
Part A Quantum Theory

Prof. Luis Fernando Alday, Michaelmas Term 2018

(Largely based on the previous lecture notes by profs. Hodges, Tod and Sparks)

Synopsis

• Wave-particle duality; Schrödinger’s equation; stationary states; quantum states of a par-

ticle in a box (infinite square-well potential).

• Interpretation of the wave function; boundary conditions; probability density and conser-

vation of current; parity.

• The one-dimensional harmonic oscillator; higher-dimensional oscillators and normal modes;

degeneracy. The rotationally symmetric states of the hydrogen atom with fixed nucleus.

• The mathematical structure of quantum mechanics and the postulates of quantum me-

chanics.

• Commutation relations. Heisenberg’s uncertainty principle.

• Creation and annihilation operators for the harmonic oscillator. Measurements and the

collapse of the wave function.

• Schrödinger’s cat. Angular momentum in quantum mechanics. The particular case of

spin-1/2. Particle in a central potential. General states of the hydrogen atom.
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Preamble

Classical physics — Newton’s laws of mechanics and the theory of electromagnetism developed

in the 19th century — fails at the atomic scale. From the beginning of the 20th century, mounting

experimental evidence pointed towards the existence of a radically different theory of physics

that governs the properties of atoms and their constituent particles. The deterministic and

continuous nature of classical physics was replaced by a new quantum theory, with probability

and discreteness at its heart. The theory of quantum mechanics developed in the 20th century

not only successfully describes the structure of atoms and molecules, but also nuclear physics,

particle physics (such as in particle accelerators like the LHC), chemistry (such as chemical

bonding), the structure of solids, superconductors, etc. Quantum theory also underpinned many

important technological advances in the 20th century, such as the laser, the microchip (hence

computers and mobile phones), and the electron microscope. Future applications may include

quantum cryptography and the quantum computer.

In this course we begin with an overview of some key physical ideas and formulae. These

developed from experiments that demonstrate the failure of classical physics at the atomic

scale. An important concept here is wave-particle duality. This, together with some intuition

from classical physics, will lead us to the Schrödinger equation that governs such matter-waves.

We discuss general properties of the Schrödinger equation, and interpret the wave function in

terms of a probability distribution. We also study in detail some of the simplest, and most

important, solutions: a particle confined to a box, the harmonic oscillator (which universally

describes small oscillations of any quantum system), and, after an interlude of mathematical

formalism, the hydrogen atom. In particular, we will derive the observed emission/absorption

spectrum of the hydrogen atom, a computation that was in Schrödinger’s original 1926 paper.

0 Classical particles and waves

Before starting the course proper, we begin with a brief review of classical point particles and

waves. This is to remind you of some concepts and formulae learned at school or in Prelims,

and to set notation used later in the text.

0.1 Point particles

A point particle is an idealized object that, at any given instant of time, is located at a point in

space, and the position of the particle is governed by Newton’s second law: if the particle has

constant mass m and is acted on by a force F, then r(t) obeys

m
d2r

dt2
= F.

In principle here F could depend on time, but in this course we shall only consider conservative

forces where F = −∇V , for some function V = V (r) called the potential and independent of

time (or static).
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In this case, the total energy of the particle

E =
1

2
m|ṙ|2 + V

is conserved, where we shall sometimes denote ṙ ≡ dr/dt. That is, E is independent of time:

dE

dt
= m

dr

dt
· d2r

dt2
+∇V · dr

dt
=

dr

dt
·
(
m

d2r

dt2
− F

)
= 0 .

Here the particle has kinetic energy 1
2m|ṙ|

2, potential energy V = V (r(t)), and momentum

p = mṙ. We may also write the kinetic energy as

Ekinetic =
|p|2

2m
.

A particle that is subjected to no forces is called a free particle.

* The above formulae are true (to a very good approximation) for a non-relativistic point
particle, which means its speed u = |ṙ| is much less than the speed of light, u � c =
speed of light. For example, a massless particle, with m = 0, necessarily moves at speed
c and has energy E = c|p|, where p is its momentum. This will be treated in the Special
Relativity option course.

