closed hemispherical surface made up of points (x, y, z) such that
either x2 + y2 + z2 = 1 and z > 0, or x2 + y2 � 1 and z = 0;. orient Σ so that dS is in the
direction of the outward-pointing normal and F = (zx, zy, z2).

Solution. We could proceed to parameterize the two parts of Σ, the upper part of the hemi-
spherical surface Σ1 and the planar disc Σ2 . These can be respectively parameterized as

r1 (θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) 0 � φ � 2π, 0 � θ � π/2;

r2 (r, θ) = (r cos θ, r sin θ, 0) 0 � θ � 2π, 0 � r � 1.

With some further calculation we would find

∂r1
∂θ

∧ ∂r1
∂φ

= sin θ (sin θ cosφ, sin θ sinφ, cos θ) ,
∂r1
∂r

∧ ∂r1
∂θ

= (0, 0, r) .

In order to get the correct outward-pointing direction we need to set

dS = sin θ (sin θ cosφ, sin θ sin φ, cos θ) dθ dφ, dS = −rk,

respectively.
However, if we stop to think a little, we can straight away see that ... On Σ1 we have F = zr
and n = r so that F ∧ dS = zr ∧ n dS = zr ∧ rdS = 0 on all of Σ1, and further as z = 0 on
all of Σ2 then it’s also true that F = 0 on all of Σ2.
Moral of the story: take some time to consider (i) the nature of your function and
the region, (ii) what integrals need to be calculated, and (iii) what co-ordinates
are best for the problem under consideration.

Remark 45 (A point of notation in relation to sheet 3). In question 5, ∂Σ refers to the
boundary of Σ, which is formed from three curves which can be parameterized

C1 = {(t, 0, t) : 0 � t � 2} ,
C2 = {(2 cos t, 2 sin t, 2) : 0 � t � π} ,
C3 = {(2− t) (−1, 0, 1) : 0 � t � 2} .

Be sure to orient the curves consistently in a loop to find
�
∂Σ

f dr (which is defined only up to
sign).
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4. LINE INTEGRALS&CONSERVATIVEFIELDS

4.1 Curves

Definition 46 By a curve we shall mean a piecewise smooth function γ : I → R
3 defined on

an interval I of R. Notice that order on I also gives the curve γ an orientation.

We shall also use the term curve to describe the images of such maps γ. Given such
an image then it will be the image of more than one such map γ and we will talk about
parameterizations γ1 and γ2 of the curve. These parameterizations of the image come in two
different possible orientations.

Definition 47 We say a curve γ : [a, b] → R
3 is simple if γ is 1—1, with the one possible

exception that γ(a) = γ(b) may be true; this means that the curve does not cross itself except
possibly by its endpoints meeting.

Definition 48 We say a curve γ : [a, b]→ R
3 is closed if γ(a) = γ(b).

Example 49 The line through points p and q can be parameterized as

γ (t) = p+ t (q− p) .

When 0 < t < 1 then γ (t) lies between p and q, for t > 1 beyond q and for t < 0 before p.

Example 50 A curve of the form

γ (t) = (a cos t, a sin t, ct) (4.1)

is known as a circular helix.

Exercise 51 The curve Γ is parameterized by

Γ(u) = (u+
√
3 sinu, 2 cosu,

√
3u− sin u).

Find a circular helix of the form (4.1) and an isometry T such that Tγ = Γ.

Example 52 parameterize the parabola formed by intersecting the plane 3x+4y+5z = 1 with
the cone x2 + y2 = z2, z > 0.

Solution. A general point on the cone can be written as r (θ, z) = (z cos θ, z sin θ, z) where
z > 0 and 0 � θ < 2π. If this point also lies in the plane 3x+ 4y + 5z = 1 then

z (3 cos θ + 4 sin θ + 5) = 1
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and so we see

γ (θ) =

�
cos θ

3 cos θ + 4 sin θ + 5
,

sin θ

3 cos θ + 4sin θ + 5
,

1

3 cos θ + 4 sin θ + 5

�

lies on the parabola. What values should θ range through? We need

0 �= 3 cos θ + 4 sin θ + 5 = 5 cos (θ − α) + 5

where α = tan−1 4
3
. Hence

γ (θ) =
1

5

�
cos θ

cos (θ − α) + 1
,

sin θ

cos (θ − α) + 1
,

1

cos (θ − α) + 1

�
α − π < θ < α + π

is a parameterization.

Aside. In the above example, let

e1 =
1√
50

(−3,−4, 5), e2 =
1

5
(−4, 3, 0), e3 = e1 ∧ e2 =

1√
50

(3, 4, 5)

be a set of basis vectors. With

X = e1 · γ(θ), Y = e2 · γ(θ))

we find that
Y 2/X

is constant for all θ, explicitly confirming we have a parabola in the plane spanned by e1, e2.

Example 53 Show that the plane with equation Ax+By +Cz = D intersects the unit sphere
x2 + y2 + z2 = 1 in a circle if and only if A2 + B2 + C2 > D2. Parameterize the intersection
of x+ y + z = 1 with the unit sphere.

Solution. The plane Ax+By +Cz = D has normal (A,B,C) and so the point closest to the
origin is the point with position vector λ (A,B,C) which lies on the plane; by substitution, we
see λ = D/ (A2 +B2 + C2). This point is within unit distance of the origin if and only if

1 >

����
D

A2 +B2 + C2
(A,B,C)

���� =
|D|

√
A2 +B2 + C2

A2 +B2 + C2

i.e. if and only if A2 +B2 + C2 > D2.
By this criterion the plane x+ y + z = 1 intersects with the unit sphere. The centre of the

circle which makes the intersection is at

1

12 + 12 + 12
(1, 1, 1) =

(1, 1, 1)

3
.

By Pythagoras’ Theorem the radius r of the circle satisfies

r2 +

����
(1, 1, 1)

3

����
2

= 1 =⇒ r =

�
2

3
.
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As e1 = (1,−1, 0) /
√
2 and e2 = (1, 1,−2) /

√
6 are two orthonormal vectors parallel to the

plane then every point of the circle can be written in the form γ (t) for 0 � t < 2π where

γ (t) =
(1, 1, 1)

3
+ e1

�
2

3
cos t+ e2

�
2

3
sin t

=

�
1

3
+

1√
3
cos t+

1

3
sin t,

1

3
− 1√

3
cos t+

1

3
sin t,

1

3
− 2

3
sin t

�
.

4.2 Line Integrals

Definition 54 Let C be a curve in R3, parameterized by γ : [a, b]→ R
3 and let F be a vector

field, whose domain includes C. We define the line integral of F along C as

�

C

F · dr =
� b

a

F(r(t)) · r′(t) dt.

Proposition 55 If oriented the same, the line integral
�
C
F · dr is independent of the choice

of parameterization.

Proof. Suppose that γ1 : [a1, b1] → R
3 and γ2 : [a2, b2] → R

3 are two parameterizations of
C with γ1 (a1) = γ2 (a2) and γ1 (b1) = γ2 (b2), so that γ1 and γ2 give C the same orientation.
Then γ2 = γ1 ◦ψ where ψ : [a2, b2]→ [a1, b1] associates the γ2 co-ordinates of points on C with
their γ1 co-ordinate.

We now define I : [a1, b1]→ R and J : [a2, b2]→ R by

I (t) =

� t

a1

F (γ1 (s)) · γ′1 (s) ds, J (t) =

� t

a2

F (γ2 (s)) · γ′2 (s) ds.

By the Fundamental Theorem of Calculus

I ′ (t) = F (γ1 (t)) · γ′1 (t) , J ′ (t) = F (γ2 (t)) · γ′2 (t) .

Further, for ψ(t) a function of t we have, by the chain rule,

d

dt
I (ψ (t)) = ψ′ (t) I ′ (ψ (t))

= ψ′ (t) F (γ1 (ψ (t))) · γ′1 (ψ (t)) .

Recall
γ2(t) = γ1(ψ(t)).
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Thus γ′2(t) = ψ′(t)γ′1(ψ(t)) and hence

d

dt
I (ψ (t)) = F (γ2 (t)) · (γ′1 (ψ (t))ψ′ (t))

= F (γ2 (t)) · γ′2 (t) = J ′ (t) .

It follows that I (ψ (t)) and J (t) differ by a constant and, as they agree at t = a2 (when they
are both zero), then I (ψ (t)) = J (t) and in particular when t = b2 we have

� b1

a1

F (γ1 (s)) · γ′1 (s) ds =
� b2

a2

F (γ2 (s)) · γ′2 (s) ds.

Remark 56 If we parameterized C in the reverse orientation then the integral
�
C
F · dr would

give negative what had been previously calculated.

Example 57 Let F = c ∧ r where c is a constant vector and let C be the circular helix
parameterized by

r (t) = (cos t, sin t, t) , 0 � t � 2π.

Then

�

C

F · dr =

� 2π

0

������

i j k

c1 c2 c3
cos t sin t t

������
· (− sin t, cos t, 1) dt

=

� 2π

0

������

− sin t cos t 1
c1 c2 c3

cos t sin t t

������
dt

=

� 2π

0

�
−c2t sin t+ c3 cos

2 t+ c1 sin t− c2 cos t+ c3 sin
2 t− c1t cos t

�
dt

=

� 2π

0

(−c2t sin t+ c3 − c1t cos t) dt

= 2πc3 − c1 [t sin t+ cos t]2π0 − c2 [−t cos t+ sin t]2π0
= 2π (c2 + c3) .

Definition 58 If φ is a scalar field defined on a curve C with parameterization γ : [a, b]→ R
3,

then we also define the line integral

�

C

φds =

� b

a

φ(t) |γ′(t)| dt.

If F = (F1, F2, F3) is a vector field defined on the curve C then we define

�

C

F ds =

��

C

F1 ds,

�

C

F2 ds,

�

C

F3 ds

�
.
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Remark 59 Note that if t is the unit tangent vector field along C, in the same direction as
the parameterization, then �

C

φ ds =

�

C

(φt) · dr

and so, by inheritance, these line integrals do not depend on the choice of parameterization.
Note further that the two types of integral defined above are also independent of the choice of
orientation of C, as they are independent of the sign of γ′(t).

Definition 60 If C is a curve with parameterization γ : [a, b] → R
3 then the arc length of

the curve is �

C

ds =

� b

a

|γ′(t)| dt.

Example 61 Find the arc length of the circular helix r (t) = (cos t, sin t, t) where 0 � t � 2π.

Solution. We have

s =

� 2π

0

|(− sin t, cos t, 1)| dt =
� 2π

0

�
1 + sin2 t+ cos2 t dt =

� 2π

0

√
2 dt = 2

√
2π.

We could also parameterize the helix "in reverse" by setting s (t) = r (2π − t) = (cos t,− sin t, 2π − t)
where 0 � t � 2π. We would still find

s =

� 2π

0

|(− sin t,− cos t,−1)| dt =
� 2π

0

�
1 + sin2 t+ cos2 t dt =

� 2π

0

√
2dt = 2

√
2π.

