Analysis II: Continuity and Differentiability Sheet 6 HT 2019

1. Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable, with $f''(x) \geq 0$ for all $x \in \mathbb{R}$. Prove that

$$f\left(\frac{x+y}{2}\right) \le \frac{1}{2} \left(f(x) + f(y)\right) \text{ for all } x, y \in \mathbb{R}.$$

2. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and let $a \in \mathbb{R}$. Suppose that f''(a) exists. Prove that

$$\lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2} = f''(a).$$

(b) Assume that $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable on \mathbb{R} . Suppose that f satisfies the following convex inequality

$$f\left(\frac{x+y}{2}\right) \le \frac{1}{2} \left(f(x) + f(y)\right) \text{ for all } x, y \in \mathbb{R}.$$

Using (a) to show that $f''(a) \ge 0$ for all $a \in \mathbb{R}$.

3. (a) Prove that $\cos x$ and $\sin x$, given by their power series:

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

and

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

are differentiable on \mathbb{R} . Hence prove that

$$|\cos x| \le 1$$
 and $|\sin x| \le 1$ for all $x \in \mathbb{R}$

and

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$
 for all $x, y \in \mathbb{R}$.

Deduce from the addition formula for $\cos x$ the corresponding addition formula for $\sin x$.

(b) Prove that $\cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24}$ for all $x \in [0, 2]$.

Hence, by using IVT, prove that there exists $p \in [0, 2]$ such that $\cos p = 0$.

By considering inf $\{x > 0 : \cos x = 0\}$, prove that cos function has a smallest strictly positive zero, denoted by p_0 .

Show that $2p_0$ is the smallest strictly positive zero of sin function.

Define $\pi = 2p_0$. Show that $\cos(x + 2\pi) = \cos x$, and $\sin(x + 2\pi) = \sin x$ for all $x \in \mathbb{R}$.

- (c) Let $q \in \mathbb{R}$. Prove that $\sin q = 0$ only if q is of the form $q = k\pi$ for some $k \in \mathbb{Z}$.
- (d) Describe the continuous functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy $\sin(f(x)) = \sin x$ for all $x \in \mathbb{R}$.

[Graphical presentation of answer acceptable.]

- **4**. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable everywhere.
- (a) Prove that if f'(x) = af(x) for all x, then $f(x) = A \exp(ax)$ for some constant A.
- (b) Prove that if f''(x) 5f'(x) + 6f(x) = 0 then $f(x) = A \exp(2x) + B \exp(3x)$ for some constants A, B.

[Consider g(x) = f'(x) - 2f(x) and h(x) = f'(x) - 3f(x).]

(c) Prove that if f''(x) + 25f(x) = 0 then $f(x) = A\cos(5x) + B\sin(5x)$ for some constants A, B.

[Put A := f(0) and B := f'(0)/5; look at $g(x) := f(x) - A\cos(5x) - B\sin(5x)$; now take a hint from the applied mathematicians and consider $\frac{25}{2}g(x)^2 + \frac{1}{2}g'(x)^2$.]

(d) What can be said about the solutions of the differential equation f''(x) - 4f'(x) + 4f(x) = 0?