Groups and Group Actions, Sheet 5, TT18
 Homomorphisms. Conjugacy. Normal Subgroups.

1. Let G be a group and H a subgroup of G. Show that $g H=H g$ for all $g \in G$ if and only if $g^{-1} h g \in H$ for all $g \in G, h \in H$.
2. Let G be a group and $a \in G$. Show that $C_{G}(a)=\{g \in G: a g=g a\}$ the centralizer of a in G, is a subgroup of G.

Find $C_{G}(a)$ when (i) $G=S_{4}$ and $a=(12)(34)$, (ii) $G=A_{4}$ and $a=(123)$. [Hint: use the fact that $a g=g a$ if and only if $a=g^{-1} a g$.]
3. Recall that the dihedral group $D_{2 n}$ (where $n \geqslant 3$) can be defined as

$$
D_{2 n}=\left\langle r, s: r^{n}=e=s^{2}, s r=r^{-1} s\right\rangle
$$

and that as a set $D_{2 n}=\left\{e, r, \ldots, r^{n-1}, s, r s, \ldots r^{n-1} s\right\}$. (So r and s are generators of $D_{2 n}$ and the rules $r^{n}=e=s^{2}$, sr $=r^{-1} s$ are sufficient to completely determine the group table.)

Show, for any integer i, that $s r^{i}=r^{-i} s$. Also write down each of

$$
\left(r^{j}\right)^{-1} r^{i}\left(r^{j}\right), \quad\left(r^{j}\right)^{-1} r^{i} s\left(r^{j}\right), \quad\left(r^{j} s\right)^{-1} r^{i}\left(r^{j} s\right), \quad\left(r^{j} s\right)^{-1} r^{i} s\left(r^{j} s\right),
$$

in the form r^{k} or $r^{k} s$ for some integer k. Hence determine the conjugacy classes of $D_{2 n}$. You will need to treat separately the cases when n is odd and even.
4. Show that the following maps are homomorphisms. In each case determine the kernel and the image of the homomorphism.
(i) $f_{1}: \mathbb{R} \rightarrow \mathbb{R}^{*}$ defined by $f_{1}(x)=2^{x}$.
(ii) $f_{2}: \mathbb{C}^{*} \rightarrow \mathbb{R}^{*}$ defined by $f_{2}(z)=|z|$.
(iii) $f_{3}: S_{3} \rightarrow S_{4}$ defined by $f_{3}(\sigma)=(14) \sigma(14)$.
(iv) $f_{4}: \mathbb{Z}_{n} \rightarrow \mathbb{C}^{*}$ defined by $f_{4}(k)=e^{2 \pi i k / n}$.
5. (i) Let G be a group and let ϕ, ψ be automorphisms of G (that is, isomorphisms from G to G). Show that $\phi \circ \psi$ and ϕ^{-1} are automorphisms of G.

Deduce that the set $\operatorname{Aut}(G)$ of automorphisms of G forms a group under composition.
(ii) Given $a \in G$, show that the map $\theta_{a}: G \rightarrow G$ with $\theta_{a}(g)=a g a^{-1}$ is an automorphism of G.
(iii) Show that the map $\Theta: G \rightarrow \operatorname{Aut}(G)$ defined by $a \mapsto \theta_{a}$ is a homomorphism. What is the kernel of Θ ?
6. (Optional) (i) Let G be a group and let $\phi: S_{3} \rightarrow G$ be a homomorphism. Explain why the function ϕ is completely determined by the values of $\phi(12)$ and $\phi(123)$.
(ii) Deduce that there are at most 6 automorphisms of S_{3}.
(iii) For each $a \in S_{3}$, determine $\theta_{a}(12)$ and $\theta_{a}(123)$.
(iv) Deduce that there are 6 automorphisms of S_{3} and that $\operatorname{Aut}\left(S_{3}\right)$ is isomorphic to S_{3}.