Notation 62 We will standardly use the notation

dr = (dx, dy, dz) and ds = |dr| ,

even though this may seem a little non-rigorous and any analysis course would insist on such
differentials only appearing as part of a limit or within an integral. Rest assured that these
differentials can be rigorously defined, though doing so is not a primary concern of this course.

Definition 63 With notation as in the Definition 54, if the vector field F represents a force
on a particle then �

C

F · dr (4.2)

is the work done by the force in moving the particle along C.

This is a generalization of the formula

Work = Force×Distance

which applies to constant forces acting parallel to the direction of the motion. More generally,
we have

Work = Component of force in direction of travel×Distance

if the force and movement are not parallel. The work integral (4.2 ) is just an integral of such
infinitesimal contributions of work.
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Example 64 Show that the work done by gravity, F = −mgk, in moving a particle along a
straight line from (x1, y1, z1) to (x2, y2, z2) equals mg (z1 − z2).

Solution. We can parameterize the line segment as

r (t) = (x1, y1, z1) + t (x2 − x1, y2 − y1, z2 − z1) , 0 � t � 1,

so that
dr =(x2 − x1, y2 − y1, z2 − z1) dt.

Then
�

C

F · dr =

� 1

0

−mgk · (x2 − x1, y2 − y1, z2 − z1) dt

=

� 1

0

−mg (z2 − z1) dt

= mg (z1 − z2) .

In fact, the work done by gravity — which is positive if z1 > z2, i.e. the particle has dropped
— is the loss in gravitational potential energy which, commonly, will have been converted into
kinetic energy. The work done is dependent only on the endpoints (x1, y1, z1) and (x2, y2, z2)
and is independent of the path taken between these endpoints. This is common to certain types
of field which are known as conservative.

4.3 Conservative Fields

Proposition 65 If F = ∇φ and γ : [a, b]→ S is any curve such that γ (a) = p, γ (b) = q then
�

γ

F (r) · dr = φ (q)− φ (p) .

In particular, the integral
�
γ
F (r) · dr depends only on the endpoints of the curve γ.

Proof. If γ (t) = (x (t) , y (t) , z (t)) then
�

γ

F (r) · dr =

� b

a

F (γ (t)) · γ′ (t) dt

=

� b

a

∇φ (γ (t)) · γ′ (t) dt

=

� b

a

�
∂φ

∂x

dx

dt
+

∂φ

∂y

dy

dt
+

∂φ

∂z

dz

dt

�
dt

=

� b

a

�
d

dt
(φ (γ (t)))

�
dt [by the chain rule]

= φ (γ (b))− φ (γ (a))

= φ (q)− φ (p) .
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Motivated by the above proposition, we now introduce the following definitions:

Definition 66 Let S be an open subset of R3. A vector field F : S → R
3 is said to be conser-

vative if there exists a scalar field φ : S → R such that F = ∇φ.

Definition 67 If F = ∇φ then φ is said to be a potential (or scalar potential) for F.

Definition 68 A subset S of R3 is said to be path-connected if for any points p,q ∈ S there
exists a curve γ : [a, b]→ S such that γ(a) = p and γ(b) = q.

Corollary 69 If ∇φ = 0 on a path-connected set S then φ is constant. In particular, if φ and
ψ are potentials of the conservative field F, defined on S, then φ and ψ differ by a constant.

Proof. If ∇φ = 0 then for any curve, with endpoints p, q, we have

φ (q)− φ (p) =

�

γ

∇φ · dr = 0.

Given a fixed point p in S, any q in S is connected to p by a curve, and so φ is constant. If
F = ∇φ = ∇ψ then ∇ (φ− ψ) = 0 and the result follows.

Theorem 70 Let S be an open path connected subset of R3 and let F : S → R
3 be a vector

field. Then the following three statements are equivalent.
(i) F is conservative — i.e. F = ∇φ for some scalar field φ : S → R.
(ii) Given any two points p,q ∈ S and curve γ in S, starting at p and ending at q, then

the integral �

γ

F (r) · dr

is independent of the choice of curve γ.
(iii) For any simple closed curve γ then

�

γ

F (r) · dr = 0.

Proof. (i) =⇒ (ii) : This was just proved in Proposition 65 as φ (q) − φ (p) is dependent
only on the endpoints p and q and not on the path taken.
(ii) =⇒ (i) : Let p ∈ S be a fixed point and define for any q ∈ S

φ (q) =

� q

p

F (r) · dr

which, by assumption, is independent of the curve taken and is a function only of q.
As S is open there is an r > 0 small enough that q+ ti is in S for 0 � t � r. Then

φ (q+ ti)− φ (q) =

� q+ti

q

F (r) · dr
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where the curve from q to q+ ti can be taken to be a straight line. So

φ (q+ ti)− φ (q) =

� s=t

s=0

F (q+ si) · (ids) =
� s=t

s=0

F1 (q+ si) ds

where F = (F1, F2, F3). Hence

∂φ

∂x
(q) = lim

t→0

φ (q+ ti)− φ (q)

t
= lim

t→0

1

t

� s=t

s=0

F1 (q+ si) ds = F1 (q)

by the continuity of F1 at q. Similarly

∂φ

∂y
(q) = F2 (q) ,

∂φ

∂z
(q) = F3 (q)

and so ∇φ = F as required.
(ii) =⇒ (iii) : Suppose now that for any two points p and q the line integral

� q
p
F (r) · dr is

independent of the curve taken.
Let γ be a simple closed curve in S and let p and q be two distinct points on γ. Then p and
q split γ into two curves γ1 and γ2, with γ1 running from p to q and γ2 running from q to p.
So, by (ii) and Remark 56,

�

γ

F (r) · dr =
�

γ1

F (r) · dr+
�

γ2

F (r) · dr =
� q

p

F (r) · dr−
� q

p

F (r) · dr = 0

(iii) =⇒ (ii) :Let p,q ∈ S and let γ1, γ2 be two curves in S, starting at p and ending at q. If
γ is the curve which follows γ1 and comes back around γ2, so that we have returned to p then,
by assumption and Remark 56,

0 =

�

γ

F (r) · dr =
�

γ1

F (r) · dr−
�

γ2

F (r) · dr =⇒
�

γ1

F (r) · dr =
�

γ2

F (r) · dr

and the line integral of F from p to q is independent of the choice of path taken.
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5. DIV, GRAD AND CURL

Recall by a scalar field φ on R3 we shall mean a map φ : R3 → R and by a vector field F on
R
3 we shall mean a map F : R3 → R

3.

We shall also consider scalar and vector fields defined on proper subsets of R3 (or more generally
R

n). The domains of these fields will usually be open, so that we can define their partial
derivatives.

5.1 Definitions and Properties

Definition 71 Let φ : R3 → R be a scalar field. Then the gradient of φ written grad φ or ∇φ
equals

gradφ = ∇φ =

�
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

�
.

Note grad takes scalar fields to vector fields.

Definition 72 Let F : R3 → R
3 be a vector field with F = (F1, F2, F3). Then the divergence

of F written divF or ∇ · F equals

divF = ∇ · F =
∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

.

Note div takes vector fields to scalar fields.

Definition 73 Let F : R3 → R
3 be a vector field with F = (F1, F2, F3). Then the curl of F

written curlF or ∇∧ F equals

curlF = ∇ ∧ F =

������

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

������
=




∂F3
∂y
− ∂F2

∂z
∂F1
∂z
− ∂F3

∂x
∂F2
∂x
− ∂F1

∂y





Note curl takes vector fields to vector fields.

Definition 74 The differential operator

∇ =

�
∂

∂x
,
∂

∂y
,
∂

∂z

�

is called del or nabla.
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Remark 75 Whilst ∇ looks, and very occasionally behaves, like a standard vector it is unwise
to assume this behaviour of ∇ without proof; most standard vector identities are not true when
they involve ∇. For example, the commutativity of the dot product does not extend:

∇ · F �= F · ∇.

The LHS is divF. At first glance, the RHS doesn’t mean anything; it certainly isn’t a scalar.
Rather

F · ∇ = (F1, F2, F3) ·
�

∂

∂x
,
∂

∂y
,
∂

∂z

�
= F1

∂

∂x
+ F2

∂

∂y
+ F3

∂

∂z

which is a differential operator. In fact F · ∇ is standard notation for it and it gives the
directional derivative in the direction of F.

Definition 76 For any scalar field φ we have

div (grad φ) =
∂

∂x

�
∂φ

∂x

�
+

∂

∂y

�
∂φ

∂y

�
+

∂

∂z

�
∂φ

∂z

�
=

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
,

which is the Laplacian. As
div grad = ∇ · ∇

then we often write

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
.

Also, for vector fields F = (F1, F2, F3) with respect to a Cartesian coordinate system, it is
common to write

∇2F =
�
∇2F1,∇2F2,∇2F3

�
.

Thus the Laplacian can both take scalar fields to scalar fields and vector fields to vector fields.

Remark 77 The notation grad, div, curl and ∇, ∇ · ,∇∧ are equally common in mathemat-
ical texts, and so these lecture notes and the problem sheets will deliberately make use of both
notations.

In summary, we have the following:

operator maps:
div = ∇· vector fields to scalar fields
grad = ∇ scalar fields to vector fields
curl = ∇∧ vector fields to vector fields
div grad = ∇2 scalar fields to scalar fields

vector fields to vector fields
F · ∇ scalar fields to scalar fields

vector fields to vector fields
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Example 78 Let r = (x, y, z) and r = |r| =
�

x2 + y2 + z2. Then

div r =
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 3;

curl r =

������

i j k
∂
∂x

∂
∂y

∂
∂z

x y z

������
= 0.

Example 79 With r and r as above, and f a differentiable function on (0,∞) note

curl (f (r) r) =

������

i j k
∂
∂x

∂
∂y

∂
∂z

f (r)x f (r) y f (r) z

������

=

�
zf ′ (r)

∂r

∂y
− yf ′ (r)

∂r

∂z
, xf ′ (r)

∂r

∂z
− zf ′ (r)

∂r

∂x
, yf ′ (r)

∂r

∂x
− xf ′ (r)

∂r

∂y

�

= f ′ (r)
�zy

r
− yz

r
,
xz

r
− zx

r
,
yx

r
− xy

r

�
= 0.

Example 80 Let c = (c1, c2, c3) be a constant vector. Then

div (c ∧ r) =
∂

∂x
(c2z − c3y) +

∂

∂y
(c3x− c1z) +

∂

∂z
(c1y − c2x) = 0;

curl (c ∧ r) =

������

i j k
∂
∂x

∂
∂y

∂
∂z

c2z − c3y c3x− c1z c1y − c2x

������
=




c1 + c1
c2 + c2
c3 + c3



 = 2c.

The next proposition shows that the formulae for calculating each of , grad and curl do not
depend on our choice i, j,k of a Cartesian co-ordinate system. Recall that:

Definition 81 The vectors e1, e2, e3 are said to be an orthonormal basis of R3 if

ei · ej = δij =

	
1 if i = j,
0 if i �= j.

