Analysis II: Continuity and Differentiability Sheet 8 HT 2019

1. Taylor’s Theorem applies to each of the following functions f(x) at the
point a = 0 and with n = 4. Write down each of the terms in the expansion.

(i) sin(2?) — (sinx)? ;

(ii) e** cos fx.

2. Suppose that the real-valued function f is such that the (n — 1)
derivative of f exists and is continuous on [0, k] (where A > 0) and the n-th
derivative exists on (0, k). Consider the function G : [0, h] — R defined by
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where F' : [0, h] — R is given by
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F(t)=f(h) = f{t) = (h=0)f'(t) = —
and p is a constant. By considering the derivative of G and choosing p
appropriately, prove that there exist 6, #5 such that
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F(h) = fO) + Rf'(0) + -+

where
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3. Assume that f : R — R is such that both f’ and f” exist for all x € R.
Taylor’s Theorem tells us that, for each a,h € R there is a # € (0,1) such
that

h2
fla+h)= f(a)+ hf'(a)+ ?f”(a +0h) .
Assume further that on the interval [0,2] the inequalities |f(x)] < 1 and
|f"(x)] <1 hold.

Write down the Taylor expansions of f(0) and f(2) about the point x €
0, 2], using the above form of Taylor’s Theorem, with a remainder involving
f". Hence prove that for all x € [0, 2] we have |f'(z)| < 2.
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4. Compute the Taylor expansion about 0 for (1 4 z)~'/#, and use it to
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5. By using Taylor’s Theorem and the Identity Theorem, prove that
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for -1 <z <1.

6. Suppose that f is twice differentiable on [a,b], and f'(a) = f'(b) = 0,
show that there is £ € (a, b) such that

4
(b—a)?

[Hint: By the triangle inequality to obtain

[f(b) = fla)] < |f(0) = f((b+a)/2)[ +[f(a) = F((b+a)/2)|.

Apply Taylor’s formula to f at a and b).

Pl £(b) = f(a)l -



