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Course info

Lectures 1–10 = Christl Donnelly

Lectures 11–16 = Dino Sejdinovic

As usual in Prelims there will be one sheet per two lectures. So for this
course this means two sheets per week – this should be about the right
amount for one tutorial.
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Introduction
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Probability

We start with a probability model P, and we deduce properties of P.

Imagine flipping a coin 5 times. Assuming that flips are fair and
independent, what is the probability of getting 2 heads?
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Statistics

In statistics we have data, which we regard as having been generated
from some unknown probability model P. We want to be able to say
some useful things about P.

We flip a coin 1000 times and observe 530 heads. Is the coin fair? Is the
probability of heads greater than 1

2? or could it be equal to 1
2?
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Precision of estimation

Question: What is the average body temperature in humans?

Collect data: let x1 , . . . , xn be the body temperatures of n randomly
chosen individuals, i.e. our model is that individuals are chosen
independently from the general population.

Then estimate: x �
1
n
∑n

i�1 xi could be our estimate, i.e. the sample
average.

How precise is x as an estimate of the population mean?
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Statistics Publications - Axillary temperature in young,
healthy adults

Histograms of axillary temperature B) measured for 10 seconds; C)
measured for 10 minutes in ◦C (axillary = under the armpit)
Source: Marui, S., Misawa, A., Tanaka, Y. et al. J Physiol Anthropol (2017) 36: 18.

https://doi.org/10.1186/s40101-017-0133-y

Copyright: © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in

any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made.
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Statistics Publications - IQ of University Students

Histogram showing the distribution of IQ among university students
involved in the present study (40 men and 40 women).
Source: Kleisner K, Chvátalová V, Flegr J (2014) Perceived Intelligence Is Associated with Measured

Intelligence in Men but Not Women. PLoS ONE 9(3): e81237.

https://doi.org/10.1371/journal.pone.0081237

Copyright: © 2014 Kleisner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
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Relationships between observations

Let yi � price of house in month xi , for i � 1, . . . , n.

• Is it reasonable that yi � α + βxi + "error"?

• Is β > 0?

• How accurately can we estimate α and β, and how do we estimate
them?
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Relationship between time and house prices
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Figure: Scatterplot of some Oxford house price data.
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Statistics Publications - Underrepresentation of women
on boards

The association of women on editorial/advisory board and in the
corresponding academic specialty.
Source: Ioannidou E, Rosania A (2015) Under-Representation of Women on Dental
Journal Editorial Boards. PLoS ONE 10(1): e0116630.
https://doi.org/10.1371/journal.pone.0116630

Copyright: © 2015 Ioannidou, Rosania. This is an open access article distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are

credited
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Notation and conventions

Lower case letters x1 , . . . , xn denote observations: we regard these as the
observed values of random variables X1 , . . . ,Xn .

Let x � (x1 , . . . , xn) and X � (X1 , . . . ,Xn).
It is convenient to think of xi as

• the observed value of Xi

• or sometimes as a possible value that Xi can take.

Since xi is a possible value for Xi we can calculate probabilities, e.g. if
Xi ∼ Poisson(λ) then

P(Xi � xi) �
e−λλxi

xi !
, xi � 0, 1, . . . .

12



1. Random Samples
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Random Samples
A random sample of size n is a set of random variables X1 , . . . ,Xn which
are independent and identically distributed (i.i.d.).

Let X1 , . . . ,Xn be a random sample from a Poisson(λ) distribution.
e.g. Xi � # traffic accidents on St Giles’ in year i.

We’ll write f (x) to denote the joint probability mass function (p.m.f.)
of X1 , . . . ,Xn . Then

f (x) � P(X1 � x1 ,X2 � x2 , . . . ,Xn � xn) definition of joint p.m.f.
� P(X1 � x1)P(X2 � x2) . . . P(Xn � xn) by independence

�
e−λλx1

x1! · e−λλx2

x2! · · · e
−λλxn

xn ! since Xi Poisson

�
e−nλ λ(

∑n
i�1 xi )∏n

i�1 xi !
.
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Random Samples
Let X1 , . . . ,Xn be a random sample from an exponential distribution
with probability density function (p.d.f.) given by

f (x) � 1
µ

e−x/µ , x ≥ 0.

e.g. Xi � time until the first breakdown of machine i in a factory.

We’ll write f (x) to denote the joint p.d.f. of X1 , . . . ,Xn . Then

f (x) � f (x1) . . . f (xn) since the Xi are independent

�

n∏
i�1

1
µ

e−xi/µ

�
1
µn exp

(
− 1
µ

n∑
i�1

xi

)
.
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1 We use f to denote a p.m.f. in the first example and to denote a
p.d.f. in the second example. It is convenient to use the same letter
(i.e. f ) in both the discrete and continuous cases. (In introductory
probability you may often see p for p.m.f. and f for p.d.f.)

We could write fXi (xi) for the p.m.f./p.d.f. of Xi , and fX1 ,...,Xn (x)
for the joint p.m.f./p.d.f. of X, . . . ,Xn . However it is convenient to
keep things simpler by omitting subscripts on f .

2 In the second example E(Xi) � µ and we say “Xi has an
exponential distribution with mean µ” (i.e. expectation µ).

Sometimes, and often in probability, we work with “an
exponential distribution with parameter λ” where λ � 1/µ. To
change the parameter from µ to λ all we do is replace µ by 1/λ to
get

f (x) � λe−λx , x ≥ 0.

Sometimes (often in statistics) we parametrise the distribution
using µ, sometimes (often in probability) we parametrise it using
λ.
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In probability we assume that the parameters λ and µ in our two
examples are known. In statisticswe wish to estimate λ and µ from
data.

• What is the best way to estimate them? And what does “best”
mean?

• For a given method, how precise is the estimation?

17

2. Summary Statistics
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Summary Statistics
The expected value of X, E(X), is also called its mean. This is often
denoted µ.

The variance of X, var(X), is var(X) � E[(X − µ)2]. This is often
denoted σ2. The standard deviation of X is σ.

Let X1 , . . . ,Xn be a random sample. The sample mean X is defined by

X �
1
n

n∑
i�1

Xi .

The sample variance S2 is defined by

S2
�

1
n − 1

n∑
i�1
(Xi − X)2.

The sample standard deviation is S �
√
sample variance.
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Statistics Publications - Descriptive statistics -
biochemistry

Means ± standard deviations are reported for the continuous variables.

Source: Sait Demirkol et al. (2012) Evaluation of the mean platelet volume in patients with cardiac

syndrome X. Clinics vol.67 no.9 http://dx.doi.org/10.6061/clinics/2012(09)06

Copyright: All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License
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Statistics Publications - IQ of University Students -
Mean (125.04) and Standard deviation (17.298)

Histogram showing the distribution of IQ among university students
Source: Kleisner K, Chvátalová V, Flegr J (2014) Perceived Intelligence Is Associated with Measured

Intelligence in Men but Not Women. PLoS ONE 9(3): e81237.

https://doi.org/10.1371/journal.pone.0081237

Copyright: © 2014 Kleisner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
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Note

1 The denominator in the definition of S2 is n − 1, not n.

2 X and S2 are random variables. Their distributions are called the
sampling distributions of X and S2.

3 Given observations x1 , , . . . , xn we can compute the observed values
x and s2.

4 The sample mean x is a summary of the location of the sample.

5 The sample variance s2 (or the sample standard deviation s) is a
summary of the spread of the sample about x.
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The Normal Distribution

The random variable X has a normal distribution with mean µ and
variance σ2, written X ∼ N(µ, σ2), if the p.d.f. of X is

f (x) � 1√
2πσ2

exp
(
−
(x − µ)2

2σ2

)
, −∞ < x < ∞.

Properties: E(X) � µ, var(X) � σ2.

23

Standard Normal Distribution

If µ � 0 and σ2 � 1, then X ∼ N(0, 1) is said to have a standard normal
distribution. Properties:

• If Z ∼ N(0, 1) and X � µ + σZ, then X ∼ N(µ, σ2).
• If X ∼ N(µ, σ2) and Z � (X − µ)/σ, then Z ∼ N(0, 1).
• The cumulative distribution function (c.d.f.) of the standard

normal distribution is

Φ(x) �
∫ x

−∞

1√
2π

e−u2/2 du.

This cannot be written in a closed form, but can be found by
numerical integration to an arbitrary degree of accuracy.

24



Standard Normal

N(0, 1) p.d.f.
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Figure: Standard normal p.d.f. and c.d.f.
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Standard and Poors 500 stock index (2012 data)
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Insurance claim amounts
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Time intervals between major earthquakes
Histogram of time intervals between 62 major earthquakes 1902–77: an
exponential density looks plausible.
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3. Maximum Likelihood

31

Maximum Likelihood Estimation
Maximum likelihood estimation is a general method for estimating
unknown parameters from data. This turns out to be the method of
choice in many contexts, though this isn’t obvious at this stage.

Suppose e.g. that x1 , . . . , xn are time intervals between major
earthquakes. Assume these are observations of X1 , . . . ,Xn
independently drawn from an exponential distribution with mean µ,
so that each Xi has p.d.f.

f (x; µ) � 1
µ

e−x/µ , x ≥ 0.

We have written f (x; µ) to indicate that the p.d.f. f depends on µ.

• How do we estimate µ?

• Is X a good estimator for µ?

• Is there a general principle we can use?

32



Maximum Likelihood Estimation

In general we write f (x; θ) to indicate that the p.d.f./p.m.f. f , which is
a function of x, depends on a parameter θ. Similarly, f (x; θ) denotes
the joint p.d.f./p.m.f. of X. (Sometimes f (x; θ) is written f (x |θ).)
The parameter θ may be a vector, e.g. θ � (µ, σ2) in the earlier
N(µ, σ2) example.

33

Maximum Likelihood Estimation

If we regard θ as unknown, then we need to estimate it
using x1 , . . . , xn .