So the vectors are all of unit length and mutually perpendicular. Further it is said to be right-
handed if e1 ∧ e2 = e3 and left-handed if e1 ∧ e2 = −e3.
e1 = i, e2 = j, e3 = k is an example of a right-handed orthonormal basis.

9. An orthonormal basis
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Proposition 82 Let e1, e2, e3 be a right-handed orthonormal basis of R3 with associated co-
ordinates X, Y, Z defined by the identity

Xe1 + Y e2 + Ze3 = xi+ yj+ zk. (5.1)

Then

e1
∂

∂X
+ e2

∂

∂Y
+ e3

∂

∂Z
= i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

Proof. From (5.1) we have that

x = (e1 · i)X + (e2 · i)Y + (e3 · i)Z,
X = (e1 · i)x+ (e1 · j) y + (e1 · k) z,

and four other similar equations for y, z, Y, Z. It follows from the chain rule that

∂

∂X
=

∂x

∂X

∂

∂x
+

∂y

∂X

∂

∂y
+

∂z

∂X

∂

∂z
= (e1 · i)

∂

∂x
+ (e1 · j)

∂

∂y
+ (e1 · k)

∂

∂z

and hence

e1
∂

∂X
+ e2

∂

∂Y
+ e3

∂

∂Z

= e1

�
(e1 · i)

∂

∂x
+ (e1 · j)

∂

∂y
+ (e1 · k)

∂

∂z

�
+ e2 [. . .] + e3 [. . .]

= [e1 (e1 · i) + e2 (e2 · i) + e3 (e3 · i)]
∂

∂x
+ [. . .]

∂

∂y
+ [. . .]

∂

∂z

= i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
;

this last line follows from the orthonormality of the bases as

i = αe1 + βe2 + γe3

leads to α = e1 · i, β = e2 · i, γ = e3 · i, by dotting the equation with e1, e2, e3 respectively.

10. Components for the two bases
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Corollary 83 Let f : R3 → R
3 be a vector field given by f = (f1, f2, f3), let φ : R3 → R be a

scalar field and let e1, e2, e3 be a right-handed orthonormal basis of R3. Suppose that

F1e1 + F2e2 + F3e3 = f1i+ f2j+ f3k;

Φ (X, Y, Z) = φ (x, y, z) .

That is, F and Φ represent f and φ in the new co-ordinates X, Y,Z. Then

gradφ =
∂Φ

∂X
e1 +

∂Φ

∂Y
e2 +

∂Φ

∂Z
e3;

div f =
∂F1
∂X

+
∂F2
∂Y

+
∂F3
∂Z

;

curl f =

������

e1 e2 e3
∂

∂X
∂
∂Y

∂
∂Z

F1 F2 F3

������
.

That is, we calculate grad, div and curl using the same formulae, irrespective of what right-
handed orthonormal co-ordinate system we are using.

Proof. Sketch Proof The previous proposition showed that the formula for grad does not
change under an orthonormal change of co-ordinates. From Geometry, we have that the formula
for the dot product is similarly invariant as is the formula for the cross product provided the
change is to another right-handed system. Hence the formulae for div = ∇· and curl = ∇∧ do
not change when we change to another right-handed orthonormal system.
Adjustments to the above formulae need to be made for co-ordinate systems that aren’t or-
thonormal — e.g. cylindrical polar co-ordinates or spherical polar co-ordinates. The relevant
formulae below are for reference only; certainly you are not expected to memorize them. The
main point to take away from this is that the grad, div, curl formulae are different for co-
ordinate systems that are not Cartesian.

Definition 84 Cylindrical polar co-ordinates r, θ, z are defined by the identity

r = (x, y, z) = (r cos θ, r sin θ, z) .

If we note
dr = (cos θ, sin θ, 0) dr + (−r sin θ, r cos θ, 0) dθ + (0, 0, 1) dz

then we may write
dr = erdr + reθdθ + ezdz

where
er = (cos θ, sin θ, 0) , eθ = (− sin θ, cos θ, 0) , ez = (0, 0, 1) .

Note, for any values of r, θ, z, the vectors er, eθ,ez make a right-handed orthonormal basis of
R
3.
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Proposition 85 The formulae for grad, div, curl in terms of cylindrical polar co-ordinates of
fields ψ (r, θ, z) and F = Frer + Fθeθ + Fzez are

∇ψ =
∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

∂ψ

∂z
ez;

∇ · F =
1

r

∂

∂r
(rFr) +

1

r

∂Fθ

∂θ
+

∂Fz

∂z
;

∇ ∧ F =
1

r

������

er reθ ez
∂
∂r

∂
∂θ

∂
∂z

Fr rFθ Fz

������
.

Proof. By way of example we shall prove only the first identity here. Recall that Cartesian
co-ordinates are given in terms of cylindrical polar ones by

x = r cos θ, y = r sin θ, z = z

Say φ (x, y, z) = ψ (r, θ, z) . Then

∂ψ

∂r
=

∂φ

∂x

∂x

∂r
+

∂φ

∂y

∂y

∂r
+

∂φ

∂z

∂z

∂r
=

∂φ

∂x
cos θ +

∂φ

∂y
sin θ,

∂ψ

∂θ
=

∂φ

∂x

∂x

∂θ
+

∂φ

∂y

∂y

∂θ
+

∂φ

∂z

∂z

∂θ
= −∂φ

∂x
r sin θ +

∂φ

∂y
r cos θ,

∂ψ

∂z
=

∂φ

∂z
.

Hence

∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

∂ψ

∂z
ez

=

�
∂φ

∂x
cos θ +

∂φ

∂y
sin θ

�
(cos θ, sin θ, 0) +

1

r

�
−∂φ

∂x
r sin θ +

∂φ

∂y
r cos θ

�
(− sin θ, cos θ, 0) +

∂φ

∂z
k

=

�
∂φ

∂x
cos2 θ +

∂φ

∂x
sin2 θ

�
i+

�
∂φ

∂y
sin2 θ +

∂φ

∂y
cos2 θ

�
j +

∂φ

∂z
k

= ∇φ.

Definition 86 Spherical polar co-ordinates r, θ, φ are defined by the identity

r = (x, y, z) = (r sin θ cosφ, r sin θ sin φ, r cos θ) .

If we note dr equals

(sin θ cosφ, sin θ sin φ, cos θ) dr+r (cos θ cosφ, cos θ sinφ,− sin θ) dθ+r sin θ (− sinφ, cosφ, 0) dφ

then we may write
dr = erdr + reθdθ + r sin θeφdφ

where

er = (sin θ cosφ, sin θ sinφ, cos θ) , eθ = (cos θ cosφ, cos θ sinφ,− sin θ) , eφ = (− sin φ, cosφ, 0) .

Note, for any values of r, θ, φ the vectors er, eθ, eφ, make a right-handed orthonormal basis.
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Proposition 87 The formulae for grad,div, curl in terms of spherical polar co-ordinates of
fields ψ (r, φ, θ) and F = Frer + Fφeφ + Fθeθ are

∇ψ =
∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

1

r sin θ

∂ψ

∂φ
eφ;

∇ · F =
1

r2 sin θ

�
∂

∂r

�
r2 sin θFr

�
+

∂

∂θ
(r sin θFθ) +

∂

∂φ
(rFφ)

�
;

∇ ∧ F =
1

r2 sin θ

������

er reθ r sin θeφ
∂
∂r

∂
∂θ

∂
∂φ

Fr rFθ r sin θFφ

������
.

Those interested in reading up on the more general theory of curvilinear co-ordinates (which
explains the similarities in the previous two propositions) should see Boas (pp.427-435) or
Kreyszig (pp.498-504).

5.2 Identities

Proposition 88 Let F be a vector field on R3 and φ be a scalar field on R3. Then

curl grad φ = 0; div curlF = 0.

Proof. With the notation∇φ =
�
φx, φy, φz

�
where subscripts now denote partial differentiation,

we have

curl (∇φ) =

������

i j k
∂
∂x

∂
∂y

∂
∂z

φx φy φz

������
=
�
φzy − φyz, φxz − φzx, φyx − φxy

�
= 0.

Again with subscripts denoting partial differentiation, we also have

div (curlF) = div

�
∂F3
∂y

− ∂F2
∂z

,
∂F1
∂z

− ∂F3
∂x

,
∂F2
∂x

− ∂F1
∂y

�

=
�
(F3)yx − (F2)zx

�
+
�
(F1)zy − (F3)xy

�
+
�
(F2)xz − (F1)yz

�
= 0.

Remark 89 These are in fact aspects of the same theorem, though a detailed explanation would
stray into graduate level work on differential forms and topology. But it may be worth saying
that the set-up on R3

scalar
grad→ vector

curl→ vector
div→ scalar

can be extended to the idea of differentiating differential forms on Rn

scalars
d→ degree 1 forms

d→ degree2 forms
d→ · · · d→ degree n forms.

at each stage of which we have the identity d ◦ d = 0. Those interested should check Folland,
section 5.9.
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Proposition 90 (Product Rules for div and curl) Let F be a vector field on R3 and φ, ψ be
scalar fields on R3. Then

div (φF) = ∇φ · F+ φdivF;

curl (φF) = φ curlF+∇φ ∧ F.

Proof. (i) With subscripts denoting partial differentiation we have

div (φF) = (φF1)x + (φF2)y + (φF3)z
= φ (F1)x + φxF1 + φ (F2)y + φyF2 + φ (F3)z + φzF3

= φ
�
(F1)x + (F2)y + (F3)z

�
+
�
φx, φy, φz

�
· (F1, F2, F3)

= φdivF + (∇φ) · F.

(ii) curl (φF) equals

�
∂ (φF3)

∂y
− ∂ (φF2)

∂z
,
∂ (φF1)

∂z
− ∂ (φF3)

∂x
,
∂ (φF2)

∂x
− ∂ (φF1)

∂y

�

= φ

�
∂F3
∂y

− ∂F2
∂z

,
∂F1
∂z

− ∂F3
∂x

,
∂F2
∂x

− ∂F1
∂y

�
+
�
φyF3 − φzF2, φzF1 − φxF3, φxF2 − φyF1

�

= φ curlF+

������

i j k

φx φy φz

F1 F2 F3

������

= φ curlF+ (∇φ) ∧ F.

Proposition 91 (Further Identities) For vector fields F,G:

∇ (F ·G) = (F · ∇)G+ (G · ∇)F+ F ∧ (∇ ∧G) +G ∧ (∇∧ F)
∇ · (F ∧G) = G · (∇∧ F)− F · (∇∧G)

∇ ∧ (F ∧G) = F (∇ ·G)−G (∇ · F) + (G · ∇)F− (F · ∇)G

∇∧ (∇∧ F) = ∇ (∇ · F)−∇2F

Remark 92 All vector calculus can be proven by simply grinding out the calculations. But
there are neater ways to write out the formula for , grad and curl as given below:

∇φ =
�

i

∂φ

∂xi
ei, ∇·F =

�

i

ei ·
∂F

∂xi
, ∇∧F =

�

i

ei∧
∂F

∂xi
, F·∇ =

�

i

(F · ei)
∂

∂xi
,

where the dummy variable i ranges over 1, 2, 3 in each case and e1, e2, e3 is any right-handed
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orthonormal basis. For example

�

i

ei ∧
∂F

∂xi

= e1 ∧
∂F

∂x1
+ e2 ∧

∂F

∂x2
+ e3 ∧

∂F

∂x3

=

������

e1 e2 e3
1 0 0

∂F1
∂x1

∂F2
∂x1

∂F3
∂x1

������
+

������

e1 e2 e3
0 1 0

∂F1
∂x2

∂F2
∂x2

∂F3
∂x2

������
+

������

e1 e2 e3
0 0 1

∂F1
∂x3

∂F2
∂x3

∂F3
∂x3

������

= −e2
∂F3
∂x1

+ e3
∂F2
∂x1

+ e1
∂F3
∂x2

− e3
∂F1
∂x2

− e1
∂F2
∂x3

+ e2
∂F1
∂x3

= ∇ ∧ F.

