1. Determine the following limits (you may assume that standard functions are Riemann integrable and that their integrals are as you learned in school: we'll prove this later in the course).

(i)
$$\lim_{n \to \infty} \frac{1}{n} \left(1 + e^{\frac{1}{n}} + e^{\frac{2}{n}} \dots + e^{\frac{n-1}{n}} \right)$$

(ii)
$$\lim_{n \to \infty} \frac{1}{n^6} \left(1 + 2^5 + \ldots + n^5 \right)$$

(iii)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{1+2n}} + \frac{1}{\sqrt{2+2n}} + \frac{1}{\sqrt{3+2n}} + \dots + \frac{1}{\sqrt{3n}} \right)$$

- **2.** Let a < b. Suppose that \mathcal{P}_i , $i = 1, 2, \ldots$ is a sequence of partitions of [a, b] for which $\operatorname{mesh}(\mathcal{P}_i) \nrightarrow 0$. Show that there is a Riemann integrable function on [a, b] and a sequence of Riemann sums such that $\Sigma(f; \mathcal{P}_i, \xi_i) \nrightarrow \int_a^b f$.
- **3.** By using Riemann sums associated to the sequence of partitions \mathcal{P}_n into n equal parts, show from first principles that $\int_0^1 x^2 dx = \frac{1}{3}$.
- 4. Is every Riemann integrable function a uniform limit of step functions?
- **5.** Show that a bounded function $f:[a,b]\to\mathbb{R}$ is integrable if and only if the following is true. For every $\varepsilon>0$, there is a partition $\mathcal{P}:a=x_0\leqslant x_1\leqslant\ldots\leqslant x_n=b$, such that the total length of all subintervals (x_{i-1},x_i) on which $\sup_{x\in(x_{i-1},x_i)}f>\inf_{x\in(x_{i-1},x_i)}f+\varepsilon$ is at most ε .

Note: closed intervals replaced by open May 16th. The question is slightly easier with this formulation

ben.green@maths.ox.ac.uk