Let X1 , . . . ,Xn have joint p.d.f./p.m.f. f (x; θ). Given observed values
x1 , . . . , xn of X1 , . . . ,Xn , the likelihood of θ is the function

L(θ) � f (x; θ). (1)

The log-likelihood is l(θ) � log L(θ).
So L(θ) is the joint p.d.f./p.m.f. of the observed data regarded as a
function of θ, for fixed x.

In the definition of `(θ), log means log to base e, i.e. log � loge � ln.
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Maximum Likelihood Estimation
Often we assume that X1 , . . . ,Xn are a random sample from f (x; θ), so
that

L(θ) � f (x; θ)

�

n∏
i�1

f (xi ; θ) since the Xi are independent.

Sometimes we have independent Xi whose distributions differ, say Xi
is from fi(x; θ). Then the likelihood is

L(θ) �
n∏

i�1
fi(xi ; θ).

The maximum likelihood estimate (MLE) θ̂(x) is the value of θ that
maximises L(θ) for the given x.

35

The idea of maximum likelihood is to estimate the parameter by the
value of θ that gives the greatest likelihood to observations x1 , . . . , xn .
That is, the θ for which the probability or probability density is
maximised.

Since taking logs is monotone, θ̂(x) also maximises `(θ). Finding the
MLE by maximising `(θ) is often more convenient.
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[Example continued] In our exponential mean µ example, the
parameter is µ and

L(µ) �
n∏

i�1

1
µ

e−xi/µ � µ−n exp
(
− 1
µ

n∑
i�1

xi

)
`(µ) � log L(µ) � −n log µ − 1

µ

n∑
i�1

xi .

To find the maximum

d`
dµ

� −n
µ
+

∑n
i�1 xi

µ2 .

So
d`
dµ

� 0 ⇐⇒ n
µ

�

∑n
i�1 xi

µ2 ⇐⇒ µ � x.
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This is a maximum since

d`
dµ

����
µ�x

�
n

x2 −
2
∑n

i�1 xi

x3 � − n

x2 < 0.

So the MLE is µ̂(x) � x. Often we’ll just write µ̂ � x.

In this case the maximum likelihood estimator of µ is µ̂(X) � X, which
is a random variable. (More on the difference between estimates and
estimators later.)
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Figure: Likelihood L(µ) and log-likelihood `(µ) for exponential (earthquake)
example.

Note that both the likelihood and the log-likelihood are not plotted on
the natural scale.
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If θ̂(x) is the maximum likelihood estimate of θ, then the maximum
likelihood estimator (MLE) is defined by θ̂(X).
Note: both maximum likelihood estimate and maximum likelihood
estimator are often abbreviated to MLE.
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Opinion poll example
Suppose n individuals are drawn independently from a large
population. Let

Xi �

{1 if individual i is a Labour voter
0 otherwise.

Let p be the proportion of Labour voters, so that

P(Xi � 1) � p , P(Xi � 0) � 1 − p.

This is a Bernoulli distribution, for which the p.m.f. can be written

f (x; p) � P(X � x) � px(1 − p)1−x , x � 0, 1.

The likelihood is

L(p) �
n∏

i�1
pxi (1 − p)1−xi

� pr(1 − p)n−r

where r �
∑n

i�1 xi .
41

Opinion poll example (continued)

So the log-likelihood is

`(p) � log L(p)
� r log p + (n − r) log(1 − p)

For a maximum, differentiate and set to zero:

r
p
− n − r

1 − p
� 0 ⇐⇒ r

p
�

n − r
1 − p

⇐⇒ r − rp � np − rp

and so p � r/n. This is a maximum since `′′(p) < 0.

So p̂ � r/n, i.e. the MLE is p̂ �
∑n

i�1 Xi/n which is the proportion of
Labour voters in the sample.
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Genetics example

Suppose we test randomly chosen individuals at a particular locus on
the genome. Each chromosome can be type A or a. Every individual
has two chromosomes (one from each parent), so the genotype can be
AA, Aa or aa. (Note that order is not relevant, there is no distinction
between Aa and aA.)

Hardy-Weinberg law: under plausible assumptions,

P(AA) � p1 � θ2 , P(Aa) � p2 � 2θ(1 − θ), P(aa) � p3 � (1 − θ)2

for some θ with 0 ≤ θ ≤ 1.

Now suppose the random sample of n individuals contains:

x1 of type AA, x2 of type Aa, x3 of type aa

where x1 + x2 + x3 � n and these are observations of X1 ,X2 ,X3.

43

Genetics example (continued)

Then

L(θ) � P(X1 � x1 ,X2 � x2 ,X3 � x3)

�
n!

x1! x2! x3! px1
1 px2

2 px3
3

�
n!

x1! x2! x3! (θ
2)x1[2θ(1 − θ)]x2[(1 − θ)2]x3 .

This is a multinomial distribution.

So

`(θ) � constant + 2x1 log θ + x2[log 2 + log θ + log(1 − θ)] + 2x3 log(1 − θ)
� constant + (2x1 + x2) log θ + (x2 + 2x3) log(1 − θ)

(where the constants depend on x1 , x2 , x3 but not θ).
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Genetics example (continued)

Then `′(θ̂) � 0 gives

2x1 + x2

θ̂
− x2 + 2x3

1 − θ̂
� 0

or
(2x1 + x2)(1 − θ̂) � (x2 + 2x3)θ̂.

So
θ̂ �

2x1 + x2
2(x1 + x2 + x3)

�
2x1 + x2

2n
.

45

Maximum likelihood approach

Steps:

• Write down the (log) likelihood

• Find the maximum (usually by differentiation, but not quite
always)

• Rearrange to give the parameter estimate in terms of the data.
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Statistics Publications - Likelihood of a hepatitis A
transmission tree

v = possible infector;w = contacts; θ = parameters of serial interval dist.
Source: Zhang X-S, Iacono GL (2018) Estimating human-to-human transmissibility of hepatitis A virus in an outbreak at an elementary

school in China, 2011. PLoS ONE 13(9): e0204201. https://doi.org/10.1371/journal.pone.0204201

Copyright: © 2018 Zhang, Iacono. This is an open access article distributed under the terms of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Estimating multiple parameters

Let X1 , . . . ,Xn
iid∼ N(µ, σ2)where both µ and σ2 are unknown.

[Here iid∼ means “are independent and identically distributed as.”]

The likelihood is

L(µ, σ2) �
n∏

i�1

1√
2πσ2

exp
(
−
(xi − µ)2

2σ2

)
� (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i�1
(xi − µ)2

)
with log-likelihood

`(µ, σ2) � −n
2 log 2π − n

2 log(σ2) − 1
2σ2

n∑
i�1
(xi − µ)2.

48



Estimating multiple parameters (continued)
We maximise ` jointly over µ and σ2:

∂`
∂µ

�
1
σ2

n∑
i�1
(xi − µ)

∂`

∂(σ2) � −
n

2σ2 +
1

2(σ2)2
n∑

i�1
(xi − µ)2

and solving ∂`
∂µ � 0 and ∂`

∂(σ2) � 0 simultaneously we obtain

µ̂ �
1
n

n∑
i�1

xi � x

ŝ2
�

1
n

n∑
i�1
(xi − µ̂)2 �

1
n

n∑
i�1
(xi − x)2.

Hence: the MLE of µ is the sample mean, but the MLE of σ2 is
(n − 1)s2/n. (More later.)
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“Estimate” and “estimator”

Estimator:

• A rule for constructing an estimate.

• A function of the random variables X involved in the random
sample.

• Itself a random variable.

Estimate:

• The numerical value of the estimator for the particular data set.

• The value of the function evaluated at the data x1 , . . . , xn .

50

Statistics Publications - Influenza transmission in
Mexico in 2009

Log likelihood profile of the influenza transmission rate
Source: Michael Springborn, Gerardo Chowell, Matthew MacLachlan, Eli P Fenichel (2015)

Accounting for behavioral responses during a flu epidemic using home television viewing. BMC

Infectious Diseases 15:21 https://doi.org/10.1186/s12879-014-0691-0

Copyright: © Springborn et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly credited.
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Statistics Publications - Influenza transmission in
Mexico in 2009

Sometimes the multidimensional log likelihood surface is complex
Source: Michael Springborn, Gerardo Chowell, Matthew MacLachlan, Eli P Fenichel (2015)

Accounting for behavioral responses during a flu epidemic using home television viewing. BMC

Infectious Diseases 15:21 https://doi.org/10.1186/s12879-014-0691-0

Copyright: © Springborn et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly credited.
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Statistics Publications - Influenza transmission in
Mexico in 2009

Often these surfaces have to be searched numerically to identify the
global maximum
Source: Michael Springborn, Gerardo Chowell, Matthew MacLachlan, Eli P Fenichel (2015)

Accounting for behavioral responses during a flu epidemic using home television viewing. BMC

Infectious Diseases 15:21 https://doi.org/10.1186/s12879-014-0691-0

Copyright: © Springborn et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly credited.
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Statistics Publications - The maximum log likelihood is
easy to spot - Influenza transmission in Mexico in 2009

Log likelihood profile of the influenza transmission rate
Source: Michael Springborn, Gerardo Chowell, Matthew MacLachlan, Eli P Fenichel (2015)

Accounting for behavioral responses during a flu epidemic using home television viewing. BMC

Infectious Diseases 15:21 https://doi.org/10.1186/s12879-014-0691-0

Copyright: © Springborn et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly credited.
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Statistics Publications - Sometimes a maximum looks
like a minimum - Influenza transmission in ferrets

Sometimes the log likelihood profile is flipped and even given relative
to its maximum
Source: Rebecca Frise et al. (2016) Contact transmission of influenza virus between ferrets imposes

a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral

resistance. Scientific Reports volume 6, Article number: 29793

Copyright: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material

in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line
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4. Parameter Estimation
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Parameter Estimation - Earthquake example

Recall the earthquake example:

X1 , . . . ,Xn
iid∼ exponential distribution, mean µ.