With these formulae the proofs of identities involving , grad and curl are much shorter; on the

other hand the formulae need to be applied with much more care and attention to detail than
was previously the case.

Proof. The second and third identities appear in the Exercise Sheets. To prove the first
identity recall that u ∧ (v ∧w) = (u ·w) v− (u · v)w and hence

(F · ∇)G+ (G · ∇)F+ F ∧ (∇∧G) +G ∧ (∇ ∧ F)

=
�

i

(F · ei)
∂G

∂xi

+
�

i

(G · ei)
∂F

∂xi

+ F ∧

�

i

ei ∧
∂G

∂xi

�

+G ∧

�

i

ei ∧
∂F

∂xi

�

=
�

i

(F · ei)
∂G

∂xi
+
�

i

(G · ei)
∂F

∂xi
+
�

i

F ∧
�
ei ∧

∂G

∂xi

�
+
�

i

G ∧
�
ei ∧

∂F

∂xi

�

=
�

i

	
(F · ei)

∂G

∂xi

+ (G · ei)
∂F

∂xi

+

��
F · ∂G

∂xi

�
ei − (F · ei)

∂G

∂xi

�
+

��
G · ∂F

∂xi

�
ei − (G · ei)

∂F

∂xi

�


=
�

i

ei

�
F · ∂G

∂xi
+G · ∂F

∂xi

�

=
�

i

ei
∂

∂xi

(F ·G) = ∇ (F ·G) .

To prove the fourth identity recall again that u ∧ (v ∧w) = (u ·w)v − (u · v)w and then

∇ ∧ (∇ ∧ F) =
�

i

ei ∧
∂

∂xi


�

j

ej ∧
∂F

∂xj

�

=
�

i

�

j

ei ∧
�
ej ∧

∂2F

∂xi∂xj

�

=
�

i

�

j

��
ei ·

∂2F

∂xi∂xj

�
ej

�
−
�

i

�

j

�
(ei · ej)

∂2F

∂xi∂xj

�

=
�

j

ej
∂

∂xj

�
�

i

ei ·
∂F

∂xi

 

−
�

i

�

j

�
δij

∂2F

∂xi∂xj

�
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=
�

j

ej
∂

∂xj

�
�

i

ei ·
∂F

∂xi

 

−
�

i

∂2F

∂x2i
= ∇ (∇ · F)−∇2F.

5.3 Physical Interpretation

Example 93 (Fourier’s Law) In an isotropic medium with constant thermal conductivity k,
with temperature T (x, t) at position x and at time t, Fourier’s Law states that

q = −k∇T

where q is the heat flux — that is the amount of energy that flows through a particular surface
per unit area per unit time.

This law contains much of the essence of grad . Recall from the Michaelmas Calculus course
that, for a given scalar function φ and a unit vector v, the directional derivative of φ in the
direction v is ∇φ · v. In particular, φ increases fastest in the direction of ∇φ and decreases
fastest in the direction −∇φ. So Fourier’s law, loosely put, states that at each point the heat
energy moves towards the coolest nearby points.

What about the physical motivation behind divergence?

Example 94 Consider fluid particles in the xy-plane flowing according to the steady flow

11. A source with divu = 2.

We have a source at (0, 0) from which the fluid emanates. However, at every (x, y) , we have
that

divu =
∂x

∂x
+

∂y

∂y
= 2.
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Suppose a particle starts off at (x0, y0); then the particle’s position (x (t) , y (t)) at time t is
determined by the differential equations

dx

dt
= x,

dy

dt
= y, x (0) = x0, y (0) = y0

and, hence,
(x (t) , y (t)) =

�
x0e

t, y0e
t
�
.

Consider now a blob of fluid of area πε2 which at t = 0 occupies

(x− 1)2 + y2 < ε2.

Where will the particles which make up this blob have moved by time t? Initially (at t = 0) the
particles were at x0 = 1 + r cos θ, y = r sin θ where r < ε; at time t > 0 they have moved to

(x (t) , y (t)) =
�
et + ret cos θ, ret sin θ

�
r < ε,

which comprises a disc with centre (et, 0) and area A (t) = πε2e2t. So, throughout the motion
we have

dA

dt
= (divu)A.

More generally, for a two dimensional flow, it is the case that

∇·u (x) = lim
ε→0

�
1

area (Flow image of B (x, ε) at time t)

d

dt
area (Flow image of B (x, ε) at time t)

�
,

with the analogous result for 3D flows in terms of volume rather than area. In physical terms,
then, the divergence of a vector field is a measure of the flow’s source density, the extent to
which the vector field flow behaves like a source or a sink at a given point.

If you choose to take the second year option in fluid dynamics you will meet:

Example 95 Euler’s Equations for an ideal fluid (Second year course in Fluid Dynam-
ics). Euler’s equations for an incompressible, inviscid fluid state that

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ g, ∇ · u = 0,

where u (x, t) is the flow velocity, p is the pressure, ρ is the density and g is acceleration due
to gravity. It is the equation

∇ · u = 0

which encodes the incompressibility of the fluid.

Such vector calculus are found in many applications of mathematics, including Maxwell’s equa-
tions of electromagnetism, fluid and solid mechanics, and cellular behaviour.
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Roughly speaking the curl of a vector field relates to the rotation of the vector field, but very
much in a local sense.

12. Globally rotating field. curlu = 2k

Example 96 (Rotation of a rigid body) Recall from the Michaelmas Dynamics course that
if r = rer then

ṙ = ṙer + rθ̇eθ.

In particular, if a rigid body is rotating with constant angular velocity ω about the z-axis then
the distance of a point r from the z -axis will remain constant and θ̇ = ω so that

ṙ = rωeθ = ωk∧ (rer) = ωk ∧ r.

We have already seen from Example 80 that

curl ṙ = curl (ωk ∧ r) = 2ωk.

Example 97 It is important to stress though that curl is very subtly a measure of local rotation.
Consider the following two examples:

13. Rotating flow with zero curl; linear flow with non-zero curl.
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A simple calculation shows that curlu2 = −ck yet there appears to be no sense of global rotation,
whilst in Exercise 5 on Sheet 1 you are asked to show that curlu1 = 0, yet there appears to
be a clear sense of global rotation. Despite particles moving in circles in the flow u1 different
circles are moving around the origin with different angular velocities and with a greater angular
velocity towards the origin; in fact this differential is such that a circular paddle wheel inserted
into the fluid would not spin as it moves around the origin. In contrast, with the shear flow
u2, whilst the particles are moving in lines, a small paddle wheel inserted into the flow would
spin as the flow for greater y is moving faster. In general, the axis of this spinning is in the
direction of curl .
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6. DIVERGENCE AND STOKES’ THEOREMS

6.1 The Divergence Theorem

Theorem 98 (Divergence Theorem — Lagrange 1762, Gauss 1813, Green 1825) Let R be a
region of R3 with a piecewise smooth boundary ∂R, and let F be a differentiable vector field on
R. Then ���

R

divF dV =

��

∂R

F · dS,

where dS is oriented in the direction of the outward pointing normal from R.

Definition 99 We say that a region R is convex if for any p, q ∈ R the line segment con-
necting p and q is contained in R.

We will only prove the Divergence Theorem for convex regions, though the proof extends with
very little extra work to any region that can be decomposed into convex regions.

Proof. (Not examinable.) Let W be a subset of the xy-plane and α,β continuous functions
on W .

14. A region between two graphs.

Let
R =

�
(x, y, z) ∈ R3 : (x, y) ∈W, α (x, y) � z � β (x, y)

�

and F =Fk is a differentiable vector field on R. (That is R is z-convex in the sense that the
intersection of R with any line parallel with the z-axis is an interval.) The Divergence Theorem
in this case reads as ���

R

∂F

∂z
dV =

��

∂R

Fk · dS.
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Note that ∂R is made up of three surfaces:

Σ+ =
�
(x, y, z) ∈ R3 : (x, y) ∈W, z = β (x, y)

�
,

Σ =
�
(x, y, z) ∈ R3 : (x, y) ∈ ∂W, α (x, y) � z � β (x, y)

�
,

Σ− =
�
(x, y, z) ∈ R3 : (x, y) ∈W, z = α (x, y)

�
.

Then
���

R

∂F

∂z
dV =

��

W

� β(x,y)

α(x,y)

∂F

∂z
dz dA =

��

W

(F (x, y, β (x, y)) − F (x, y, α (x, y))) dA.

Regarding the boundary integral:

on Σ+ : dS =

������

i j k

1 0 βx

0 1 βy

������
dx dy =

�
−βx,−βy, 1

�
dx dy;

on Σ− : dS = −

������

i j k

1 0 αx

0 1 αy

������
dx dy = (αx, αy,−1) dx dy;

on Σ : k · dS = 0.

Hence we have
��

Σ+

Fk · dS =

��

W

F (x, y, β (x, y)) dx dy;

��

Σ−

Fk · dS = −
��

W

F (x, y, α (x, y)) dx dy;

��

Σ

Fk · dS = 0;

and we have shown ���

R

∂F

∂z
dV =

��

∂R

Fk · dS

for the given region R. However, any convex body has the property of being in the form of R
when viewed from each of the x, y, z directions. Hence we have shown

���

R

divF dV =

��

∂R

F · dS

for any convex body.

Corollary 100 Let φ be a smooth scalar field defined on a region R ⊆ R
3 with a piecewise

smooth boundary. Then ���

R

∇φ dV =

��

∂R

φdS.
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Proof. Let c be a constant vector and F = cφ. Then

div (cφ) = c · ∇φ+ φdiv c = c · ∇φ

as c is constant. By the Divergence Theorem

���

R

c · ∇φ dV =

��

∂R

cφ · dS, =⇒ c ·




���

R

∇φdV



 = c ·




��

∂R

φdS



 .

As c is an arbitrary vector then
���

R

∇φ dV =

��

∂R

φdS.

Example 101 Verify the Divergence Theorem when R is the finite region bounded by the
paraboloid z = x2 + y2 and the plane x+ y + z = 1, and F = (x, y, z) .