0.2 Waves

Recall the classical wave equation

1

v2

∂2φ

∂t2
= ∇2φ ,

where v is the constant speed of the wave. This linear equation governs, for example, the

propagation of sound or light. As basic solution we have the complex plane wave

φ(r, t) = A exp [i(k · r− ωt)] ,

where we have the constant wave vector k, angular frequency ω, and (possibly complex)

amplitude A. Substituting into the wave equation gives −ω2/v2 = −|k|2, or equivalently the

relation

v =
ω

|k|
. (0.1)

Both the real and imaginary parts of φ separately satisfy the wave equation, giving real solutions

that are linear combinations of sines and cosines of (k · r− ωt). In fact it is a result of Fourier

analysis that every solution to the wave equation is a linear combination (in general involving

an integral) of these plane waves.

The wave frequency is ν = ω/2π, while the wavelength is λ = 2π/|k|, so that (0.1) is equivalent

to saying that the wave speed is v = νλ = frequency × wavelength.
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1 Physical background and wave-particle duality

1.1 The photoelectric effect: waves as particles

In the mid 19th century Maxwell successfully described light as a wave propagating in the

electromagnetic field. We shall not need to know anything about electromagnetic theory in this

course. Nevertheless, we note in passing that, in Maxwell’s theory, light propagating through

a vacuum is described by two vector fields E(r, t), B(r, t), called the electric and magnetic

fields, respectively, each Cartesian component of which satisfies the wave equation, with v =

c being the speed of light in vacuum. This theory of electromagnetism unified the theories

of electricity, magnetism and radiation, and explained wave-like properties of light such as

reflection, polarization and diffraction. However, by the beginning of the 20th century it was

becoming clear that Maxwell’s theory could not explain experiments at the atomic scale.

A clear and simple experiment that demonstrates this is the photoelectric effect, shown in

Figure 1.

Figure 1: To observe the photoelectric effect, light is shone on a metal plate in vacuum. Electrons
e− are emitted from the surface of the metal, and their kinetic energy Ekinetic is measured.

Light of angular frequency ω is shone on a metal plate in vacuum. Electrons e−, which are

only weakly bound to the metal, are emitted from the surface. One measures their kinetic energy

and discovers the formula

Ekinetic = −E0 + ~ω . (1.1)

• E0 > 0 is a constant energy which depends only on the particular metal used.

• The constant of proportionality ~ (usually read as “h bar”) is a constant of Nature that is

fundamental to Quantum Theory. From (1.1) we see that it has dimensions [~] = energy

× time, or equivalently [~] = M(LT−1)2 × T = MLT−1 × L = dimensions of angular

momentum, where M , L and T denote dimensions of mass, length and time, respectively.

Numerically, ~ ' 1.05 × 10−34 J s. The combination 2π~ ≡ h is called Planck’s constant,

while ~ is sometimes referred to as the reduced Planck’s constant.

• If the angular frequency ω < E0/~, no e− are emitted.
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• The formula (1.1) is independent of the intensity (brightness) of the light, but as the latter

is increased the number of e− emitted increases.

The classical theory of Maxwell does not explain these observations. Instead Einstein made

the following remarkable hypothesis:

Light of angular frequency ω exists in small packets, or “quanta”, of energy E = ~ω, a relation

we call the Einstein-Planck relation.

These packets of light are known as photons, and are massless particles (m = 0) that travel at

the speed of light c (cf. the starred remark at the end of section 0.1). In Einstein’s interpretation

of the photoelectric effect, each electron e− absorbs one photon of energy ~ω (very occasionally

more than one). Part of this photon energy goes into overcoming the “binding energy” E0 of

the electron to the metal; the remainder is then converted into the observed kinetic energy of e−

when it is emitted. Increasing the intensity of the light simply increases the number of photons.1

1.2 Emission/absorption spectra of atoms

Atoms emit and absorb light at very particular frequencies. The simplest atom is the hydro-

gen atom, which we shall study in more detail at the end of this course. For hydrogen these

frequencies were discovered experimentally in the 19th century, and are given by the formula

ωn1,n2 = 2πR0c

(
1

n2
1

− 1

n2
2

)
. (1.2)

Here n1 < n2 are positive integers, and R0 ' 1.10 × 107 m−1 is Rydberg’s constant, named

after the discoverer of the empirical formula (1.2).

