Groups and Group Actions, Sheet 4, HT18
 Modular Arithmetic. Cosets and Lagrange's Theorem. Applications.

1. (i) Let x, n be integers with $n \geqslant 2$ and n not dividing x. Show that the order $\mathrm{o}(\bar{x})$ of $\bar{x} \in \mathbb{Z}_{n}$ is

$$
\mathrm{o}(\bar{x})=\frac{n}{\operatorname{hcf}(x, n)} .
$$

(ii) Let G, H be finite groups with $g \in G$ and $h \in H$. Show that the order of (g, h) in $G \times H$ is given by

$$
\mathrm{o}((g, h))=\operatorname{lcm}\{\mathrm{o}(g), \mathrm{o}(h)\} .
$$

2. $\bar{x} \in \mathbb{Z}_{n}$ is said to be a unit if there exists $\bar{y} \in \mathbb{Z}_{n}$ such that $\bar{x} \bar{y}=\overline{1}(\bmod n)$.
(i) Show that the units of \mathbb{Z}_{n} form a group under multiplication. We denote this group \mathbb{Z}_{n}^{*}.
(ii) Use Bézout's Lemma to show that \bar{x} is a unit of \mathbb{Z}_{n} if and only if $\operatorname{hcf}(x, n)=1$.
(iii) List the units in \mathbb{Z}_{9} and write out the Cayley table for \mathbb{Z}_{9}^{*}.
(iv) Show that \mathbb{Z}_{9}^{*} is cyclic. What are the generators of \mathbb{Z}_{9}^{*} ?
3. (i) Use Fermat's Little Theorem to compute $5^{15}(\bmod 7)$ and $7^{13}(\bmod 11)$.
(ii) Use the Fermat-Euler Theorem to compute $4^{43}(\bmod 15)$ and $2^{51}(\bmod 21)$.
(iii) Show that $5^{14}=10(\bmod 15)$. [You might try to find $5{ }^{14}$ modulo 3 and modulo 5 first.]
4. Let p be a prime and let g, h be elements, both of order p, in a group G. What are the possible orders of $\langle g\rangle \cap\langle h\rangle$?

Show that if G is finite then the number of elements of order p in G is a multiple of $p-1$.
Deduce that a group of order 35 contains an element of order 5 and an element of order 7 .
5. Suppose that every element x in a group G satisfies $x^{2}=e$. Prove that G is Abelian.

Show also that if H is any subgroup of G and $g \in G \backslash H$ then $K=H \cup g H$ is a subgroup of G.
Show further that K is isomorphic to $H \times C_{2}$.
Deduce that if G is finite then G is isomorphic to $\left(\mathbb{Z}_{2}\right)^{n}$ for some non-negative integer n.
6. Let G_{1} and G_{2} be finite groups and let $K \leqslant G_{1} \times G_{2}$.
(i) Set $H_{1}=\left\{g \in G_{1}:(g, e) \in K\right\}$ and $H_{2}=\left\{g \in G_{2}:(e, g) \in K\right\}$. Show that

$$
H_{1} \leqslant G_{1} ; \quad H_{2} \leqslant G_{2} ; \quad H_{1} \times H_{2} \leqslant K .
$$

(ii) Suppose that $\left|G_{1}\right|$ and $\left|G_{2}\right|$ are coprime. Show that $K=H_{1} \times H_{2}$.
(iii) Show that this result need not follow if $\left|G_{1}\right|$ and $\left|G_{2}\right|$ are not coprime.

