MULTIVARIABLE CALCULUS HT19 SHEET 5

Green's theorems. Divergence theorem.

1. (i) Let $\mathbf{F}(x, y, z) = (3x^2y^2z, 2x^3yz, x^3y^2)$. Show that $\nabla \wedge \mathbf{F} = \mathbf{0}$ and find a potential ϕ such that $\mathbf{F} = \nabla \phi$. To what extent is ϕ unique?

Verify by direct calculation that

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \phi(\mathbf{q}) - \phi(\mathbf{p})$$

where $\mathbf{p} = (0,0,0)$, $\mathbf{q} = (1,1,1)$ and C is the twisted cubic $\mathbf{r}(t) = (t,t^2,t^3)$ with $0 \le t \le 1$.

- (ii) Let $\mathbf{F}(x, y, z) = (0, xy 1, y xz)$. Show that $\nabla \cdot \mathbf{F} = 0$ and that $\mathbf{f}(x, y, z) = (xyz, xy, x)$ is a vector potential that is $\mathbf{F} = \nabla \wedge \mathbf{f}$. To what extent is \mathbf{f} unique?
- 2. Use Green's theorem to find the simple closed curve C in the xy-plane that maximises the integral

$$\int_C y^3 \, \mathrm{d}x + \left(3x - x^3\right) \, \mathrm{d}y,$$

and determine this maximum.

- **3.** Verify the divergence theorem where $\mathbf{F}(x, y, z) = (y, xy, -z)$, and R is the region enclosed below the plane z = 4, and the paraboloid $z = x^2 + y^2$.
- **4.** Let f be a smooth scalar field defined on a region $R \subseteq \mathbb{R}^3$ with a smooth boundary ∂R . Show that

$$\iint_{\partial R} f \mathbf{r} \wedge d\mathbf{S} = \iiint_{R} \mathbf{r} \wedge \nabla f \, dV.$$

5. Let R be the region 1 < a < r < b, where r is the distance from the origin in \mathbb{R}^2 . Find a solution of the boundary-value problem

$$\nabla^2 f + 1 = 0$$
 in R , $\frac{\partial f}{\partial n} + f = 0$ on ∂R ,

which is a function of r only. Show that this is the only solution, even within the class of not necessarily radial functions.

6. (Optional) For $-1 < \rho < 1$, let

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{\frac{2\rho xy - x^2 - y^2}{2(1-\rho^2)}\right\}.$$

- (i) By rotating the xy-axes appropriately, show that $f_{X,Y}(x,y)$ is a probability density function on \mathbb{R}^2 . [You may assume the result from lectures that $\int_{-\infty}^{\infty} e^{-at^2} dt = \sqrt{\pi/a}$ where a > 0.]
- (ii) The marginal distribution X has pdf $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$. Show that f_X is the pdf of the normal distribution with mean 0 and standard deviation 1.
- (iii) Show that

$$\rho = \operatorname{Cov}(X, Y) = E[XY].$$