Groups and Group Actions, Sheet 3, HT18
 Subgroups. Cyclic Groups. hcf and lcm. Equivalence relations.

1. For each part below, provide a group G and a proper, non-trivial subgroup H of G according to the different criteria. Provide a different group G in each case.
(i) G is infinite and H is infinite and cyclic;
(ii) G is infinite and H is finite and cyclic;
(iii) G is infinite and non-Abelian and H is Abelian;
(iv) G is infinite and Abelian and H is infinite and not cyclic;
(v) G is infinite and non-Abelian and H is infinite and cyclic.
2. Let G be a group and H, K subgroups of G. Let $H K=\{h k: h \in H, k \in K\}$.
(i) Show that $H \cap K$ is a subgroup of G.
(ii) Give an example where $H \cup K$ is not a subgroup of G. Justify your answer.
(iii) Give an example where $H K$ is not a subgroup of G. Justify your answer.
(iv) Show that if G is Abelian then $H K$ is a subgroup of G.
3. Which of the following groups are cyclic? Either find a generator or show that no generator exists. For the cyclic groups, determine how many different generators there are.

$$
\mathbb{Z}^{2} ; \quad C_{2} \times C_{4} ; \quad C_{3} \times C_{4} ; \quad\langle(12)(34)(56),(145)(236)\rangle \leqslant S_{6} ; \quad\langle(123),(456)\rangle \leqslant S_{6} .
$$

4. (i) By considering partitions, calculate the number of equivalence relations on a set with four elements.
(ii) Let $q_{0}=1$ and, for $n \geqslant 1$, let q_{n} denote the number of equivalence relations of a set X with n elements. By considering the possible equivalence classes of the $(n+1)$ th element, show that

$$
q_{n+1}=\sum_{k=0}^{n}\binom{n}{k} q_{n-k} .
$$

Use this recurrence relation to verify your answer for q_{4} from part (i).
5. Let G be a finite group. We define a relation \sim on $G \backslash\{e\}=\{g \in G: g \neq e\}$ by

$$
g \sim h \text { if and only there exists } k \text { such that } g=h^{k} .
$$

(i) Show that \sim is reflexive and transitive.
(ii) Show that \sim is symmetric if and only if the order of g is prime for every $g \neq e$.

6 Let G be a finite group and H, K subgroups of G. The map $\phi: H \times K \rightarrow H K$ is defined by $(h, k) \rightarrow h k$.
(i) Show that $\left|\phi^{-1}(g)\right|=|H \cap K|$ for any $g \in H K$. Deduce that

$$
|H K|=\frac{|H||K|}{|H \cap K|} .
$$

(ii) Show that if G is Abelian and $H \cap K=\{e\}$ then $H K$ is isomorphic to $H \times K$.