Solution. We already met this region in Example 22. We showed that the top surface of R
projects vertically down to the set

W =
�
(x, y) ∈ R2 : (x+ 1/2)2 + (y + 1/2)2 � 3/2

�

which is a disc, centre (−1/2,−1/2) and radius
�

3/2. Further we calculated the volume of
the region to be 9π/8. As divF = 3 then

���

R

divF dV = 3Vol (R) =
27π

8
.

The boundary ∂R is made up of two surfaces

Σ1 =
�
(x, y, z) : z � x2 + y2, x+ y + z = 1

�
= {(x, y, z) : (x, y) ∈W, x+ y + z = 1} ;

Σ2 =
�
(x, y, z) : z = x2 + y2, x+ y + z � 1

�
=
�
(x, y, z) : (x, y) ∈W, z = x2 + y2

�
.

We can parameterize Σ1 and Σ2 as

r1 (u, v) = (u, v, 1− u− v) ; r2 (u, v) =
�
u, v, u2 + v2

�
.

Note

(r1)u ∧ (r1)v =

������

i j k

1 0 −1
0 1 −1

������
= (1, 1, 1)

which is outward-pointing from R, and

(r2)u ∧ (r2)v =

������

i j k

1 0 2u
0 1 2v

������
= (−2u,−2v, 1)
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which is inward-pointing and so we will take its negative. So
��

Σ1

F · dS =

��

W

(u, v, 1− u− v) · (1, 1, 1) du dv =

��

W

du dv = π
��

3/2
�2

= 3π/2.

For the second surface
��

Σ2

F · dS =

��

W

�
u, v, u2 + v2

�
· (2u, 2v,−1) dA

=

��

W

�
u2 + v2

�
dA

=

� √
3/2

r=0

� 2π

θ=0

�
(−1/2 + r cos θ)2 + (−1/2 + r sin θ)2

�
r dθ dr

=

� √
3/2

r=0

� 2π

θ=0

�
r2 − r cos θ − r sin θ + 1/2

�
r dθ dr

= 2π

� √
3/2

r=0

!
r3 +

r

2

"
dθ dr

= 2π

�
r4

4
+

r2

4

�√3/2

0

= 2π (9/16 + 3/8) =
15π

8
.

Hence, in total, we have
��

∂R

F · dS =
3π

2
+
15π

8
=

12π

8
+

15π

8
=

27π

8
.

Example 102 The twice continuously differentiable function f (x, y, z) is homogeneous of de-
gree n, so that

f (tx, ty, tz) = tnf (x, y, z) for all t ∈ R. (6.1)

Prove Euler’s Theorem, which states that

r · ∇f = nf.

Let B be the unit ball x2 + y2 + z2 < 1 and let ∂B be its boundary. Show that
���

B

f dV =
1

n (n + 3)

���

B

∇2f dV,

and hence show that ���

B

(x− y + z)4 dV =
36π

35
.
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Solution. If we differentiate the identity (6.1) with respect to t then we find

x
∂f

∂x
(tx, ty, tz) + y

∂f

∂y
(tx, ty, tz) + z

∂f

∂z
(tx, ty, tz) = ntn−1f (x, y, z) .

If we set t = 1 then we arrive at Euler’s Theorem r · ∇f = nf.
By the Divergence Theorem, with B as the unit ball, and ∂B its boundary, then

���

B

∇2f dV =

���

B

∇ · ∇f dV =

��

∂B

∇f · n dS =

��

∂B

∇f · rdS = n

��

∂B

f dS

as n = r on ∂B. On the other hand

∇ · (fr) = (∇f) · r+ f (∇ · r) = nf + 3f = (n+ 3) f.

and so, by the Divergence Theorem again,

(n+ 3)

���

B

f dV =

���

B

∇ · (fr) dV =

��

∂B

fr · n dS =

��

∂B

f dS

as ∂B is the unit sphere. Hence

���

B

f dV =
1

n (n + 3)

���

B

∇2f dV,

The function (x− y + z)4 is homogeneous of degree 4 in x, y, z and so that

���

B

(x− y + z)4 dV

=
1

4× 7

���

B

∇2 (x− y + z)4 dV

=
1

4× 7

���

B

36 (x− y + z)2 dV [which is again homogeneous]

=
36

4× 7
× 1

2× 5

���

B

∇2 (x− y + z)2 dV

=
36

4× 7
× 1

2× 5

���

B

6 dV

=
36

4× 7
× 6

2× 5
× 4π

3

=
36π

35
.
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6.2 Applications of The Divergence Theorem

6.2.1 Boundary value problems

The Divergence Theorem also has important implications for certain boundary-value problems.

Corollary 103 (Uniqueness of the Dirichlet Problem) Let R ⊆ R3 be a path-connected
region with piecewise smooth boundary ∂R and let f be a continuous function defined on ∂R.
Suppose that φ1 and φ2 are such that

∇2φ1 = 0 = ∇2φ2 in R;

φ1 = f = φ2 on ∂R.

Then φ1 = φ2 in R.

Proof. Let ψ = φ1 − φ2, so that

∇2ψ = 0 in R, ψ = 0 on ∂R.

If we consider the function ψ2 then, by the Divergence Theorem and as ∇2 = ∇ · ∇,
��

∂R

∇
�
ψ2
�
· dS =

���

R

∇2
�
ψ2
�
dV.

Looking at the LHS,
��

∂R

∇
�
ψ2
�
· dS =

��

∂R

2ψ∇ψ · dS = 0 as ψ = 0 on ∂R.

On the RHS we have

∇2
�
ψ2
�
= 2ψ∇2ψ + 2∇ψ · ∇ψ = 2 |∇ψ|2 as ∇2ψ = 0 in R.

Hence ���

R

2 |∇ψ|2 dV = 0 =⇒ ∇ψ = 0 in R.

As ∇ψ = 0 in R and R is path-connected then ψ is constant throughout R. But ψ = 0 on ∂R
and so by continuity ψ = 0 throughout R.

Corollary 104 (Uniqueness, up to a constant, of the Neumann Problem) Let R ⊆ R3
be a path-connected region with piecewise smooth boundary ∂R and let f be a continuous function
defined on ∂R. Suppose that φ1 and φ2 are such that

∇2φ1 = 0 = ∇2φ2 in R;

∂φ1
∂n

= f =
∂φ2
∂n

on ∂R.

Then φ1 − φ2 is constant in R.
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Proof. Let ψ = φ1 − φ2, so that

∇2ψ = 0 in R,
∂ψ

∂n
= ∇ψ · n = 0 on ∂R.

If we consider the function ψ2, then by the Divergence Theorem and as ∇2 = ∇ · ∇,

��

∂R

∇
�
ψ2
�
· dS =

���

R

∇2
�
ψ2
�
dV.

Looking at the LHS,

��

∂R

∇
�
ψ2
�
· dS =

��

∂R

2ψ∇ψ · n dS = 0 as ∇ψ · n = 0 on ∂R.

On the RHS we have

∇2
�
ψ2
�
= 2ψ∇2ψ + 2∇ψ · ∇ψ = 2 |∇ψ|2 as ∇2ψ = 0 in R.

Hence ���

R

2 |∇ψ|2 dV = 0 =⇒ ∇ψ = 0 in R.

As ∇ψ = 0 in R then ψ is constant throughout R.

Corollary 105 (Robin (or Mixed) Boundary Problem) Let R ⊆ R3 be a path-connected
region with piecewise smooth boundary ∂R and let f be a continuous function defined on ∂R.
Further let β be a real constant. Suppose that φ1 and φ2 are such that

∇2φ1 = 0 = ∇2φ2 in R;

βφ1 +
∂φ1
∂n

= f = βφ2 +
∂φ2
∂n

on ∂R.

(i) If β > 0 then φ1 = φ2 in R.
(ii) If β = 0 then φ1 − φ2 is constant in R.
(iii) If β < 0 then the solution need not be unique, even up to a constant.

Proof. Let ψ = φ1 − φ2, so that

∇2ψ = 0 in R, βψ +
∂ψ

∂n
= βψ +∇ψ · n = 0 on ∂R.

If we consider the function ψ2 then, by the Divergence Theorem and as ∇2 = ∇ · ∇,

��

∂R

∇
�
ψ2
�
· dS =

���

R

∇2
�
ψ2
�
dV.
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Looking at the LHS and noting βψ +∇ψ · n = 0 on ∂R we have

��

∂R

∇
�
ψ2
�
· dS =

��

∂R

2ψ (∇ψ · n) dS =

��

∂R

2ψ (−βψ) dS = −2β
��

∂R

ψ2 dS.

On the RHS we have as before

∇2
�
ψ2
�
= 2ψ∇2ψ + 2∇ψ · ∇ψ = 2 |∇ψ|2 as ∇2ψ = 0 in R.

Hence

−2β
��

∂R

ψ2 dS =

���

R

2 |∇ψ|2 dV.

If β > 0 then the LHS is non-positive and the RHS is non-negative — consequently both are
zero and ∇ψ = 0 in R and ψ = 0 on ∂R. Hence ψ = 0 throughout R.
If β = 0 then the Robin Boundary Problem is just the Neumann Problem, with which we have
already dealt.
The following example shows that solutions need not be unique if β < 0.

Example 106 Let R be the interior of the cylinder x2 + y2 = 1. Find two solutions to the
Robin Boundary Problem

∇2ψ = 0 in R, ψ =
∂ψ

∂n
on ∂R.

Solution. Laplace’s equation in cylindrical polars reads

∇2ψ =
1

r

∂

∂r

�
r
∂ψ

∂r

�
+

1

r2
∂2ψ

∂θ2
+

∂2ψ

∂z2
= 0.

We know for ψ = rn sin nθ, where n is a non-negative integer, that ∇2ψ = 0 and on the
boundary r = 1 we have

∂ψ

∂n
=

∂ψ

∂r
= nrn−1 sinnθ = n sinnθ; ψ = sinnθ.

Hence when n = 1, we see r sin θ satisfies the given boundary problem. Other solutions are 0,
r cos θ and r sin (θ − α) for arbitrary α so we see this solution is far from unique.

6.2.2 Derivation of balance equations in 3D: the heat equation.

Finally, as a last application, we use the Divergence Theorem to rederive the heat equation,
but now in 3D. We need to following lemma first.
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Lemma 107 If φ : R3 → R is a continuous scalar field such that
���

R

φdV = 0

for all bounded subsets R, then φ ≡ 0.

Proof. Suppose, for a contradiction that φ (p) �= 0 for some point p. Without any loss of
generality let’s suppose φ (p) > 0. Let ε = 1

2
φ (p) > 0. Then, by the continuity of φ at p, there

exists δ > 0 such that
|φ (x)− φ (p)| < ε when |x− p| < δ.

In particular, φ (x) > 1
2
φ (p) on all of B (p, δ) = {x ∈ R3 : |x− p| < δ} and so

���

B(p,δ)

φ dV >
1

2
φ (p)× Vol (B (p, δ)) > 0

which is a contradiction.

Theorem 108 Let T (x, t) denote the temperature at position x and at time t in an isotropic
medium R with thermal conductivity k, density ρ, specific heat c with heat flow determined by
Fourier’s Law which states that

q = −k∇T

where q is the heat flux. Then T satisfies the heat equation

∂T

∂t
=

k

ρc
∇2T.

