Analysis II: Continuity and Differentiability Sheet 3 HT 2019

1. Let $f : [a,b] \to \mathbb{R}$ be continuous. Suppose that f(a) < f(b) and that f is a 1-1 mapping. Use Intermediate Value Theorem to show that f(a) < f(x) < f(b) for all $x \in (a,b)$. Hence or otherwise prove that f is strictly increasing on [a,b].

2. The function g is defined by

$$g(x) = \frac{x}{1 - |x|}$$
 for $-1 < x < 1$.

Show that g is 1-1, find g^{-1} and determine its domain. Are g and g^{-1} continuous?

3. (a) Which of the following real-valued functions f, defined on [-1, 1] by (i) and (ii) below, have inverses $f^{-1}[f(-1), f(1)] \rightarrow [-1, 1]$? Which have continuous inverses? Given brief reasons.

(i) $f(x) = (x+1)^2$;

(ii) f(x) = x for $x \in [-1, 0]$ and f(x) = x + 1 for $x \in (0, 1]$.

(b) Show carefully that the function $\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ has a continuous inverse mapping from \mathbb{R} to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

[You may use the facts that $\tan is$ continuous and strictly increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, and $\tan x \to \infty$ as $x \to \frac{\pi}{2}$ and $\tan x \to -\infty$ as $x \to -\frac{\pi}{2}$.]

4. (a) Let a > 0. Show that $f(x) = \frac{1}{x}$ is uniformly continuous on $[a, \infty)$.

(b) Show that $f(x) = x^2$ is not uniformly continuous on $[0, \infty)$.

(c) Show that $f(x) = x^{1/3}$ is uniformly continuous on \mathbb{R} . Is it Lipschitz continuous?

5. Suppose that h is continuous on $[0, \infty)$ and suppose that h is uniformly continuous on $[a, \infty)$ for some positive number a. Show that h is uniformly continuous on $[0, \infty)$.

6. (a) Suppose that $f : (a, b] \to \mathbb{R}$ is continuous and suppose that the limit of f as $x \to a$ exists. Show that f is uniformly continuous on (a, b].

(b) Suppose now that $g:(a,b] \to \mathbb{R}$ is uniformly continuous.

(i) Show that if $(x_n) \subset (a, b]$ is a Cauchy sequence, then $(g(x_n))$ is also a Cauchy sequence.

(ii) Suppose that $x_n \in (a, b]$ and $y_n \in (a, b]$ (where $n = 1, 2, \dots$) are two sequences and $x_n \to a$, $y_n \to a$ as $n \to \infty$. Show that $(g(x_n))$ and $(g(y_n))$ converge to same limit. Deduce that g(x) has a limit as $x \to a$.