Analysis II: Continuity and Differentiability Sheet 8 HT 2019

- 1. Taylor's Theorem applies to each of the following functions f(x) at the point a = 0 and with n = 4. Write down each of the terms in the expansion.
 - (i) $\sin(x^2) (\sin x)^2$;
 - (ii) $e^{\alpha x} \cos \beta x$.
- **2**. Suppose that the real-valued function f is such that the $(n-1)^{\text{th}}$ derivative of f exists and is continuous on [0,h] (where h>0) and the n-th derivative exists on (0,h). Consider the function $G:[0,h]\to\mathbb{R}$ defined by

$$G(t) = F(t) - \left(\frac{h-t}{h}\right)^p F(0),$$

where $F:[0,h]\to\mathbb{R}$ is given by

$$F(t) = f(h) - f(t) - (h - t)f'(t) - \dots - \frac{(h - t)^{n-1}}{(n-1)!}f^{(n-1)}(t)$$

and p is a constant. By considering the derivative of G and choosing p appropriately, prove that there exist θ_1 , θ_2 such that

$$f(h) = f(0) + hf'(0) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(0) + S_n$$

where

$$S_n = \frac{h^n}{n!} f^{(n)}(\theta_1 h) = \frac{h^n}{(n-1)!} (1 - \theta_2)^{n-1} f^{(n)}(\theta_2 h).$$

3. Assume that $f: \mathbb{R} \to \mathbb{R}$ is such that both f' and f'' exist for all $x \in \mathbb{R}$. Taylor's Theorem tells us that, for each $a, h \in \mathbb{R}$ there is a $\theta \in (0, 1)$ such that

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a+\theta h) .$$

Assume further that on the interval [0,2] the inequalities $|f(x)| \leq 1$ and $|f''(x)| \leq 1$ hold.

Write down the Taylor expansions of f(0) and f(2) about the point $x \in [0, 2]$, using the above form of Taylor's Theorem, with a remainder involving f''. Hence prove that for all $x \in [0, 2]$ we have $|f'(x)| \le 2$.

4. Compute the Taylor expansion about 0 for $(1+x)^{-1/2}$, and use it to evaluate

$$\sum_{n=0}^{\infty} \binom{2n}{n} \left(-\frac{6}{25}\right)^n.$$

5. By using Taylor's Theorem and the Identity Theorem, prove that

$$\sqrt{1+x} = 1 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n} \frac{\left(1 - \frac{1}{2}\right)\left(2 - \frac{1}{2}\right) \cdots \left((n-1) - \frac{1}{2}\right)}{(n-1)!} x^n$$

for $-1 < x \le 1$.

6. Suppose that f is twice differentiable on [a,b], and f'(a)=f'(b)=0, show that there is $\xi\in(a,b)$ such that

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|$$
.

[Hint: By the triangle inequality to obtain

$$|f(b) - f(a)| \le |f(b) - f((b+a)/2)| + |f(a) - f((b+a)/2)|.$$

Apply Taylor's formula to f at a and b].