1. Let $\phi, \psi : [-6, 6] \to \mathbb{R}$ be defined by

$$\phi = 3\mathbf{1}_{[-2,2]} - \mathbf{1}_{(0,4)} + \mathbf{1}_{[4,5)}, \ \psi = \mathbf{1}_{(0,1]} + \mathbf{1}_{[1,5)}.$$

Here, $\mathbf{1}_X$ means the function taking the value 1 on X and 0 elsewhere.

- (i) Sketch the graphs of ϕ and ψ ;
- (ii) Write down a partition \mathcal{P} to which ϕ is adapted, and hence express ϕ as a linear combination of indicator functions of disjoint bounded intervals;
- (iii) Evaluate $I(\phi)$;
- (iv) Find a partition $\mathcal P$ to which both ϕ and ψ are adapted. Express the step functions

$$|\phi|, \phi^3, \phi - \psi, \max(\phi, \psi)$$

as linear combinations of indicator functions of bounded intervals.

2. Suppose that ϕ is a step function. Show that $|\phi|$ is also a step function and that

$$|I(\phi)| \leqslant I(|\phi|).$$

If $|\phi|$ is a step function, is ϕ a step function? Justify your answer.

- **3.** Fix real numbers a, b with a < b. Denote by $\mathcal{L}_{\text{step}}$ be the set of all functions which are step functions on [a, b]. Explain why this is a vector space. Which of the following statements are true?
 - (i) $\mathscr{L}_{\text{step}}$ is the linear span of all indicator functions $\mathbf{1}_{(c,d)}$ of bounded open intervals, restricted to [a,b] (here and below we do *not* assume that $a \leqslant c \leqslant d \leqslant b$);
 - (ii) $\mathcal{L}_{\text{step}}$ is the linear span of all indicator functions $\mathbf{1}_{[c,d]}$ of bounded closed intervals, restricted to [a,b];
- (iii) $\mathcal{L}_{\text{step}}$ is the linear span of all indicator functions $\mathbf{1}_{(c,d]}$ of bounded left-half-open intervals, restricted to [a,b];

- (iv) $\mathcal{L}_{\text{step}}$ is finite-dimensional.
- **4.** Let a < c < d < b, and $f : [a,b] \to \mathbb{R}$. Prove that if f is Riemann integrable on [a,b], then it is also Riemann integrable on [c,d].
- **5.** Let $S = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots\}$. Define a function $f : [0,1] \to \mathbb{R}$ by f(x) = 1 if $x \in S$ and f(x) = 0 otherwise. Show that f is Riemann integrable and that its integral is zero.
- **6.** *Suppose that $f:[0,1] \to \mathbb{R}$ is an integrable function such that f(x) > 0 for all $x \in [0,1]$. Is it true that $\int_0^1 f > 0$?

ben.green@maths.ox.ac.uk