Part A Quantum Theory, 2017 Problem Sheet 4 (of 4)

1. The vector $\psi = \psi_n$ is a normalised eigenvector for the energy level $E = E_n = (n + \frac{1}{2})\hbar\omega$ of the harmonic oscillator with Hamiltonian $H = P^2/2m + \frac{1}{2}m\omega^2 X^2$. Show that

$$E = \mathbb{E}_{\psi}[P^2]/2m + \frac{1}{2}m\omega^2 \mathbb{E}_{\psi}[X^2].$$

By considering $\langle \psi | (P \pm im\omega X)^k \psi \rangle$ for k = 1, 2 and using orthogonality properties of eigenvectors, or otherwise, show that

$$\mathbb{E}_{\psi}[P] = 0 = \mathbb{E}_{\psi}[X], \quad \text{and} \quad \mathbb{E}_{\psi}[P^2] = m^2 \omega^2 \mathbb{E}_{\psi}[X^2] = mE.$$

[Use section 7.4.2 in the notes.]

Deduce that

$$\Delta_{\psi}[P]\Delta_{\psi}[X] = \frac{E}{\omega},$$

and discuss how this relates to Heisenberg's Uncertainty Principle.

2. Show that angular momentum operators L_i satisfy

$$\Delta_{\psi}[L_1]\Delta_{\psi}[L_2] \ge \frac{1}{2}\hbar|\mathbb{E}_{\psi}[L_3]|,$$

and find conditions which ensure equality.

[Don't try to solve the resulting differential equations.]

3. A particle of mass m and charge e moving in 2 dimensions has Hamiltonian

$$H = \frac{1}{2m} \left((P_1 + \frac{1}{2}eBX_2)^2 + (P_2 - \frac{1}{2}eBX_1)^2 \right),$$

where B is a constant (and we'll suppose $eB \neq 0$).

Show that the energy levels have the form $(n + 1/2)\hbar |eB|/m$

[Hint: From the form of the answer you should be thinking of the harmonic oscillator; invent new operators P and X proportional to $P_1 + \frac{1}{2}eBX_2$ and $P_2 - \frac{1}{2}eBX_1$, or vice versa, and a suitable ω so that the given Hamiltonian takes the harmonic oscillator form. Your choices should depend on the sign of eB.]

4. Use the theory of raising and lowering operators $L_1 \pm iL_2$ to obtain an expression for $Y_{\ell,\ell}(\theta,\phi)$. Now find $Y_{\ell m}(\theta,\phi)$ for $(\ell,m) = (1,1), (1,0), (1,-1), (2,2), (2,1)$ and (2,0) (up to multiplicative constants).

[For this you need, from the lectures, to recall that $L_3 = -i\hbar\partial/\partial\phi$ and

$$L_{+} = L_{1} + iL_{2} = \hbar e^{i\phi} \left(\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right).$$

Since $Y_{\ell,\ell}, Y_{11}$ and Y_{22} are in the kernel of L_+ and are eigenfunctions of L_3 they are easily found; then lower for the rest.]

5. The Laplacian in spherical polar coordinates is

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial^2 (r\psi)}{\partial r^2} + \frac{1}{r^2 \sin^2 \theta} \left[\left(\sin \theta \frac{\partial}{\partial \theta} \right)^2 + \frac{\partial^2}{\partial \phi^2} \right] \psi.$$

An electron of mass m moves in a potential of the form $-(\hbar^2/ma)r^{-1}$, where a is the Bohr radius.

Show that $(r \sin \theta e^{i\phi})^{\ell} \exp[-r/((\ell+1)a)]$ satisfies the time-independent Schrödinger equation with energy $-\hbar^2/2m(\ell+1)^2a^2$.

[This is easier if you write $\psi = f(r)(\sin \theta e^{i\phi})^{\ell}$, get the equation for f and then just check that the given f(r) works.]

Show that (with this wave function) the expected value of r^k can be written as

$$\mathbf{E}[r^k] = \frac{\int_0^\infty r^{2(\ell+1)+k} e^{-2r/(\ell+1)a} \, dr}{\int_0^\infty r^{2(\ell+1)} e^{-2r/(\ell+1)a} \, dr}$$

Deduce that

$$\mathbb{E}[r] = (\ell + \frac{3}{2})(\ell + 1)a$$
, and $\mathbb{E}[r^2] = (\ell + 2)(\ell + \frac{3}{2})(\ell + 1)^2a^2$.

[You may assume that

$$\int_0^\infty r^n e^{-\lambda r} dr = n! / \lambda^{n+1}.]$$

By using Chebyshev's inequality, $P[|S| > \epsilon] \leq \mathbb{E}[S^2]/\epsilon^2$, with $S = (\mathbb{E}[r] - r)/\mathbb{E}[r]$, or otherwise, deduce that

$$P\left[\left|1 - \frac{r}{(\ell + \frac{3}{2})(\ell + 1)a}\right| > (2\ell + 3)^{-\frac{1}{3}}\right] \le (2\ell + 3)^{-\frac{1}{3}},$$

and hence that, for large ℓ , the particle is most likely to be found close to a distance $r = (\ell + \frac{3}{2})(\ell + 1)a$ from the origin.

Comments and corrections to hodges@maths.ox.ac.uk.