Proof. Let S ⊆ R be an arbitrary subset of R. The total heat energy in S equals
���

S

ρcT dV.

The amount of heat flowing out of S is given by the flux integral
��

∂S

q · dS.

So if no heat is generated within S then the only heat loss or gain is via the boundary ∂S.
Hence we have

d

dt

���

S

ρcT dV = −
��

∂S

q · dS

=

��

∂S

k∇T · dS [by Fourier’s Law]

=

���

S

∇ · (k∇T ) dV [by the Divergence Theorem]

=

���

S

k∇2T dV.
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So
���

S

ρc
∂T

∂t
dV =

���

S

k∇2T dV,

=⇒
���

S

�
ρc

∂T

∂t
− k∇2T

�
dV = 0.

As this is true for an arbitrary subset S of R then it follows, from Lemma 107, that

ρc
∂T

∂t
− k∇2T = 0 throughout R.

6.2.3 Greens’ Theorem in The Plane

Below, recall that a closed set contains its boundary and a simple closed curve is a curve that
has its endpoints meet but otherwise does not cross itself.

Theorem 109 (Green’s Theorem in The Plane (Divergence Theorem Form)) Let D
be a closed bounded region in the (x, y) plane, whose boundary C is a piecewise smooth simple
closed curve, and that p(x, y), q(x, y) have continuous first-order derivatives in D. Then

��

D

�
∂p

∂x
+

∂q

∂y

�
dxdy =

�

C

(p, q) · nds, (6.2)

where n is the outward pointing unit normal to C in the (x, y) plane.

Proof. This is a simple corollary of the divergence theorem and is effectively the divergence
theorem in a plane. Let the vector field F be given by

F = (p(x, y), q(x, y), 0)

and define the three dimensional region R to be

R =
�
(x, y, z) ∈ R3 | (x, y) ∈ D, z ∈ [0, 1]

�
,

with boundary ∂R. Noting ∇ · F has no dependence on z, we have

��

D

�
∂p

∂x
+

∂q

∂y

�
dxdy =

��

D

∇ · Fdxdy
� 1

0

dz =

��

R

∇ · FdV =

�

∂R

F · ndS.

The contribution to the surface integral from the surfaces at z = 0, 1 are zero as the integrand
is zero. For the surface

�
(x, y, z) ∈ R3 | (x, y) ∈ D, z ∈ [0, 1]

�
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the outward pointing unit normal to R coincides with the outward pointing unit normal to C;
also we can write the surface element dS as

dS = dsdz,

where ds is the arclength element of the curve C since the k direction and the plane of the
region D are perpendicular. Hence

�

∂R

F · ndS =

� 1

0

	�

C

F · nds


dz =

� 1

0

	�

C

(p, q) · nds


dz =

�

C

(p, q) · nds,

with the final equality from the fact the integrand (p, q) · n has no dependence on z.

15. Unit tangent and normal vectors to a curve.

Remark 110 By parameterizing the curve C in the form (x(s), y(s)), where s is the arclength
of C, increasing on moving anticlockwise around C when viewed from above, one has the unit
tangent, t, and the outward unit normal n are given by

t =

�
dx

ds
,
dy

ds

�
, n =

�
dy

ds
,−dx

ds

�
. (6.3)

Important Below, it is important to note the direction around C is anticlockwise when viewed
from above; this is a positive orientation of C, which we will consider in generality below.
Using the expression for n, we have

�

C

(p, q) · nds =
�

C

(p, q) ·
�
dy

ds
,−dx

ds

�
ds

def
=

�

C

pdy − qdx (6.4)

and Greens’ theorem is often written in the equivalent form

��

D

�
∂p

∂x
+

∂q

∂y

�
dxdy =

�

C

pdy − qdx,

where C is positively oriented, i.e. the integration around C is anticlockwise.

Another equivalent form of Green’s theorem in the plane is a precursor for Stokes’ Theorem,
which is our next subject of study.
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Theorem 111 (Green’s Theorem in The Plane (Stokes’ Theorem Form)) An equiva-
lent form of Green’s theorem is as follows. Let D be a closed bounded region in the (x, y) plane,
whose boundary C is a piecewise smooth simple closed curve, and that p(x, y), q(x, y) have
continuous first-order derivatives in D. Then

��

D

�
∂q

∂x
− ∂p

∂y

�
dxdy =

�

C

(p, q) · dr =
�

C

pdx+ qdy, (6.5)

where C is positively oriented, i.e. the integration around C is anticlockwise.

Proof. Let (p, q) → (q,−p) in Green’s theorem in the plane (divergence form), equation 6.2,
and use equations (6.4). We then have

��

D

�
∂q

∂x
− ∂p

∂y

�
dxdy =

�

C

(q,−p) ·
�
dy

ds
,−dx

ds

�
ds =

�

C

(p, q) ·
�
dx

ds
,
dy

ds

�
ds

=

�

C

(p, q) · dr =
�

C

pdx+ qdy,

with the direction of integration around C inherited from Green’s theorem in the plane (diver-
gence form), via the relationship (6.3).

6.3 Stokes’ Theorem

Let F = (p(x, y), q(x, y), 0). Then

curlF =

������

i j k
∂
∂x

∂
∂y

∂
∂z

p (x, y) q (x, y) 0

������
=

�
∂p

∂x
− ∂q

∂y

�
k,

and so ��

D

�
∂p

∂x
− ∂q

∂y

�
dA =

��

D

curlF · (k dA) =

��

D

curlF · dS.

Thus Greens theorem in the plane can be rephrased as
�

C

F · dr =
��

D

curlF · dS, (6.6)

Here
dS = kdS = ndS, (6.7)

where now, n is the normal to the planar region D in R3 [rather than the in-plane normal to
the boundary C as used in the previous section deducing Green’s theorem in the plane].

The identity 6.6 is purely a rewriting of Green’s Theorem, but it is part of a larger identity
known as Stokes’ Theorem which applies more generally to surfaces in R3 with boundary.

However, before we can properly understand the identity in its fullest generality, we need to
appreciate how to consistently orient a curve C which bounds a surface Σ.
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Definition 112 At each point of a smooth surface there are two unit normal vectors ±n. Given
a smooth surface Σ, then by an orientation of Σ we shall mean a continuous choice of unit
normal n for the whole surface Σ.

For the bounding curve, which we shall denote as ∂Σ, there are two possible orientations.
Given a certain orientation of ∂Σ and an oriented tangent vector t along ∂Σ then the vector
t ∧ n lies in the tangent plane of Σ at the boundary point and is normal to the bounding curve
∂Σ. So t ∧ n points either towards the surface Σ or away from Σ.

We shall always choose to orient a surface Σ and its boundary ∂Σ in such a way that t∧ n
points away from Σ.

Remark 113 Note that this is consistent in the plane with taking positively oriented curves and
normal k, so that equations (6.6,6.7) are equivalent to Green’s theorem in the plane, equation
(6.5).

16. Orienting surface and boundary.

In practice it is fairly clear how to consistently orient a surface and its boundary. If one imagines
an observer moving along the boundary ∂Σ (in the direction of the orientation) and upright (in
the sense of the surface normal n) then the surface Σ will be to his/her left.

Example 114 Given the hemisphere Σ = {(x, y, z) : x2 + y2 + z2 = 1, z � 0} with boundary
∂Σ = {(x, y, 0) : x2 + y2 = 1} then we can either orient Σ as

n (x, y, z) = (x, y, z) or − n (x, y, z) = (−x,−y,−z) .

We can parameterize ∂Σ as (cos θ, sin θ, 0). So one choice of unit tangent is

t = (− sin θ, cos θ, 0) .

At (cos θ, sin θ, 0) we have

t ∧ n = (− sin θ, cos θ, 0) ∧ (cos θ, sin θ, 0) = (0, 0,−1)
which points down, away from the hemisphere. The two consistent ways to orient the surface
and boundary are

(n on Σ and t on ∂Σ) or (−n on Σ and − t on ∂Σ) .
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Example 115 Not all surfaces have an orientation, such surfaces being called non-orientable.
Examples of non-orientable surfaces are the Möbius strip and the Klein bottle. We shall
only be interested in orientable surfaces though.

17. Mobius strip and Klein bottle

Theorem 116 (Stokes’ Theorem c. 1850. The first known appearance of this result though
is in fact in a letter from Kelvin to Stokes.) Let Σ be a smooth oriented surface in R3 whose
boundary is the curve ∂Σ. Let F be a smooth vector field defined on Σ ∪ ∂Σ. Then

�

∂Σ

F · dr =
��

Σ

curlF · dS. (6.8)

Remark 117 The following proof applies only to patches of surface — we shall see in later in
Example (124) that Stokes’ Theorem applies generally to more complicated surfaces and their
boundaries. In any event the proof of Stokes’ Theorem is not examinable.

Proof. Suppose that Σ is parameterized as r (u, v) where (u, v) ranges over some S ⊆ R2, with
∂Σ being the image of ∂S under r. We shall first prove Stokes Theorem for the vector field
F = (F, 0, 0), noting that similar proofs apply for fields (0, F, 0) and (0, 0, F ) and then the more
general (6.8) follows by linearity.

So, if F = (F, 0, 0), then (6.8) reads as
�

∂Σ

F dx =

��

Σ

(0, Fz,−Fy) · dS. (6.9)

Now using the parameterization r (u, v) we have
��

Σ

(0, Fz,−Fy) · dS =

��

S

(0, Fz,−Fy) · (ru ∧ rv) du dv

=

��

S

(0, Fz,−Fy) ·

������

i j k

xu yu zu
xv yv zv

������
du dv

=

��

S

[Fz (zuxv − xuzv) − Fy (xuyv − yuxv)] du dv.
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On the other hand if we apply Green’s Theorem to the LHS of (6.9) we have
�

∂Σ

F dx =

�

∂S

F (xudu+ xvdv)

=

��

S

[(Fxv)u − (Fxu)v] du dv

=

��

S

[Fuxv + Fxvu − Fvxu − Fxuv] du dv

=

��

S

[Fuxv − Fvxu] du dv

=

��

S

[(Fxxu + Fyyu + Fzzu)xv − (Fxxv + Fyyv + Fzzv) xu] du dv

=

��

S

[Fz (zuxv − xuzv)− Fy (xuyv − yuxv)] du dv.

The result follows.

Remark 118 Stokes’ Theorem and the Divergence Theorem are in fact statements of a more
general theorem, also known as Stokes’ Theorem, which applies in all dimensions. It more
generally reads: �

M

dω =

�

∂M

ω

where M is a (compact) oriented n-dimensional manifold (i.e. the n -dimensional equivalent of
a surface) with boundary ∂M and ω is a differential form of degree n−1. A proper appreciation
of this result is approximately at fourth year undergraduate level. Note, though, that when n = 1
Stokes’ Theorem reads � b

a

f ′ (x) dx = f (b)− f (a) ,

when M = [a, b] and ∂M = {a, b} oriented to sum positively the contribution at b and negatively
at a.

