Linear Algebra II Problem Sheet 2, HT 2019

1. Using elementary row operations, compute

$$\det \left(\begin{array}{rrrr} 1 & 2 & 3 & 0 \\ 5 & 0 & 2 & 1 \\ -1 & 1 & 0 & 3 \\ 2 & 1 & 3 & -2 \end{array} \right).$$

2. If $x_1, x_2, \dots, x_n \in \mathbb{R}$ show by induction that for $n \geq 2$ we have

$$V_n = \begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

[Hint: if c_i denotes the *i*th column of V_n , then carry out successively the column operations $c_n \mapsto c_n - x_1 c_{n-1}, c_{n-1} \mapsto c_{n-1} - x_1 c_{n-2}, \cdots, c_2 \mapsto c_2 - x_1 c_1$, to find that

$$V_n = (x_2 - x_1)(x_3 - x_1) \cdots (x_n - x_1) V'_{n-1}$$

where V'_{n-1} is the same as V_{n-1} but with x_1, x_2, \dots, x_n replaced with x_2, x_3, \dots, x_n .

- 3. Let $B = (b_{ij})$ be an upper triangular $n \times n$ matrix, so $b_{ij} = 0$ if i > j.
 - (i) Show that $\det B = \prod_{i=1}^n b_{ii}$.
 - (ii) Show that λ is an eigenvalue of B if and only if it equals b_{ii} for some i.
- 4. For $n \geq 2$ let J be the $n \times n$ matrix all of whose entries are 1.
 - (i) Show that $(1, 1, \dots, 1)^T$ is an eigenvector with eigenvalue n.
 - (ii) Given that 0 is an eigenvalue, find the eigenvectors with eigenvalue 0.
- 5. Let V be a finite dimensional real vector space, and $S:V\to V$ a linear mapping with $S^2=I$. Show that
 - (i) if λ is an eigenvalue of S, then $\lambda = \pm 1$.
 - (ii) $V = U \oplus W$, where $U = \{u \in V : Su = u\}$ and $W = \{w \in V : Sw = -w\}$. [Hint: $v = \frac{1}{2}(v + Sv) + \frac{1}{2}(v Sv)$.]

Deduce that V has a basis with respect to which the matrix of S is the diagonal matrix

$$\left(\begin{array}{cc} I_r & 0\\ 0 & -I_{n-r} \end{array}\right).$$

Now suppose that $T:V\to V$ is linear and satisfies ST=TS and $T^2=I$. Show that $T(U)\subseteq U$ and that $U=X\oplus Y$, where $X=\{u\in U:Tu=u\}$ and $Y=\{u\in U:Tu=-u\}$. Deduce that there exists a basis of V relative to which all three maps S,T and ST are represented by diagonal matrices.

6. Let E be a square matrix over \mathbb{C} such that $E^{k+1} = 0$ for some $k \geq 1$. Show, by explicitly computing an inverse, that the matrix $I - \lambda E$ is invertible for all $\lambda \in \mathbb{C}$. What can you deduce about the eigenvalues of E?

1