Possible estimators of µ:

• X

• 1
3 X1 +

2
3 X2

• X1 + X2 − X3

• 2
n(n+1) (X1 + 2X2 + · · · + nXn).

How should we choose?

57

In general, suppose X1 , . . . ,Xn is a random sample from a distribution
with p.d.f./p.m.f. f (x; θ). We want to estimate θ from observations
x1 , . . . , xn .

A statistic is any function T(X) of X1 , . . . ,Xn that does not depend on θ.

An estimator of θ is any statistic T(X) that we might use to estimate θ.

T(x) is the estimate of θ obtained via T from observed values x.

T(X) is a random variable, e.g. X.

T(x) is a fixed number, based on data, e.g. x.

58

We can choose between estimators by studying their properties. A
good estimator should take values close to θ.

The estimator T � T(X) is said to be unbiased for θ if, whatever the true
value of θ, we have E(T) � θ.
This means that “on average” T is correct.
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Example: Earthquakes

Possible estimators X, 1
3 X1 +

2
3 X2, etc.

Since E(Xi) � µ, we have

E(X) � 1
n

n∑
i�1

µ � µ

E( 13 X1 +
2
3 X2) � 1

3µ +
2
3µ � µ.

Similar calculations show that X1 + X2 − X3 and 2
n(n+1)

∑n
j�1 jX j are

also unbiased.
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Example: Normal variance

Suppose X1 , . . . ,Xn
iid∼ N(µ, σ2), with µ and σ2 unknown, and let

T �
1
n
∑(Xi − X)2. Then T is the MLE of σ2. Is T unbiased?

Let Zi � (Xi − µ)/σ. So the Zi are independent and N(0, 1), E(Zi) � 0,
var(Zi) � E(Z2

i ) � 1.

E[(Xi − X)2]
� E[σ2(Zi − Z)2]
� σ2 var(Zi − Z) since E(Zi − Z) � 0

� σ2 var
(
− 1

n
Z1 −

1
n

Z2 − · · · +
n − 1

n
Zi + · · · −

1
n

Zn

)
� σ2

(
1
n2 var(Z1) +

1
n2 var(Z2) + · · · +

(n − 1)2
n2 var(Zi) + · · · +

1
n2 var(Zn)

)
since var(

∑
aiUi) �

∑
a2

i var(Ui) for indep Ui

� σ2
(
(n − 1) × 1

n2 +
(n − 1)2

n2

)
�
(n − 1)

n
σ2.
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So

E(T) � 1
n

n∑
i�1

E[(Xi − X)2] � (n − 1)
n

σ2 < σ2.

Hence T is not unbiased, T will underestimate σ2 on average.

But

S2
�

1
n − 1

n∑
i�1
(Xi − X)2 �

n
n − 1T

so the sample variance satisfies

E(S2) � n
n − 1E(T) � σ2.

So S2 is unbiased for σ2.

62

Uniform distribution – some unusual features!
Suppose X1 , . . . ,Xn

iid∼ Uniform[0, θ], where θ > 0, i.e.

f (x; θ) �


1
θ

if 0 ≤ x ≤ θ

0 otherwise.

What is the MLE for θ? Is the MLE unbiased?
Calculate the likelihood:

L(θ) �
n∏

i�1
f (x; θ)

�


1
θn if 0 ≤ xi ≤ θ for all i

0 otherwise

�


0 if 0 < θ < max xi

1
θn if θ ≥ max xi .

Note: θ ≥ xi for all i ⇐⇒ θ ≥ max xi . (And max xi means
max1≤i≤n xi).
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0 max xi

0

Figure: Likelihood L(θ) for Uniform[0, θ] example.

From the diagram:

• the max occurs at θ̂ � max xi

• this is not a point where `′(θ) � 0

• taking logs doesn’t help.
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Consider the range of values of x for which f (x; θ) > 0, i.e. 0 ≤ x ≤ θ.
The thing that makes this example different to our previous ones is
that this range depends on θ (and we must take this into account
because the likelihood is a function of θ).

The MLE of θ is θ̂ � max Xi . What is E(θ̂)?
Find the c.d.f. of θ̂:

F(y) � P(θ̂ ≤ y)
� P(max Xi ≤ y)
� P(X1 ≤ y ,X2 ≤ y , . . . ,Xn ≤ y)
� P(X1 ≤ y)P(X2 ≤ y) . . . P(Xn ≤ y) since Xi independent

�

{(y/θ)n if 0 ≤ y ≤ θ
1 if y > θ.
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So, differentiating the c.d.f., the p.d.f. is

f (y) �
n yn−1

θn , 0 ≤ y ≤ θ.

So

E(θ̂) �
∫ θ

0
y ·

n yn−1

θn dy

�
n
θn

∫ θ

0
yn dy

�
nθ

n + 1 .

So θ̂ is not unbiased. But note that it is asymptotically unbiased:
E(θ̂) → θ as n →∞.

In fact under mild assumptions MLEs are always asymptotically
unbiased.

66

Further Properties of Estimators

The mean squared error (MSE) of an estimator T is defined by

MSE(T) � E[(T − θ)2].

The bias b(T) of T is defined by

b(T) � E(T) − θ.

1 Both MSE(T) and b(T)may depend on θ.

2 MSE is a measure of the “distance” between T and θ, so is a good
overall measure of performance.

3 T is unbiased if b(T) � 0 for all θ.
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Theorem 4.1 MSE(T) � var(T) + [b(T)]2.
Proof

Let µ � E(T). Then

MSE(T) � E[{(T − µ) + (µ − θ)}2]
� E[(T − µ)2 + 2(µ − θ)(T − µ) + (µ − θ)2]
� E[(T − µ)2] + 2(µ − θ)E[T − µ] + (µ − θ)2

� var(T) + 2(µ − θ) × 0 + (µ − θ)2

� var(T) + [b(T)]2.

So an estimator with small MSE needs to have small variance and small
bias. Unbiasedness alone is not particularly desirable – it is the
combination of small variance and small bias which is important.
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Reminder

Suppose a1 , . . . , an are constants. It is always the case that

E(a1X1 + · · · + anXn) � a1E(X1) + · · · + anE(Xn).

If X1 , . . . ,Xn are independent then

var(a1X1 + · · · + anXn) � a2
1 var(X1) + · · · + a2

n var(Xn).

In particular, if X1 , . . . ,Xn is a random sample with E(Xi) � µ and
var(Xi) � σ2, then

E(X) � µ and var(X) � σ2

n
.
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Uniform distribution
Suppose X1 , . . . ,Xn

iid∼ Uniform[0, θ], i.e.

f (x; θ) �


1
θ

if 0 ≤ x ≤ θ

0 otherwise.

We will consider two estimators of θ:
• T � 2X, the natural estimator based on the sample mean (because

the mean of the distribution is θ/2)
• θ̂ � max Xi , the MLE.

Now E(T) � 2E(X) � θ, so T is unbiased. Hence

MSE(T) � var(T)
� 4 var(X)

�
4 var(X1)

n
.
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We have E(X1) � θ/2 and

E(X2
1) �

∫ θ

0
x2 · 1

θ
dx �

θ2

3
so

var(X1) �
θ2

3 −
(
θ
2

)2

�
θ2

12
hence

MSE(T) � 4 var(X1)
n

�
θ2

3n
.
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Previously we showed that θ̂ has p.d.f.

f (y) �
n yn−1

θn , 0 ≤ y ≤ θ

and E(θ̂) � nθ/(n + 1). So b(θ̂) � nθ/(n + 1) − θ � −θ/(n + 1). Also,

E(θ̂2) �
∫ θ

0
y2 ·

n yn−1

θn dy �
nθ2

n + 2

so
var(θ̂) � θ2

(
n

n + 2 −
n2

(n + 1)2

)
�

nθ2

(n + 1)2(n + 2)
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hence

MSE(θ̂) � var(θ̂) + [b(θ̂)]2

�
2θ2

(n + 1)(n + 2)

<
θ2

3n
for n ≥ 3

� MSE(T).

• MSE(θ̂) � MSE(T) for large n, so θ̂ is much better – its MSE
decreases like 1/n2 rather than 1/n.
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• Note that ( n+1
n )θ̂ is unbiased and

MSE
(

n + 1
n

θ̂

)
� var

(
n + 1

n
θ̂

)
�
(n + 1)2

n2 var(θ̂)

�
θ2

n(n + 2)

< MSE(θ̂) for n ≥ 2.

However, among all estimators of the form λθ̂, the MSE is
minimized by ( n+2

n+1 )θ̂.

[To show this: note var(λθ̂) � λ2 var(θ̂) and b(λθ̂) � λnθ
n+1 − θ.

Now plug in formulae and minimise over λ.]
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Estimating the parameter of Uniform[0, θ]
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Estimating the parameter of Uniform[0, θ]
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Estimation so far

So far we’ve considered getting an estimate which is a single number –
a point estimate – for the parameter of interest: e.g. x, max xi , s2, ....

Maximum likelihood is a good way (usually) of producing an estimate
(but we did better when the range of the distribution depends on θ –
fairly unusual).

MLEs are usually asymptotically unbiased, and have MSE decreasing
like 1/n for large n.