18. Informal explanation of Stokes’ theorem
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Remark 119 For an intuitive appreciation of why Stokes’ Theorem is true, recall that curlF,
when physically interpreted, is a measure of the local spin of the field F. So one might envisage
summing up all the curl over the surface Σ with most contributions to this total spin cancelling
out, in a manner akin to intermeshing cogs. The only contributions that wouldn’t be cancelled
out are those at the boundary, these remaining contributions making up the integral around the
boundary.

Note that Stokes’ Theorem is a scalar identity, that is both sides of the identity are scalar
quantities. There is also a vector identity related to Stokes’ Theorem. But firstly we note:

Lemma 120 If
c · v = c ·w for all c ∈ R3

then v = w.

Proof. We have c ·(v−w) = 0 for all c and thus for all basis vectors. Thus all the components
of v, w are equal, hence so are the vectors.

Corollary 121 Let Σ be a smooth oriented surface in R3 whose boundary is the curve ∂Σ. Let
ψ be a smooth scalar field defined on Σ ∪ ∂Σ. Then

��

Σ

∇ψ ∧ dS = −
�

∂Σ

ψ dr.

Proof. Let c be an arbitrary constant vector and set F = ψc. In this case, and using the curl
product rule, Stokes Theorem reads

��

Σ

curl (ψc) · dS =

��

Σ

(ψ curl c+∇ψ ∧ c) · dS =

�

∂Σ

ψc · dr.

As c is constant then curl c = 0 and we have

c ·



−
��

Σ

∇ψ ∧ d S



 =

��

Σ

∇ψ ∧ c · dS = c ·
��

∂Σ

ψ dr

�
.

As c is arbitrary then by Lemma 120 we have

−
��

Σ

∇ψ ∧ dS =

�

∂Σ

ψ dr

and the result follows.

Example 122 Verify Stokes’ Theorem when F = (y, z, x) on the hemisphere

Σ =
�
(x, y, z) : x2 + y2 + z2 = a2, z � 0

�
.
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Solution. We can parameterize the sphere as

r (θ, φ) = (a sin θ cosφ, a sin θ sinφ, a cos θ) 0 � θ � π, 0 � φ � 2π.

Then

∂r

∂θ
∧ ∂r

∂φ
=

������

i j k

a cos θ cosφ a cos θ sinφ −a sin θ
−a sin θ sin φ a sin θ cosφ 0

������
= a2 sin θ (sin θ cosφ, sin θ sinφ, cos θ) .

Now curlF = (−1,−1,−1) and hence

��

Σ

curlF · dS =

� π/2

θ=0

� 2π

φ=0

(−1,−1,−1) · a2 sin θ (sin θ cosφ, sin θ sin φ, cos θ) dφdθ

= −a2
� π/2

θ=0

� 2π

φ=0

sin θ (sin θ cosφ+ sin θ sinφ+ cos θ) dφdθ

= −2πa2
� π/2

θ=0

sin θ cos θ dθ = −2πa2
�
sin2 θ

2

�π/2

0

= −πa2.

On the other hand, once we parameterize and orient ∂Σ as r (θ) = (a cos θ, a sin θ, 0), we have

�

∂Σ

F · dr =

� 2π

0

(a sin θ, 0, a cos θ) · (−a sin θ, a cos θ, 0) dθ

= −a2
� 2π

0

sin2 θ dθ = −πa2.

Example 123 Verify Stokes’ Theorem when F = (2y, 3x, x2 + y2 + z2) and Σ is the lower half
of the ellipsoid x2/4 + y2/9 + z2/27 = 1.

Solution. Here ∂Σ is the ellipse x2/4 + y2/9 = 1 in the xy -plane. If ∂Σ is oriented anti-
clockwise then we need to take the upward pointing normal on Σ.

We may parameterize ∂Σ by r (t) = (2 cos t, 3 sin t, 0) and so

�

∂Σ

F · dr =

� 2π

0

�
6 sin t, 6 cos t, 4 cos2 t+ 9 sin2 t

�
· (−2 sin t, 3 cos t, 0) dt

=

� 2π

0

�
−12 sin2 t+ 18 cos2 t

�
dt

=

� 2π

0

((−6− 6 cos 2t) + (9 + 9 cos 2t)) dt

= 6π.

On the other hand we can parameterize the lower half of the ellipsoid as

r (θ, φ) =
�
2 sin θ cosφ, 3 sin θ sinφ, 3

√
3 cos θ

�
.
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So

rθ ∧ rφ =

������

i j k

2 cos θ cosφ 3 cos θ sin φ −3
√
3 sin θ

−2 sin θ sinφ 3 sin θ cosφ 0

������

=
�
9
√
3 sin2 θ cosφ, 6

√
3 sin2 θ sin φ, 6 sin θ cos θ

�
,

but this points downwards, so we will take its negative. Also

curlF =

������

i j k
∂
∂x

∂
∂y

∂
∂z

2y 3x x2 + y2 + z2

������
= (2y,−2x, 1) .

Finally, then

��

Σ

curlF · dS

=

� π

θ=π/2

� 2π

φ=0

(6 sin θ sinφ,−4 sin θ cosφ, 1) ·
�
−9
√
3 sin2 θ cosφ,−6

√
3 sin2 θ sinφ,−6 sin θ cos θ

�
dφdθ

=

� π

θ=π/2

� 2π

φ=0

�
−54

√
3 sin2 θ sinφ cosφ+ 24

√
3 sin3 θ cosφ sin φ− 6 sin θ cos θ

�
dφdθ

= −2π
� π

θ=π/2

6 sin θ cos θ dθ

= 2π

�
3 cos 2θ

2

�π

π/2

= 3π (1 + 1) = 6π.

Example 124 Verify Stokes’ Theorem for F = (x2 + 3yz,−2xz, 7y) on Σ, where Σ is that part
of the cylindrical surface x2 + y2 = a2 between the planes x + y + z = 0 and x + y + z = h,
where h � 0.

Solution. We may parameterize the cylinder as

r (θ, z) = (a cos θ, a sin θ, z)

and orient it with outward pointing normal dS = (cos θ, sin θ, 0) a dθ dz. So

F =

������

i j k
∂
∂x

∂
∂y

∂
∂z

x2 + 3yz −2xz 7y

������
= (7 + 2x, 3y,−5z) .
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��

Σ

curlF · dS =

� 2π

θ=0

� h−a cos θ−a sin θ

z=−a cos θ−a sin θ

(7 + 2a cos θ, 3a sin θ,−5z) · (cos θ, sin θ, 0) a dz dθ

=

� 2π

θ=0

� h−a cos θ−a sin θ

z=−a cos θ−a sin θ

�
7 cos θ + 2a cos2 θ + 3a sin2 θ

�
a dz dθ

=

� 2π

θ=0

�
7 cos θ + 2a cos2 θ + 3a sin2 θ

�
ahdθ

= (2aπ + 3aπ) ah

= 5πa2h.

On the other side, we have a disconnected boundary ∂Σ made up of

C1 = {(a cos θ, a sin θ,−a cos θ − a sin θ) : 0 � θ � 2π} ;
C2 = {(a cos θ, a sin θ, h− a cos θ − a sin θ) : 0 � θ � 2π} .

As we used the outward pointing normal to orient Σ then we need to orient C1 in the direction
of increasing θ but orient C2 in the direction of decreasing θ.

If we write x (θ) = a cos θ, y (θ) = a sin θ, z (θ) = −a cos θ − a sin θ then we have
�

C1

F · dr =

� 2π

0

�
x (θ)2 + 3y (θ) z (θ) ,−2x (θ) z (θ) , 7y (θ)

�
· dr (θ)

�

C2

F · dr = −
� 2π

0

�
x (θ)2 + 3y (θ) [z (θ) + h] ,−2x (θ) [z (θ) + h] , 7y (θ)

�
· dr (θ) .

Hence
�

∂Σ

F · dr =

� 2π

0

(−3hy (θ) , 2hx (θ) , 0) · dr (θ)

= ah

� 2π

0

(−3a sin θ, 2a cos θ, 0) · (− sin θ, cos θ, sin θ − cos θ) dθ

= a2h

� 2π

0

�
3 sin2 θ + 2cos2 θ

�
dθ

= 5πa2h.

Example 125 Let C be a closed curve bounding a smooth surface Σ. Show that
�

C

r ∧ dr = 2

��

Σ

dS.

Hence, or otherwise, evaluate

��

Σ

dS where Σ is the surface

Σ =

	
(x, y, z) : z =

x2

a2
+

y2

b2
, x2 + y2 < 1



.

[You may assume that ∇ ∧ (u ∧ v) = (v · ∇)u − (∇ · u)v + (∇ · v)u− (u · ∇) v.]
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Solution. If we set F = c ∧ r where c is an arbitrary constant vector, then we have

∇∧ (c ∧ r) = (r · ∇) c− (∇ · c) r+ (∇ · r) c− (c · ∇) r

= (∇ · r) c− (c · ∇) r [as c is constant]

= 3c− c
= 2c

as

(c · ∇) r =

�
c1

∂

∂x
+ c2

∂

∂y
+ c3

∂

∂z

�
(x, y, z) = (c1, c2, c3) = c.

So, by Stokes’ Theorem,
�

C

(c ∧ r) · dr =
��

Σ

2c · dS

=⇒ c·
��

C

r ∧ dr

�
= c·




��

Σ

2dS



 .

As c is arbitrary then by Lemma 120
�

C

r ∧ dr = 2

��

Σ

dS. (6.10)

The bounding curve of the given surface Σ is

z =
x2

a2
+

y2

b2
, x2 + y2 = 1

which can naturally be parameterized as

r (θ) =

�
cos θ, sin θ,

cos2 θ

a2
+

sin2 θ

b2

�
, 0 � θ � 2π.

By (6.10) we have (writing c = cos θ, s = sin θ)
��

Σ

dS =
1

2

� 2π

0

�
c, s,

c2

a2
+

s2

b2

�
∧
�
−s, c,

�−1
a2

+
1

b2

�
2cs

�
dθ

=
1

2

� 2π

0

�
cs2

b2
+

(−2cs2 − c3)

a2
,
c2s

a2
+

(−s3 − 2c2s)

b2
, 1

�
dθ

=
1

2

� 2π

0

�
cs2

b2
+

(−cs2 − c)

a2
,
c2s

a2
+

(−s− c2s)

b2
, 1

�
dθ

=
1

2

��
s3

3b2
+

(−s3/3− s)

a2
,

�
,
−c3

3a2
+

(c+ c3/3)

b2
, θ

�2π

0

=
1

2
[(0, 0, 2π)]

= πk.
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6.4 Stokes’ Theorem and Conservative Fields

Definition 126 A region R ⊆ R3 is said to be simply connected if every simple, closed curve
C can be continuously deformed to a single point.

Specifically, if r : [0, 1] → R is a simple closed curve beginning and ending in p then there
exists a map H : [0, 1]× [0, 1]→ R such that H(t, 1) = r(t) and H(t, 0) = p.

