Analysis II: Continuity and Differentiability Sheet 7 HT 2019

[Every time you use L’Hopital’s Rule you should explain why it is appli-
cable.

1. Evaluate the following limits by making use of known derivatives,

AOL, and sandwiching techniques, as appropriate:
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2. Evaluate the following limits:
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3. Prove L’Hopital’s rule at co: Suppose f, g : (a,00) — R are differen-
tiable, with f(z) — 0 and g(z) — 0 as  — oo. If ¢’(z) # 0 on (a,c0) and
f(x)/g () = 1 as x — oo, then
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4. (a) Evaluate lim,_, <1 + \%)
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(b) Evaluate lim,_, (1 + %) .

5. Let f: R — R be twice differentiable on R and assume that f”/(0)
exists. Prove that
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6. Assume that the conditions for the Mean Value Theorem hold for the
function f : [a,a + h] — R, so that for some 6 € (0,1) we have

fla+h)— f(a) =hf'(a+6h) .

Fix f and a, and for each non-zero h write §(h) for a corresponding value of
6. Prove that if f”(a) exists and is non-zero then
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