MLEs can be found in quite general situations.
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Statistics Publications - Maximum likelihood in
phylogenetics

Source: Placide Mbala-Kingebeni et al. (2019) Rapid Confirmation of the Zaire Ebola Virus in the Outbreak of the Equateur Province in the

Democratic Republic of Congo: ... , Clinical Infectious Diseases 68(2): 330–333, https://doi.org/10.1093/cid/ciy527

Copyright: © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. This is an Open

Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence

(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any

medium, provided the original work is not altered or transformed in any way,

78

Statistics Publications - Maximum likelihood in object
recognition

Copyright: © 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License

http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
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Statistics Publications - Radiation research

Source: Leslie Stayner et al. (2007) A Monte Carlo Maximum Likelihood Method for Estimating Uncertainty Arising from Shared Errors in

Exposures in Epidemiological Studies of Nuclear Workers. Radiation Research, 168(6):757-763. https://doi.org/10.1667/RR0677.1

"Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial used."

https://bioone.org/journals/Radiation-Research/volume-168/issue-6/RR0677.1/A-Monte-Carlo-Maximum-Likelihood-Method-for-

Estimating-Uncertainty-Arising/10.1667/RR0677.1.full 80



5. Accuracy of Estimation

81

Accuracy of estimation: Confidence Intervals

A crucial aspect of statistics is not just to estimate a quantity of interest,
but to assess how accurate or precise that estimate is. One approach is to
find an interval, called a confidence interval (CI) within which we think
the true parameter falls.
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Theorem 5.1

Suppose a1 , . . . , an are constants and that X1 , . . . ,Xn are independent
with Xi ∼ N(µi , σ2

i ). Let Y �
∑n

i�1 aiXi . Then

Y ∼ N
( n∑

i�1
aiµi ,

n∑
i�1

a2
i σ

2
i

)
.

Proof: See Sheet 1.

We know from Prelims Probability how to calculate the mean and
variance of Y. The additional information here is that Y has a normal
distribution, i.e. “a linear combination of normals is itself normal.”
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Example
Let X1 , . . . ,Xn

iid∼ N(µ, σ2
0)where µ is unknown and σ2

0 is known.
What can we say about µ?

By Theorem 5.1,
n∑

i�1
Xi ∼ N(nµ, nσ2

0)

X ∼ N
(
µ,

σ2
0

n

)
.

So, standardising X,

X − µ ∼ N
(
0,
σ2

0
n

)
X − µ
σ0/
√

n
∼ N(0, 1).

Now if Z ∼ N(0, 1), then P(−1.96 < Z < 1.96) � 0.95.
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Figure: Standard normal p.d.f.: the shaded area, i.e. the area under the curve
from x � −1.96 to x � 1.96, is 0.95.
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So

P
(
− 1.96 <

X − µ
σ0/
√

n
< 1.96

)
� 0.95

P
(
− 1.96 σ0√

n
< X − µ < 1.96 σ0√

n

)
� 0.95

P
(
X − 1.96 σ0√

n
< µ < X + 1.96 σ0√

n

)
� 0.95

P
(
the interval

(
X ± 1.96 σ0√

n

)
contains µ

)
� 0.95.

Note that we write
(
X ± 1.96 σ0√

n

)
to mean the interval(

X − 1.96 σ0√
n
, X + 1.96 σ0√

n

)
.

This interval is a random interval since its endpoints involve X (and X is
a random variable). It is an example of a confidence interval.
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Confidence Intervals: general definition

Definition

If a(X) and b(X) are two statistics, and 0 < α < 1, the interval(
a(X), b(X)

)
is called a confidence interval for θ with confidence level

1 − α if, for all θ,

P
(
a(X) < θ < b(X)

)
� 1 − α.

The interval
(
a(X), b(X)

)
is also called a 100(1 − α)% CI, e.g. a “95%

confidence interval” if α � 0.05.

Usually we are interested in small values of α: the most commonly
used values are 0.05 and 0.01 (i.e. confidence levels of 95% and 99%)
but there is nothing special about any confidence level.
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The interval
(
a(x), b(x)

)
is called an interval estimate and the random

interval
(
a(X), b(X)

)
is called an interval estimator.

Note: a(X) and b(X) do not depend on θ.

We would like to construct a(X) and b(X) so that:

• the width of the interval
(
a(X), b(X)

)
is small

• the probability P
(
a(X) < θ < b(X)

)
is large.

88



Percentage points of normal distribution
For any α with 0 < α < 1, let zα be the constant such that Φ(zα) � 1− α,
where Φ is the N(0, 1) c.d.f. (i.e. if Z ∼ N(0, 1) then P(Z > zα) � α).

N
(0

, 1
) 

p.
d.

f.

0 zα

Figure: Standard normal p.d.f.: the shaded area, i.e. the area under the curve to
the right of zα , is α.
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We call zα the “1 − α quantile of N(0, 1).”

α 0.1 0.05 0.025 0.005
zα 1.28 1.64 1.96 2.58

By the same argument as before, if X1 , . . . ,Xn
iid∼ N(µ, σ2

0)with σ2
0

known, then a level 1 − α confidence interval for µ is(
X ±

zα/2σ0√
n

)
.
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Oxford rainfall, annual, 20 years
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Oxford rainfall, annual, 20 years

We have rainfall amounts (in mm) x1 , . . . , xn where n � 20 and
x � 688.4. We assume σ0 � 130.

• The endpoints of a 95% CI are

x ± 1.96 σ0√
n

� 688.4 ± 57.0.

So a 95% CI for µ is (631.4, 745.4).

• A 99% CI is (x ± 2.58 σ0√
n
) � (613.4, 763.4).
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Confidence interval example

When X1 , . . . ,Xn
iid∼ N(µ, σ2

0), a 90% CI for µ is(
a(X), b(X)

)
�

(
X − 1.64 σ0√

n
, X + 1.64 σ0√

n

)
.

So a 90% interval estimate based on data x is
(
a(x), b(x)

)
.
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The symmetric confidence interval for µ

x ± 1.96 σ0√
n

is called a central confidence interval for µ.

Suppose now that c and d are any constants such that

P(−c < Z < d) � 1 − α
for Z ∼ N(0, 1).

N
(0

, 1
) 

p.
d.

f.

−c d

Figure: Standard normal p.d.f.: the shaded area under the curve from −c to d,
is 1 − α. 95

N
(0

, 1
) 

p.
d.

f.

−c d

Figure: Standard normal p.d.f.: the shaded area under the curve from −c to d,
is 1 − α.

Then
P
(
X − dσ0√

n
< µ < X +

cσ0√
n

)
� 1 − α.

The choice c � d � zα/2 gives the shortest such interval.
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One-sided confidence limits

Continuing our normal example we have

P
(

X − µ
σ0/
√

n
> −zα

)
� 1 − α

so
P
(
µ < X +

zασ0√
n

)
� 1 − α

and so (−∞,X +
zασ0√

n
) is a “one-sided” confidence interval. We call

X +
zασ0√

n
an upper 1 − α confidence limit for µ.

Similarly

P
(
µ > X − zασ0√

n

)
� 1 − α

and X − zασ0√
n

is a lower 1 − α confidence limit for µ.
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Interpretation of a Confidence Interval
• The parameter θ is fixed but unknown.

• If we imagine repeating our experiment then we’d get new data,
x′ � (x′1 , . . . , x′n) say, and hence we’d get a new confidence interval(
a(x′), b(x′)

)
. If we did this repeatedly we would “catch” the true

parameter value about 95% of the time, for a 95% confidence
interval: i.e. about 95% of our intervals would contain θ.

• The confidence level is a coverage probability, the probability that
the random confidence interval

(
a(X), b(X)

)
covers the true θ. (It’s

a random interval because the endpoints a(X), b(X) are random
variables.)

But note that the interval
(
a(x), b(x)

)
is not a random interval, e.g.(

a(x), b(x)
)
� (631.4, 745.4) in the rainfall example. So it is wrong to say

that
(
a(x), b(x)

)
contains θ with probability 1 − α: this interval, e.g.

(631.4, 745.4), either definitely does or definitely does not contain θ, but
we can’t say which of these two possibilities is true as θ is unknown.
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The Central Limit Theorem (CLT)
We know that if X1 , . . . ,Xn

iid∼ N(µ, σ2) then

X − µ
σ/
√

n
∼ N(0, 1).

Theorem 5.2 Let X1 , . . . ,Xn be i.i.d. from any distribution with mean µ
and variance σ2 ∈ (0,∞). Then, for all x,

P
(

X − µ
σ/
√

n
≤ x

)
→ Φ(x) as n →∞.

Here, as usual, Φ is the N(0, 1) c.d.f. So for large n, whatever the
distribution of the Xi ,

X − µ
σ/
√

n
≈ N(0, 1)

where ≈means “has approximately the same distribution as.” Usually
n > 30 is ok for a reasonable approximation.
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CLT with Xi ∼ N(7, 9)
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CLT with Xi ∼ U(0, 1)
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CLT with Xi ∼ Exponential(1)

Standardised value of x

D
en

si
ty

−4 −2 0 2 4

n = 1

n = 10

n = 30

n = 200

102

CLT with Xi ∼ Pareto(1, 3)
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With X1 ,X2 , . . . i.i.d. from any distribution with E(Xi) � µ,
var(Xi) � σ2:

• the weak law of large numbers (Prelims Probability) tells us that
the distribution of X concentrates around µ as n becomes large,

i.e. for ε > 0, we have P(|X − µ| > ε) → 0 as n →∞
• the CLT adds to this

– the fluctuations of X around µ are of order 1/
√

n

• the asymptotic distribution of these fluctuations is normal.
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Example Suppose X1 , . . . ,Xn
iid∼ exponential mean µ, e.g.

Xi � survival time of patient i. So

f (x; µ) � 1
µ

e−x/µ , x ≥ 0

and E(Xi) � µ, var(Xi) � µ2.
For large n, by CLT,

X − µ
µ/
√

n
≈ N(0, 1).

So

P
(
− zα/2 <

X − µ
µ/
√

n
< zα/2

)
≈ 1 − α

P
(
µ
(
1 −

zα/2√
n

)
< X < µ

(
1 +

zα/2√
n

))
≈ 1 − α

P
(

X

1 +
zα/2√

n

< µ <
X

1 − zα/2√
n

)
≈ 1 − α.
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Hence an approximate 1 − α CI for µ is(
X

1 +
zα/2√

n

,
X

1 − zα/2√
n

)
.

