Analysis II: Continuity and Differentiability Sheet 7 HT 2019

[Every time you use L'Hôpital's Rule you should explain why it is applicable.]

1. Evaluate the following limits by making use of known derivatives, AOL, and sandwiching techniques, as appropriate:

(i) $\lim_{x\to 0} \frac{x^2}{\sinh^2 x};$ (ii) $\lim_{x\to 0} \frac{\ln(1+x)}{x};$ (iii) $\lim_{x\to 0} \frac{\sin^4 x}{x^3};$ (iv) $\lim_{x\to \infty} \frac{x^2}{\sinh x}.$

2. Evaluate the following limits:

(i) $\lim_{x\to 0} \frac{x}{\tan x}$; (ii) $\lim_{x\to 0} \frac{\ln \cos x}{x^2}$; (iii) $\lim_{x\to 0} \frac{e^{x^2}-1}{(e^x-1)^2}$; (iv) $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x \sin x}\right)$.

3. Prove L'Hopital's rule at ∞ : Suppose $f, g: (a, \infty) \to \mathbb{R}$ are differentiable, with $f(x) \to 0$ and $g(x) \to 0$ as $x \to \infty$. If $g'(x) \neq 0$ on (a, ∞) and $f'(x)/g'(x) \to l$ as $x \to \infty$, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = l.$$

4. (a) Evaluate $\lim_{x\to\infty} \left(1 + \frac{1}{\sqrt{x}}\right)^{\sqrt{x}}$. (b) Evaluate $\lim_{x\to-\infty} \left(1 + \frac{1}{x}\right)^{x^2}$.

5. Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable on \mathbb{R} and assume that f'''(0) exists. Prove that

$$\lim_{h \to 0} \frac{4\left(f(h) - f(-h) - 2\left(f(\frac{h}{2}) - f(-\frac{h}{2})\right)\right)}{h^3} = f'''(0) \; .$$

6. Assume that the conditions for the Mean Value Theorem hold for the function $f : [a, a + h] \to \mathbb{R}$, so that for some $\theta \in (0, 1)$ we have

$$f(a+h) - f(a) = hf'(a+\theta h) .$$

Fix f and a, and for each non-zero h write $\theta(h)$ for a corresponding value of θ . Prove that if f''(a) exists and is non-zero then

$$\lim_{h \to 0} \theta(h) = \frac{1}{2} \; .$$