Example 127 R
3 is simply connected, as is any plane or line. R2−{0} is not simply connected,

nor is the cylinder x2 + y2 = a2, nor a torus. R3 − {0} is simply connected though.

Corollary 128 (Existence of a Potential) Let R be a simply connected region and let F
be a smooth vector field on R for which curlF = 0. Then F is conservative, i.e. there exists a
potential φ on R such that F = ∇φ.

Remark 129 Firstly note that if F is conservative then F = ∇φ and hence curlF = 0. Com-
bining this observation with corollary 128 gives, by use of Theorem 70, that with a restriction
to simply connected regions, curlF = 0 is equivalent to (i), (ii) and (iii):

(i) F is conservative — i.e. F = ∇φ for some scalar field φ : S → R.
(ii) Given any two points p,q ∈ S and curve γ in S, starting at p and ending at q, then

the integral �

C

F (r) · dr

is independent of the choice of curve C.
(iii) For any simple closed curve C then

�

C

F (r) · dr = 0.

Proof. Let p be a fixed point in R and define for any q ∈ R,

φ (q) =

�

C1

F · d r

where C1 is a curve in S from p to q. If C2 is a second such curve then there is a simple closed
curve C formed by C1 followed by C2 in reverse orientation. As R is simply connected then C
is the boundary of a surface Σ. By Stokes’ Theorem then

�

C

F · dr =
��

Σ

curlF · dS = 0.

This means that

φ (q) =

�

C1

F · d r =
�

C2

F · dr

and so φ is a well-defined function on R, dependent only on the variable q and not on the
choice of curve from p to q. Further, arguing as in Theorem 70, we can show that ∇φ = F.
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But this is not generally equivalent — for example,

F =

�
y

x2 + y2
,
−x

x2 + y2

�
(x, y) �= (0, 0)

satisfies curlF = 0 but there is no φ on R2 − {(0, 0)} such that F = ∇φ. See the Exercise
Sheets.

STOKES’ THEOREM AND CONSERVATIVE FIELDS 75



7. GAUSS’ FLUXTHEOREM, POISSON’SEQUA-

TION AND GRAVITY

Definition 130 (Newton’s Law of Gravity) The gravitational field associated with a
point mass M at the origin O is

f = −GM

r3
r = −GM

r2
er = ∇

�
GM

r

�
.

The gravitational force on a particle of mass m at thepoint r

F = −GMm

r2
er.

Here Gis the gravitational constant 6.67300× 10−11m3kg−1s−2.

Note that the gravitational field f is conservative with gravitational potential

φ =
GM

r
.

Recall that potentials are determined by the field only up to a constant. This choice of potential
is such that φ→ 0 as r→∞.
In addition to curl f = 0, we also have that that

div f = ∇2φ =
1

r2
d

dr

�
r2
dφ

dr

�
=

1

r2
d

dr

�
r2
�−GM

r2

��
= 0, r �= 0,

and
∇2φ = 0 for gravitational potential in vacuo.

This is physically intuitive as, aside from at the origin, there is no other mass contributing to
the gravitational field.

Proposition 131 The gravitational potential φ = GM/r is the amount of work gravity does
per unit mass to bring a point object from ∞ to r.

Proof. The work done by gravity to bring a unit point mass from ∞ to r is

1

m

� r

∞
F · dr =

� r

∞
f · dr = [φ (r)− φ (∞)] = φ (r) .

Definition 132 The gravitational potential energy of a point mass m at r equals −mφ(r).
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Remark 133 In many texts the gravitational potential Φ is instead defined to be the gravita-
tional energy per unit mass; in such texts then the potential used is Φ = −φ and f = −∇Φ.

Given n particles of mass Mi at points with position vectors ri, the gravitational potential φ
and field f are then given by

φ (p) =
n�

i=1

GMi

|p− ri|
, f (p) = −

n�

i=1

GMi (p− ri)
|p − ri|3

.

Suppose instead, in the continuous case, we have matter of density ρ (r) occupying a region R;
then the potential φ and field f are given by

φ (p) =

���

R

Gρ (r) dV

|p − r| , f (p) = −
���

R

Gρ (r) (p− r) dV
|p− r|3

.

In the above we have an integral relationship between the mass density ρ and the potential φ.
Our objective is find an equivalent relationship in terms of a partial differential equation. To
proceed we first need to informally consider the Dirac delta function.
The Dirac Delta Function Note that, for a ball B radius a centred at the origin, and with
f (r) = r/r3 = er/r2,

��

∂B

f · dS =

��

∂B

er

a2
· (er dS) =

1

a2

��

∂B

dS =
4πa2

a2
= 4π.

A direct calculation shows that

∇ ·
� r
r3

�
= 0 for r �= 0,

but the Divergence Theorem (improperly applied to a discontinuous function) "should" give
���

B

∇ ·
� r
r3

�
dV =

��

∂B

r

r3
· dS = 4π,

and this would be true for any size sphere (or indeed region) containing the origin. So, for a
general region R, we have that

���

R

∇ ·
� r
r3

�
dV =

	
4π if 0 ∈ R,
0 if 0 �∈ R.

The shorthand for this is to write

∇ ·
� r
r3

�
= 4πδ (r)

where δ is the Dirac Delta Function. This function has the important filtering property that
���

R

φ (r) δ (r− a) dV = φ (a) .

(All the above can, in fact, be made rigorous as part of the theory of distributions or gener-
alized functions which were developed by Schwartz in the 1940s.)
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Theorem 134 (Poisson’s Equation) Let φ be the gravitational potential associated with a
non-uniform material of density ρ (r) occupying a region R. Then

∇2φ = −4πGρ (r) .

Proof. (Non-examinable for the general case.) The gravitational field associated with
this matter is given by

f (p) = ∇φ (p) = −
���

R

Gρ (r) (p − r)
|p− r|3

dV.

Then ∇2φ (p) equals

∇ · f (p) = −
���

R

Gρ (r) ∇ ·
�
(p− r)
|p − r|3

�
dV = −

���

R

Gρ (r) δ (r− p) dV = −4πGρ (p) .

Example 135 A spherical shell, centred at O and with internal and external radii a and b
respectively, has matter distribution with density ρ given by

ρ (r) =

	
1/r 0 < a � r � b,
0 otherwise.

Find the gravitational potential at all points in space.
[You may assume that the spherically symmetric form of Laplace’s equation is such that ∇2φ (r) =
1
r2

d
dr

�
r2 dφ

dr

�
.]

Solution. Method One — Poisson’s Equation.
By Poisson’s equation gravitational potential φ satisfies

∇2φ =
1

r2
d

dr

�
r2
dφ

dr

�
=






0 r < a,
−4πG/r a < r < b,

0 b < r.

Solving ∇2φ = 0 in the region r < a we get

1

r2
d

dr

�
r2
dφ

dr

�
= 0,

=⇒ r2
dφ

dr
= −A =⇒ dφ

dr
=
−A

r2
,

=⇒ φ =
A

r
+B.

Similarly φ = E/r +B in the region r > b for constants E and F .
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In the middle region a < r < b we have

1

r2
d

dr

�
r2
dφ

dr

�
= −4πG

r

=⇒ d

dr

�
r2
dφ

dr

�
= −4πGr =⇒ r2

dφ

dr
= −2πGr2 − C

=⇒ dφ

dr
= −2πG− C

r2

=⇒ φ = −2πGr +
C

r
+D.

So, for constants A,B,C,D,E, F, we have

φ (r) =






A
r
+B r < a,

−2πGr + C
r
+D a < r < b,

E
r
+ F b < r.

We can use certain conditions now to determine these constants:
(i) because of physical considerations φ is finite at r = 0,
(ii) φ is both continuous and differentiable at both r = a and at r = b,
(iii) φ is unique only up to addition by a constant — to specify φ uniquely we typically

stipulate that φ (r)→ 0 as r→∞.

From condition (i) we have that A = 0 and from (iii) that F = 0.
The two boundary conditions at r = a, namely that φ (a−) = φ (a+) and φ′ (a−) = φ′ (a+) , tell
us that

B = −2πGa+
C

a
+D, 0 = −2πG− C

a2
.

Similar conditions at r = b give us that

−2πGb+
C

b
+D =

E

b
, − 2πG− C

b2
= −E

b2
.

We have four linear equations in the four unknowns B,C,D,E in terms of the radii a, b and
the gravitational constant G.
The second equation immediately gives C and thus the fourth equation gives E. Then the third
equation gives D and the first finally gives B. Thus one can then deduce:

φ (r) =






4πG (b− a) r < a,

−2πGr − 2πGa2

r
+ 4πGb a < r < b,

2πG(b2−a2)
r

b < r.

Because of the symmetry of the above problem, we can take another approach using Gauss’
Flux Theorem.
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Theorem 136 (Gauss’ Flux Theorem) For a smooth and bounded region R, which contains
matter of total mass M , then ��

∂R

f · dS = −4πGM.

This result is in fact equivalent to Poisson’s equation.

Proof. Poisson’s equation gives us that

∇2φ = −4πGρ

where ρ (r) is the density of the matter. Applying the Divergence Theorem we have

��

∂R

f · dS =

���

R

∇ · f dV =

���

R

∇2φdV = −4πG
���

R

ρdV = −4πGM.

Conversely suppose that we know

��

∂R

f · dS = −4πGM

for any bounded region R. Then

���

R

∇2φdV = −4πG
���

R

ρdV

and so ���

R

�
∇2φ+ 4πGρ

�
dV = 0 for any bounded region R.

Hence (at least if ∇2φ and ρ are piecewise continuous) we have

∇2φ+ 4πGρ ≡ 0.

Solution. (to Example 135) Method Two - Gauss’ Flux Theorem.
Alternatively, we may use Gauss’ Flux Theorem applied to concentric spheres centred on the
shell’s centre.
Now, φ is only dependent on r and, so, is constant on the sphere r = R, which has surface area
4πR2.
So, if we apply the flux theorem to the region r � R we have

��

r=R

∇φ · dS =

��

r=R

φ′ (R) er · dS =

��

r=R

φ′ (R) dS = 4πR2φ′ (R) = −4πGM (R)
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where M (R) is the total mass within the region r � R. For a � R � b we have

M (R) =

� R

r=a

� π

θ=0

� 2π

α=0

1

r
r2 sin θ dα dθ dr

= 2π × [− cos θ]π0 ×
� R

r=a

r dr

= 2π
�
R2 − a2

�
.

Hence

φ′ (R) =






0 R < a,

2πG

�
a2

R2
− 1

�
a < R < b,

2πG (a2 − b2)

R2
b < R.

If we integrate we have

φ (R) =






A R < a,

B − 2πG

�
a2

R
+R

�
a < R < b,

2πG (b2 − a2)

R
+ C b < R.

As φ (∞) = 0 then C = 0. As φ (b−) = φ (b+) then

B − 2πG

�
a2

b
+ b

�
=

2πG (b2 − a2)

b
=⇒ B = 4πGb.

Finally as φ (a−) = φ (a+) then

A = 4πGb− 2πG

�
a2

a
+ a

�
= 4πG (b− a) ,

and we have the same expressions for φ as were achieved by the previous method.
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