Numerically, if we have n � 100 patients and α � 0.05 (so zα/2 � 1.96),
then

(0.84x , 1.24x)
is an approximate 95% CI for µ.
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Example: Opinion poll
In a opinion poll, suppose 321 of 1003 voters said they would vote for
the Party X. What’s the underlying level of support for Party X?

Let X1 , . . . ,Xn be a random sample from the Bernoulli(p) distribution,
i.e.

P(Xi � 1) � p , P(Xi � 0) � 1 − p.

The MLE of p is X. Also E(Xi) � p and var(Xi) � p(1 − p) � σ2(p) say.
For large n, by CLT,

X − p

σ(p)/
√

n
≈ N(0, 1).

So

1 − α ≈ P
(
− zα/2 <

X − p

σ(p)/
√

n
< zα/2

)
� P

(
X − zα/2

σ(p)
√

n
< p < X + zα/2

σ(p)
√

n

)
.
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The interval
(
X ± zα/2√

n
σ(p)

)
has approximate probability 1 − α of

containing the true p, but it is not a confidence interval since its
endpoints depend on p via σ(p).
To get an approximate confidence interval:

• either, solve the inequality to get P
(
a(X) < p < b(X)

)
≈ 1 − α

where a(X), b(X) don’t depend on p

• or, estimate σ(p) by σ(p̂) �
√

p̂(1 − p̂)where p̂ � x the MLE. This
gives endpoints

p̂ ± zα/2

√
p̂(1 − p̂)

n
.

For n � 1003 and p̂ � x � 321/1003, this gives a 95% CI for p of
(0.29, 0.35) using the two approximations: (i) CLT and (ii) σ(p)
approximated by σ(p̂).
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Opinion polls often mention “±3% error.”

Note that for any p,

σ2(p) � p(1 − p) ≤ 1
4

since p(1 − p) is maximised at p �
1
2 . Then we have

P(p̂ − 0.03 < p < p̂ + 0.03) � P
(
−0.03
σ(p)/

√
n
<

p̂ − p

σ(p)/
√

n
<

0.03
σ(p)/

√
n

)
≈ Φ

(
0.03

σ(p)/
√

n

)
−Φ

(
−0.03
σ(p)/

√
n

)
≥ Φ(0.03

√
4n) −Φ(−0.03

√
4n).

For this probability to be at least 0.95 we need 0.03
√

4n ≥ 1.96, or
n ≥ 1068. Opinion polls typically use n ≈ 1100.
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Standard errors

Definition Let θ̂ be an estimator of θ based on X. The standard error
SE(θ̂) of θ̂ is defined by

SE(θ̂) �
√

var(θ̂).

Example

• Let X1 , . . . ,Xn
iid∼ N(µ, σ2). Then µ̂ � X and var(µ̂) � σ2/n. So

SE(µ̂) � σ/
√

n.

• Let X1 , . . . ,Xn
iid∼ Bernoulli(p). Then p̂ � X and

var(p̂) � p(1 − p)/n. So SE(p̂) �
√

p(1 − p)/n.
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Sometimes SE(θ̂) depends on θ itself, meaning that SE(θ̂) is unknown.
In such cases we have to plug-in parameter estimates to get the
estimated standard error. e.g. plug-in to get estimated standard errors
SE(X) � σ̂/

√
n and SE(p̂) �

√
p̂(1 − p̂)/n.

The values plugged-in (σ̂ and p̂ above) could be maximum likelihood,
or other, estimates.

(We could write ŜE(p̂), i.e. with a hat on the SE, to denote that p̂ has
been plugged-in, but this is ugly so we won’t, we’ll just write SE(p̂).)
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If θ̂ is unbiased, then MSE(θ̂) � var(θ̂) � [SE(θ̂)]2. So the standard
error (or estimated standard error) gives some quantification of the
accuracy of estimation.

If in addition θ̂ is approximately N(θ, SE(θ̂)2) then, by the arguments
used above, an approximate 1 − α CI for θ is given by

(
θ̂ ± zα/2 SE(θ̂)

)
where again we might need to plug-in to obtain the estimated standard
error. Since, roughly, z0.025 � 2 and z0.001 � 3,

(estimate ± 2 estimated std errors) is an approximate 95% CI
(estimate ± 3 estimated std errors) is an approximate 99.8% CI.

The CLT justifies the normal approximation for θ̂ � X, but
θ̂ ≈ N(θ, SE(θ̂)2) is also appropriate for more general MLEs by other
theory (see Part A).
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Statistics Publications - ADHD in psychiatric patients

Attention-deficit/hyperactivity disorder diagnoses

Walter Deberdt et al. (2015) Prevalence of ADHD in nonpsychotic adult psychiatric care (ADPSYC):

A multinational cross-sectional study in Europe. BMC Psychiatry15:242

https://doi.org/10.1186/s12888-015-0624-5

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes

were made.
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Statistics Publications - ADHD in psychiatric patients

We can reconstruct the confidence intervals reported for the percentage
diagnosed with ADHD. There was an additional note at the bottom of
the table:

Let us consider those diagnosed using the DSM-IV-TR criteria. There
were 2009 patients analysed and it was reported that 15.8% were
diagnosed with ADHD.

We know that for X1 , . . . ,Xn
iid∼ Bernoulli(p).

p̂ � X � 318/2009 � 0.1582

SE(p̂) �
√

0.1582(1 − 0.1582)/2009 � 0.0081.

Using p̂ ± 1.96 SE(p̂) gives the interval (0.1423,0.1742) matching what
was reported in the paper.
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Example Suppose X1 , . . . ,Xn
iid∼ N(µ, σ2)with µ and σ2 unknown.

The MLEs are µ̂ � X, σ̂2 �
1
n
∑(Xi − X)2, and SE(µ̂) � σ/

√
n is

unknown because σ is unknown. So to use µ̂ ± zα/2 SE(µ̂) as the basis
for a confidence interval we need to estimate σ. One possibility is to
use σ̂ and so get the interval(

µ̂ ± zα/2
σ̂√
n

)
.

However we can improve on this:

(i) use s (the sample standard deviation) instead of σ̂ (better as
E(S2) � σ2 whereas E(σ̂2) < σ2)

(ii) use a critical value from a t-distribution instead of zα/2 – see Part
A Statistics (better as (X − µ)/(S/

√
n) has a t-distribution, exactly,

whereas using the CLT is an approximation).
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Statistics Publications - Barn Owl Productivity

Pavluvčík P, Poprach K, Machar I, Losík J, Gouveia A, Tkadlec E (2015) Barn Owl Productivity

Response to Variability of Vole Populations. PLoS ONE 10(12): e0145851.

https://doi.org/10.1371/journal.pone.0145851

Copyright: © 2015 Pavluvčík et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
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Statistics Publications - Barn Owl Productivity

So for clutches we know that µ̂ � 1.31, n � 2071 and SE(µ̂) � 0.010.

Thus, the 95% confidence interval is (1.31 ± 1.96 × 0.010) � (1.29, 1.33).
And σ̂ � 0.010 ×

√
2071 � 0.455.

Pavluvčík et al. 2015 https://doi.org/10.1371/journal.pone.0145851

Copyright: © 2015 Pavluvčík et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
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6. Linear Regression
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Linear Regression

Suppose we measure two variables in the same population:

x the explanatory variable

y the response variable.

Other possible names for x are the predictor or feature or input variable or
independent variable. Other possible names for y are the output variable
or dependent variable.
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CO2 emissions versus GDP
Let x measure the GDP per head, and y the CO2 emissions per head,
for 178 countries.
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Questions of interest:

For fixed x, what is the average value of y?

How does that average value change with x?

A simple model for the dependence of y on x is

y � α + βx + "error".

Note: a linear relationship like this does not necessarily imply that x
causes y.
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More precise model
We regard the values of x as being fixed and known, and we regard the
values of y as being the observed values of random variables.

We suppose that

Yi � α + βxi + εi , i � 1, . . . , n (2)

where

x1 , . . . , xn are known constants
ε1 , . . . , εn are i.i.d. N(0, σ2) "random errors"

α, β are unknown parameters.

The “random errors” ε1 , . . . , εn represent random scatter of the points
(xi , yi) about the line y � α + βx, we do not expect these points to lie
on a perfect straight line.

Sometimes we will refer to the above model as being Y � α + βx + ε.
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US city temperature data
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Auto data
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Y � α + βx + ε for the CO2 example

1 The values y1 , . . . , yn (e.g. the CO2 emissions per head in the
various countries) are the observed values of random variables
Y1 , . . . ,Yn .

2 The values x1 , . . . , xn (e.g. the GDP per head in the various
countries) do not correspond to random variables. They are fixed
and known constants.
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Questions:

• How do we estimate α and β?

• Does the mean of Y actually depend on the value of x? i.e. is
β , 0?

We now find the MLEs of α and β, and we regard σ2 as being known.
The MLEs of α and β are the same if σ2 is unknown. If σ2 is unknown,
then we simply maximise over σ2 as well to obtain its MLE – this is no
harder than what we do here (try it!). However, working out all of the
properties of this MLE is harder and beyond what we can do in this
course.
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We have Yi ∼ N(α + βxi , σ2). So Yi has p.d.f.

fYi (yi) �
1√

2πσ2
exp

(
− 1

2σ2 (yi − α − βxi)2
)
, −∞ < yi < ∞.

So the likelihood L(α, β) is

L(α, β) �
n∏

i�1

1√
2πσ2

exp
(
− 1

2σ2 (yi − α − βxi)2
)

� (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i�1
(yi − α − βxi)2

)
with log-likelihood

`(α, β) � −n
2 log(2πσ2) − 1

2σ2

n∑
i�1
(yi − α − βxi)2.
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`(α, β) � −n
2 log(2πσ2) − 1

2σ2

n∑
i�1
(yi − α − βxi)2 �

n∑
i�1

(
yi − (α + βxi)

)2
.

So maximising `(α, β) over α and β is equivalent to minimising the sum
of squares

S(α, β) �
n∑

i�1
(yi − α − βxi)2.

For this reason the MLEs of α and β are also called least squares
estimators.
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What does simple linear regression do?

Minimise the sum of squared vertical distances from the points to the
line y � α + βx.
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Theorem 6.1

The MLEs (or, equivalently, the least squares estimates) of α and β are
given by

α̂ �
(∑ x2

i )(
∑

yi) − (
∑

xi)(
∑

xi yi)
n
∑

x2
i − (

∑
xi)2

β̂ �
n
∑

xi yi − (
∑

xi)(
∑

yi)
n
∑

x2
i − (

∑
xi)2

.

These sums are from i � 1 to n.
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Proof of Theorem 6.1
To find α̂ and β̂ we calculate

∂S
∂α

� −2
∑
(yi − α − βxi)

∂S
∂β

� −2
∑

xi(yi − α − βxi).

Putting these partial derivatives equal to zero, the minimisers α̂ and β̂
satisfy

nα̂ + β̂
∑

xi �
∑

yi

α̂
∑

xi + β̂
∑

x2
i �

∑
xi yi .

Solving this pair of simultaneous equations for α̂ and β̂ gives the
required MLEs.
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Sometimes we consider the model

Yi � a + b(xi − x) + εi , i � 1, . . . , n

and find the MLEs of a and b by minimising
∑(yi − a − b(xi − x))2.

This model is just an alternative parametrisation of our original model:
the first model is

Y � α + βx + ε

and the second is
Y � a + b(x − x) + ε
� (a − bx) + bx + ε.

Here Y, x denote general values of Y, x (and x �
1
n
∑

xi is the mean of
the n data values of x). Comparing the two model equations, b � β
and a − bx � α.

The interpretation of the parameters is that β � b is the increase in
E(Y)when x increases by 1. The parameter α is the value of E(Y)when
x is 0; whereas a is the value of E(Y)when x is x.
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Statistics Publications - Estimating dry mass in plants

Estimation of the relationship between individual plant height and
aboveground dry mass

Laís Samira Correia Nunes, Antonio Fernando Monteiro Camargo (2017) A simple non-destructive

method for estimating aboveground biomass of emergent aquatic macrophytes. Acta Limnologica

Brasiliensia vol.29 http://dx.doi.org/10.1590/s2179-975x6416

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,

distribution and reproduction in any medium, provided the original work is properly cited.
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Statistics Publications - Eye measurements

Relationships between the peripapillary retinal nerve fiber layer (RNFL, a,b,c)
and the thickness of the ganglion cell-inner plexiform layer (GCIPL, d,e,f) and
other eye characteristics (important for evaluation of glaucoma)

Sam Seo et al. (2017) Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a

quantitative and three-dimensional analysis. BMC Ophthalmology 17:22 https://doi.org/10.1186/s12886-017-0419-1

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes

were made.
134

Alternative expressions for α̂ and β̂ are

β̂ �

∑(xi − x)(yi − y)∑(xi − x)2 (3)

�

∑(xi − x)yi∑(xi − x)2 (4)

α̂ � y − β̂ x.

The above alternative for α̂ follows directly from ∂S
∂α � 0.

To obtain the alternatives for β̂: Theorem 6.1 gives

β̂ �

∑
xi yi − 1

n (
∑

xi)(
∑

yi)∑
x2

i −
1
n (

∑
xi)2

�

∑
xi yi − nx y∑

x2
i − nx2 . (5)

Now check that the numerators and denominators in (3) and (5) are the
same. Then observe that the numerators of (3) and (4) differ by∑(xi − x)y, which is 0.
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The fitted regression line is the line y � α̂ + β̂x.

The point (x , y) always lies on this line.
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Bias of regression parameter estimates
Let wi � xi − x and note

∑
wi � 0.

From (4) the maximum likelihood estimator of β is

β̂ �
1∑
w2

i

(∑
wiYi

)
so

E(β̂) � 1∑
w2

i

E
(∑

wiYi
)

�
1∑
w2

i

∑
wiE(Yi).

Note E(Yi) � α + βxi � α + βx + βwi (using xi � wi + x), and so

E(β̂) � 1∑
w2

i

∑
wi(α + βx + βwi)

�
1∑
w2

i

[
(α + βx)

∑
wi + β

∑
w2

i

]
� β

since
∑

wi � 0 so β̂ is unbiased. 137

Bias of regression parameter estimates
Also α̂ � Y − β̂ x and so

E(α̂) � E(Y) − xE(β̂)

�
1
n

∑
E(Yi) − βx since E(β̂) � β

�
1
n

∑
(α + βxi) − βx

�
1
n
· n(α + βx) − βx

� α.

So α̂ and β̂ are unbiased.

Note the unbiasedness of α̂, β̂ does not depend on the assumptions
that the εi are independent, normal and have the same variance, only
on the assumptions that the errors are additive and E(εi) � 0.
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Variance of regression parameter estimates
We are usually only interested in the variance of β̂:

var(β̂) � var
(∑

wiYi∑
w2

i

)
�

1
(∑ w2

i )2
var

(∑
wiYi

)
�

1
(∑ w2

i )2
∑

w2
i var(Yi)

�
1

(∑ w2
i )2

∑
w2

i σ
2

�
σ2∑
w2

i

.

Since β̂ is a linear combination of the independent normal random
variables Yi , the estimator β̂ is itself normal: β̂ ∼ N(β, σ2

β)where
σ2
β � σ

2/∑ w2
i .
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So the standard error of β̂ is σβ and if σ2 is known, then a 95% CI for β is

(β̂ ± 1.96σβ).

However, this is only a valid CI when σ2 is known and, in practice, σ2

is rarely known.

For σ2 unknown we need to plug-in an estimate of σ2, i.e. use
σ̂2
β � σ̂

2/∑ w2
i where σ̂2 is some estimate of σ2. For example we could

use the MLE which is σ̂2 �
1
n
∑(yi − α̂ − β̂xi)2. Using the θ̂ ± 2 SE(θ̂)

approximation for a 95% confidence interval, we have that (β̂ ± 2σ̂β) is
an approximate 95% confidence interval for β.
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A better approach here, but beyond the scope of this course, is to
estimate σ2 using

s2
�

1
n − 2

∑
(yi − α̂ − β̂xi)2

and to base the confidence interval on a t-distribution rather than a
normal distribution. This estimator S2 is unbiased for σ2 (see Sheet 5),
but details about its distribution and the t-distribution are beyond this
course – see Parts A/B.
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7. Multiple Linear Regression
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Multiple linear regression – hill races data
Below are record times (in hours) for 23 hill races together with race
distance (in miles) and amount of climb (in feet).

dist climb time
Binevenagh 7.5 1740 0.8583
Slieve Gullion 4.2 1110 0.4667
Glenariff Mountain 5.9 1210 0.7031
Donard & Commedagh 6.8 3300 1.0386
McVeigh Classic 5.0 1200 0.5411
Tollymore Mountain 4.8 950 0.4833
Slieve Martin 4.3 1600 0.5506
Moughanmore 3.0 1500 0.4636
Hen & Cock 2.5 1500 0.4497
Annalong Horseshoe 12.0 5080 1.9492
Monument Race 4.0 1000 0.4717
Loughshannagh Horseshoe 4.3 1700 0.6469
Rocky 4.0 1300 0.5231
Meelbeg Meelmore 3.5 1800 0.4544
Donard Forest 4.5 1400 0.5186
Slieve Donard 5.5 2790 0.9483
Flagstaff to Carling 11.0 3000 1.4569
Slieve Bearnagh 4.0 2690 0.6878
Seven Sevens 18.9 8775 3.9028
Lurig Challenge 4.0 1000 0.4347
Scrabo Hill Race 2.9 750 0.3247
Slieve Gallion 4.6 1440 0.6361
BARF Turkey Trot 5.7 1430 0.7131
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Scatterplots
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• Time increases with distance and also with amount of climb.
• Most data points are crowded into the bottom LH corner of each plot – we

could transform time, dist, climb before fitting a model (and we will).
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Scatterplots
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could transform time, dist, climb before fitting a model (and we will).
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Multiple linear regression

For the Hill races example, we could consider: Let Y � time,
x1 � distance, x2 � climb.

We can consider a model in which Y depends on both x1 and x2, of the
form

Y � β0 + β1x1 + β2x2 + ε.

This model has one response variable Y (as usual), but now we have
two explanatory variables x1 and x2, and three regression parameters
β0 , β1 , β2.
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Let the ith race have time yi , distance xi1 and climb xi2. Then in more
detail our model is

Yi � β0 + β1xi1 + β2xi2 + εi , i � 1, . . . , n

where

xi1 , xi2 , for i � 1, . . . , n, are known constants

ε1 , . . . , εn
iid∼ N(0, σ2)

β0 , β1 , β2 are unknown parameters

and (as usual) yi denotes the observed value of the random variable Yi .
As for simple linear regression we obtain the MLEs/least squares
estimates of β0 , β1 , β2 by minimising

S(β) �
n∑

i�1
(yi − β0 − β1xi1 − β2xi2)2

with respect to β0 , β1 , β2, i.e. by solving ∂S
∂βk

� 0 for k � 0, 1, 2.

As before, the only property of the εi needed to define the least squares
estimates is E(εi) � 0.
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What does multiple linear regression do?
For two explanatory variables: minimise the sum of squared vertical
distances from the points to the plane y � β0 + β1x1 + β2x2.

X1

X2

Y

[Figure from James, Witten, Hastie and Tibshirani (2013).]
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Hill races data

Maindonald and Braun (2010) suggest taking logarithms and
considering Y � β0 + β1x1 + β2x2 + ε where

Y � log(time), x1 � log(dist), x2 � log(climb).

A couple of reasons why we might transform like this:

• The max value of time is more than 10 times the min value, with times
bunched up towards zero, and with a long tail, similarly for dist, climb.
A log-transform will lead to a more symmetric spread.
• The longest race has a timemore than double the next largest, and the

dist and climb of this race stand out similarly. Using untransformed
variables this race will have much more say in determining the fitted
model than any other, taking logs will reduce this. (Can we be more
precise than “will have much more say”? Yes, see later.)
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Untransformed scales
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Logarithmic scales

Scatter Plot Matrix
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The fitted model is

y � −4.96 + 0.68x1 + 0.47x2

log(time) � −4.96 + 0.68 log(dist) + 0.47 log(climb)
time � 0.0070 × dist0.68 × climb0.47

Some interpretation: for a given value of climb, if the distance doubles then
time increases by a factor of 20.68 � 1.60. Is this reasonable? If the distance
doubles, don’t we expect the time taken to be multiplied by more than 2?

The key thing is that climb is being held constant – so although doubling the
length seems to make a race more than twice as hard, the gradient is halved (if
climb is held constant), making the climbing aspect of the race easier. The
estimated effect overall is the factor of 1.60.
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• We can fit a model depending on distance only

log(time) � −2.21 + 1.12 log(dist)

• or depending on climb only

log(time) � −7.10 + 0.90 log(climb)

• or depending on both distance and climb

log(time) � −4.96 + 0.68 log(dist) + 0.47 log(climb).

Observe that the estimated regression coefficients are different in each model,
e.g. the coefficient of log(dist) is different depending on whether log(climb) is
part of the model – because if log(climb) is included then it can help explain
some of the variation in log(time), whereas if log(climb) is absent then
log(dist) has to account for the variation in log(time) on its own.
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A general multiple regression model has p explanatory variables
(x1 , . . . , xp),

Y � β0 + β1x1 + · · · + βp xp + ε

and the MLEs/least squares estimates are obtained by minimising

n∑
i�1
(yi − β0 − β1xi1 − · · · − βp xip)2

with respect to β0 , β1 , . . . , βp . In this course we will focus on p � 1 or 2.
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Statistics Publications - Multiple regression for monthly
hatching success of leatherback turtles

Santidrián Tomillo P, Saba VS, Blanco GS, Stock CA, Paladino FV, Spotila JR (2012) Climate Driven

Egg and Hatchling Mortality Threatens Survival of Eastern Pacific Leatherback Turtles. PLoS ONE

7(5): e37602. https://doi.org/10.1371/journal.pone.0037602

Copyright: © 2012 Santidrián Tomillo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are

credited.
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Statistics Publications - Multiple regression for monthly
emergence rate of leatherback turtles

Note the absence of an intercept term. What does this imply?

Santidrián Tomillo P, Saba VS, Blanco GS, Stock CA, Paladino FV, Spotila JR (2012) Climate Driven

Egg and Hatchling Mortality Threatens Survival of Eastern Pacific Leatherback Turtles. PLoS ONE

7(5): e37602. https://doi.org/10.1371/journal.pone.0037602

Copyright: © 2012 Santidrián Tomillo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are

credited.
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Quadratic regression

The relationship between Y and x may be approximately quadratic in
which case we can consider the model Y � β0 + β1x + β2x2 + ε. This is
the case p � 2 with x1 � x and x2 � x2.
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Statistics Publications - Weight gain and diet in fish

Quadratic regression analysis of Percentage Weight Gain (PWG) for
grass carp fed graded levels of isoleucine.
Source: Gan L, Jiang W-D, Wu P, Liu Y, Jiang J, Li S-H, et al. (2014) Flesh Quality Loss in Response

to Dietary Isoleucine Deficiency and Excess in Fish: ... .PLoS ONE 9(12): e115129.

https://doi.org/10.1371/journal.pone.0115129

Copyright: © 2014 Gan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
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Statistics Publications - Weight gain and diet in fish

Source: Gan et al. 2014 https://doi.org/10.1371/journal.pone.0115129

What level of isoleucine will maximise the Percentage Weight Gain?

If y � −1.414x2 + 34.45x − 67.39, then the maximum is found where
2 × −1.414x + 34.45 � 0 so x �

34.45
2×1.414 � 12.18.
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Statistics Publications - Cubic regression

Cubic regression analysis of the run time for a fast approximate
quadratic assignment algorithm as a function of the number of vertices.
Source: Vogelstein JT, Conroy JM, Lyzinski V, Podrazik LJ, Kratzer SG, Harley ET, et al. (2015) Fast

Approximate Quadratic Programming for Graph Matching. PLoS ONE 10(4): e0121002.

https://doi.org/10.1371/journal.pone.0121002

Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon,

or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain

dedication
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Statistics Publications - Cubic regression

Cubic regression analysis of the run time for a fast approximate
quadratic assignment algorithm as a function of the number of vertices.

Source: Vogelstein et al. 2015 https://doi.org/10.1371/journal.pone.0121002

What is the prediction of the run time if there are 50 vertices?

Does the variation in the observation appear to be constant?
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For convenience write the two explanatory variables as x and z. So
suppose

Yi � β0 + β1xi + β2zi + εi , i � 1, . . . , n

where εi
iid∼ N(0, σ2) and assume

∑
xi �

∑
zi � 0.

Then minimising S(β) gives

β̂0 �

∑
yi

n

β̂1 �
1
∆

(∑
z2

i

∑
xi yi −

∑
xi zi

∑
zi yi

)
β̂2 �

1
∆

(∑
x2

i

∑
zi yi −

∑
xi zi

∑
xi yi

)
where

∆ �

∑
x2

i

∑
z2

i −
(∑

xi zi

)2
.

The method (solving ∂S
∂βk

� 0 for k � 0, 1, 2, i.e. 3 equations in 3
unknowns) is straightforward, the algebra less so – the are more
elegant ways to do some of this (using matrices, in 3rd year).
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Interpretation of regression coefficients

Consider the model with p � 2, so two regressors x1 and x2:

Y � β0 + β1x1 + β2x2 + ε.

We interpret β1 as the average effect on Y of a one unit increase in x1,
holding the other regressor x2 fixed.

Similarly we interpret β2 as the average effect on Y of a one unit
increase in x2, holding the other regressor x1 fixed.

In these interpretations “average” means we are talking about the
change in E(Y)when changing x1 (or x2).

One important thing to note here is that x1 and x2 often change
together. e.g. in the hill races example, a race whose distance is one
mile greater will usually to have an increased value of climb as well.
This makes interpretation more difficult.
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8. Assessing the fit of a model
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Assessing the fit of a model
Having fitted a model, we should consider how well it fits the data. A
model is normally an approximation to reality: is the approximation
sufficiently good that the model is useful? This question applies to
mathematical models in general. In this course we will approach the
question by considering the fit of a simple linear regression
(generalisations are possible).

For the model Y � α + βx + ε let α̂, β̂ be the usual estimates of α, β
based on the observation pairs (x1 , y1), . . . , (xn , yn).
From now on we consider this model, with the usual assumptions
about ε, unless otherwise stated.

Definition The ith fitted value ŷi of Y is defined by ŷi � α̂ + β̂xi , for
i � 1, . . . , n.

The ith residual ei is defined by ei � yi − ŷi , for i � 1, . . . , n.

The residual sum of squares RSS is defined by RSS �
∑

e2
i .

The residual standard error RSE is defined by RSE �

√
1

n−2RSS.
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The RSE is an estimate of the standard deviation σ. If the fitted values
are close to the observed values, i.e. ŷi ≈ yi for all i (so that the ei are
small), then the RSE will be small. Alternatively if one or more of the ei
is large then the RSE will be higher.

We have E(ei) � 0. In taking this expectation, we treat yi as the random
variable Yi , and we treat ŷi as the random variable α̂ + β̂xi (in
particular, α̂ and β̂ are estimators, not estimates). Hence

E(ei) � E(Yi − α̂ − β̂xi)
� E(Yi) − E(α̂) − E(β̂)xi

� E(α + βxi + εi) − α − βxi since α̂, β̂ are unbiased
� α + βxi + E(εi) − α − βxi

� 0 since E(εi) � 0.
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Potential problem: non-linearity

The model Y � α + βx + ε assumes a straight-line relationship between
Y (the response) and x (the predictor). If the true relationship is far
from linear then any conclusions (e.g. predictions) we draw from the
fit will be suspect.

A residual plot is a useful graphical tool for identifying non-linearity:
for simple linear regression we can plot the residuals ei against the
fitted values ŷi . Ideally the plot will show no pattern. The existence of
a pattern may indicate a problem with some aspect of the linear model.

Note that for simple linear regression (i.e. the case p � 1) plotting ei
against xi gives an equivalent plot, just with a different horizontal
scale, since there is an exact linear relation between the xi and ŷi (i.e.
ŷi � α̂ + β̂xi).

[Plotting ei against ŷi generalises better to multiple regression.]
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Residual plots

True model is Y � 2 + 2x + ε. Fitted model is Y � α + βx + ε.

The right form of model has been fitted, the residual plot should show
no pattern, just random scatter – it does.

Data from Y = 2 + 2x + ε
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Plotting residuals against xi , or against ŷi , is basically the same (since
ŷi � α̂ + β̂xi).
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Data from Y = x2 + ε
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A straight-line model Y � β0 + β1x + ε has been fitted when actually the
relationship is quadratic Y � x2 + ε.

The residuals should indicate a problem – they do – there is a pattern, they are
not randomly scattered. The curvature indicated in the right-hand plot is what
we should notice in the middle plot. [How to fit the curve is beyond the scope
of this course.]
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Data from Y = x2 + ε
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True model is Y � x2 + ε. Fitted model is Y � β0 + β1x + β2x2 + ε, i.e. the
correct form of model has been fitted. The residuals don’t show any pattern.
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Auto data
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Auto data, linear fit and quadratic fit
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Residual plot for linear fit
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Residual plot for quadratic fit
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Left: the pattern (curvature) in the residuals from the linear fit
Y � β0 + β1x + ε indicates non-linearity.

Right: little pattern remains in the residuals from the quadratic fit
Y � β0 + β1x + β2x2 + ε.
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Potential problem: non-constant variance of errors

We have assumed that the errors have a constant variance, i.e.
var(Yi) � var(εi) � σ2. That is, the same variance for all i.
Unfortunately, this is often not true. e.g. the variance of the error may
increase as Y increases.

Non-constant variance is also called heteroscedasticity. We can identify
this from the presence of a funnel-type shape in the residual plot.
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Non-constant variance of errors

Plots with response variable Y, so the model is Y � α + βx + ε.

Both plots suggest non-constant variance of the error, the variability
appears larger when Y (or x) is larger.
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How might we deal with non-constant variance of the errors?

One possibility is to transform the response Y using a transformation
such as log Y or

√
Y (which shrinks larger responses more), leading to

a reduction in heteroscedasticity.
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Plots with log Y as the response variable, so the model is
log Y � α + βx + ε.
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Sometimes we might have a good idea about of the variance of Yi : we
might think var(Yi) � var(εi) � σ2

wi
where σ2 is unknown but where the

wi are known. e.g. if Yi is actually the mean of ni observations, where
each of these ni observations are made at x � xi , then var(Yi) � σ2

ni
. So

wi � ni in this case.

It is straightforward to show (exercise) that the MLEs of α, β are
obtained by minimising

n∑
i�1

wi(yi − α − βxi)2. (6)

The form of (6) is intuitively correct: if wi is small then var(Yi) is large,
so there is a lot of uncertainty about observation i, so this observation
shouldn’t affect the fit too much – this is achieved in (6) by observation
i being weighted by the small value of wi . Hence this approach is
called weighted least squares.
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Potential problem: outliers

An outlier is a point for which yi is far from the value ŷi predicted by
the model. Outliers can arise for a variety of reasons, e.g. incorrect
recording of an observation during data collection.

Residual plots can be used to identify outliers. Recall that E(ei) � 0.
But in practice it can be difficult to decide how large (i.e. how far from
the expected value of zero) a residual needs to be before we consider it
a possible outlier. To address this we can plot studentized residuals
instead of residuals, where

ith studentized residual � ei

SE(ei)
.
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Theorem 8.1 var(ei) � σ2(1 − hi)where

hi �
1
n
+
(xi − x)2∑n
j�1(x j − x)2 .

Definition The ith studentized residual ri is defined by

ri �
ei

s
√

1 − hi
f

where s � RSE is the residual standard error.

[Here we call the ri “studentized” residuals. Some authors call the ri
“standardized” residuals and save the word “studentized” to mean
something similar but different.]
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So the ri are all on a comparable scale, each having a standard
deviation of about 1. We will say that observations with |ri | > 3 are
possible outliers.

If we believe an outlier is due to an error in data collection, then one
solution is to simply remove the observation from the data and re-fit
the model. However, an outlier may instead indicate a problem with
the model, e.g. a nonlinear relationship between Y and x, so care must
be taken.

Similarly, this kind of problem could arise if we have a missing
regressor, i.e. we could be using Y � β0 + β1x1 + ε when we should
really be using Y � β0 + β1x1 + β2x2 + ε.
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Proof of Theorem 8.1
Idea of the proof: write e j �

∑
j a jYj and use

var
(∑

j

a jYj

)
�

∑
j

a2
j var(Yj) � σ2

∑
j

a2
j (7)

since the Yj are independent with var(Yj) � σ2 for all j. Here and
below, all sums are from 1 to n.
First recall

β̂ �

∑
j(x j − x)Yj

Sxx
where Sxx �

∑
k

(xk − x)2

and
α̂ � Y − β̂ x

�
1
n

(∑
j

Yj

)
− x

(∑
j(x j − x)Yj

Sxx

)
�

∑
j

(
1
n
−

x(x j − x)
Sxx

)
Yj .
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Proof of Theorem 8.1 ... continued
So

ŷi � α̂ + β̂xi

�

∑
j

(
1
n
−

x(x j − x)
Sxx

)
Yj + xi

(∑
j(x j − x)Yj

Sxx

)
�

∑
j

(
1
n
+
(xi − x)(x j − x)

Sxx

)
Yj . (8)

We can write

Yi �
∑

j

δi jYj (9)

where

δi j �

{
1 if i � j
0 otherwise.
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Proof of Theorem 8.1 ... continued

Note δ2
i j � δi j and

∑
j δ

2
i j �

∑
j δi j � 1. So

ei � Yi − α̂ − β̂xi

and using (8) and (9)

�

∑
j

(
δi j −

1
n
−
(xi − x)(x j − x)

Sxx

)
Yj .
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Proof of Theorem 8.1 ... continued
As the Yj are independent, as at (7),

var(ei) �
∑

j

(
δi j −

1
n
−
(xi − x)(x j − x)

Sxx

)2

var(Yj)

� σ2
∑

j

(
δ2

i j +
1
n2 +

(xi − x)2(x j − x)2

S2
xx

− 2 1
n
δi j

− 2
(xi − x)(x j − x)

Sxx
δi j + 2 1

n
(xi − x)(x j − x)

Sxx

)
� σ2

(
1 +

1
n
+
(xi − x)2

Sxx
− 2

n
− 2 (xi − x)2

Sxx
+

2
n
(xi − x)

Sxx

∑
j

(x j − x)
)

� σ2
(
1 − 1

n
− (xi − x)2

Sxx

)
� σ2(1 − hi). �
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Plots with with studentized residuals

Left: dotted line = regression line based on the black points, red line =
regression line with red point included.

Middle = residuals ei . Right = studentized residuals ri .
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Residuals ei and studentized residuals ri are almost the same. The regression
does not fit the red point well, but whether the red point is included or not has
little effect on the fitted line.
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Scale of y has changed, |ei | and |ri | are much smaller. Also, the red point isn’t
so extreme.
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Studentized residual of red point is greater than 4, it is a possible outlier, again
it has a tiny effect on the fitted line.
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Potential problem: high leverage points

Outliers are observations for which the response yi is unusual given
the value of xi . On the other hand, observations with high leverage have
an unusual value of xi .

Definition The leverage of the ith observation is hi , where

hi �
1
n
+
(xi − x)2∑n
j�1(x j − x)2 .

Clearly hi depends only on the values of the xi (it doesn’t depend on
the yi values at all). We see that hi increases with the distance of xi
from x.
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High leverage points tend to have a sizeable impact on the regression
line. Since var(ei) � σ2(1 − hi), a large leverage hi will make var(ei)
small. And then since E(ei) � 0, this means that the regression line will
be “pulled” close to the point (xi , yi).

Note that
∑

hi � 2, so the average leverage is h �
2
n . One

rule-of-thumb is to regard points with a leverage more than double
this to be high leverage points, i.e. points with hi > 4/n.
Why does this matter? We should be concerned if the regression line is
heavily affected by just a couple of points, because any problems with
these points might invalidate the entire fit. Hence it is important to
identify high leverage observations.
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Leverage

Left: plot of (xi , yi), i � 1, . . . , n.

Right: plot of leverage values hi against xi .
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Blue line = excluding red point, dotted red line = including red point.
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Left: red line = fitted line from black points + point A, blue line = fitted
line from black points + point A + point B.

Right: studentized residuals ri against leverage values hi .

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

−2 −1 0 1 2 3

0
5

10
15

x
y ●

●

A

B

0.02 0.04 0.06 0.08 0.10 0.12 0.14

−
1

0
1

2
3

4

Leverage values

S
tu

de
nt

iz
ed

 r
es

id
ua

ls

●●
●

● ● ●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

● A

●B

192



Removing point B – which has high leverage and a high residual – has
a much more substantial impact on the regression line than removing
an outlier with low leverage and/or low residual.

In the plot of studentized residuals against leverage:

• point B has high leverage and a high residual, it is having a
substantial affect on the regression line yet it still has a high
residual

• in contrast point A has a high residual, the model isn’t fitting well
at A, but t A isn’t affecting the fit much at all – the reason that A
has little affect on the fit is that it has low leverage.
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Statistics Publications - Underrepresentation of women
on boards

The association of women on editorial/advisory board and in the
corresponding academic specialty.
Do you have any concerns here about fitting a simple linear
regression? Spot the high leverage point!
Source: Ioannidou E, Rosania A (2015) Under-Representation of Women on Dental
Journal Editorial Boards. PLoS ONE 10(1): e0116630.
https://doi.org/10.1371/journal.pone.0116630

Copyright: © 2015 Ioannidou, Rosania. This is an open access article distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are

credited
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Statistics Publications - Estimating dry mass in plants

Estimation of the relationship between individual plant height and
aboveground dry mass

Do you have any concerns here about fitting a simple linear
regression? Spot the high leverage point!

Laís Samira Correia Nunes, Antonio Fernando Monteiro Camargo (2017) A simple non-destructive

method for estimating aboveground biomass of emergent aquatic macrophytes. Acta Limnologica

Brasiliensia vol.29 http://dx.doi.org/10.1590/s2179-975x6416

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,

distribution and reproduction in any medium, provided the original work is properly cited.
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Statistics Publications - Cubic regression

Cubic regression analysis of the run time for a fast approximate
quadratic assignment algorithm as a function of the number of vertices.

Source: Vogelstein et al. 2015 https://doi.org/10.1371/journal.pone.0121002

Does the variation in the observation appear to be constant?
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