From Einstein’s description of light in terms of photons, this implies that a hydrogen atom

emits and absorbs photons of particular energies ~ωn1,n2 . By conservation of energy, the en-

ergy of the hydrogen atom itself must then be changing by these amounts when a photon is

emitted/absorbed. This strongly suggests that the energies of the hydrogen atom must be given

by

En = −2πR0~c
n2

, (1.3)

where n is an integer, so that e.g. for n1 < n2 the energy of the atom can change from En2

to En1 by emitting a photon of frequency ωn1,n2 . That the hydrogen atom energies are indeed

quantized in this way – that is, taking particular discrete values, rather than being continuous

– has been confirmed in many other experiments. At the end of this course we will derive (1.3)

theoretically.

1* Planck had introduced the constant h = 2π~ in earlier work on radiation emitted from certain idealized
hot objects, called black bodies.
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1.3 The double slit experiment: particles as waves

The photoelectric effect implies that light, described classically by waves satisfying the wave

equation with speed v = c, is sometimes better described as a beam of particles, namely photons.

Similarly, particles, such as the electron e−, can display wave-like characteristics. Perhaps

the best experiment that demonstrates this is the famous double slit experiment, performed

with electrons. This is shown in Figures 2 and 3. A beam of electrons is fired at a double

slit configuration, with a detector screen on the other side. An electron hitting the screen

appears as a bright spot, and over time one can plot this as a distribution. The latter exhibits

a familiar diffraction pattern, similar to that seen in the corresponding experiment with the

beam of electrons replaced by a beam of light. Such diffraction patterns are explained by the

interference of waves: two waves that travel through each of the slits and arrive at the same point

on the detector screen have travelled different distances. These waves then either constructively

or destructively interfere with each other, depending on whether the difference in these distances

is an even or odd number of wavelengths, respectively. This is perhaps familiar to those who

have done A-level physics.

Figure 2: The double slit experiment, performed with a beam of electrons.

A remarkable point here is that the diffraction pattern is still observed even when only a

single electron is passing through the slits at a time. In fact this is the case in the Hitachi

experimental results shown in Figure 3 (the time lapse up to picture (iv) is 20 minutes). This

implies that the electrons are not interfering with each other to cause the diffraction pattern,

but rather a single electron is behaving like a wave. Or, more precisely, the detected distribution

of electron particles is characteristic of a wave passing between the slits. Notice that we may

also interpret this distribution as a probability distribution for where any single electron will hit

the screen. In this viewpoint, it is the probability that displays wave-like characteristics, while

the electrons themselves are always detected on the screen as localized particles. These remarks

are absolutely central to wave-particle duality.

The double slit experiment (and variants of it) is extremely interesting and subtle, and we refer

the interested reader to the references (especially the Feynman lectures) for further discussion
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Figure 3: Actual electron hits in an experiment by a group at Hitachi ( c© Hitachi, Ltd):
(i) 8 e−, (ii) 270 e−, (iii) 2,000 e−, (iv) 160,000 e−.

of its role in understanding wave-particle duality.

1.4 De Broglie’s matter-waves

The experiment we have just described suggests that particles, such as electrons, are also asso-

ciated with waves. De Broglie made this more precise with the claim:

A free particle of energy E and momentum p is associated with a wave of angular

frequency ω and wave vector k via

E = ~ω ,

p = ~k (de Broglie relations) . (1.4)

Since the wavelength is λ = 2π/|k|, we may also write the latter relation as λ = 2π~/|p| =

h/|p|. De Broglie’s insight was that these relations should apply to all particles, not just massless

photons. In this context, E = ~ω is usually referred to as a de Broglie relation, rather than the

Einstein-Planck relation.
* We note that for a photon, the second relation in (1.4) is implied by the first relation
E = ~ω. This follows from the starred comment at the end of section 0.1: for a photon
E = c|p|, so that E = ~ω together with c = ω/|k| implies that |p| = ~|k|. In the Special
Relativity option you can learn that (E,p) and (ω,k) are both 4-vectors, and indeed this
was part of de Broglie’s reasoning.
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2 Wave mechanics

2.1 The Schrödinger equation

De Broglie had hypothesized that particles, such as the electron e−, are associated with waves.

Schrödinger set out to discover the equation that governs these matter-waves. He began by

considering the plane wave, reviewed in section 0.2,

Ψ(r, t) = A exp [i(k · r− ωt)] .

This of course satisfies the wave equation, with φ replaced by Ψ; the change of notation is

meant to emphasize that we now wish to reinterpret this plane wave as a de Broglie matter-wave.

Making use of the de Broglie relations (1.4), we notice

i~
∂Ψ

∂t
= ~ωΨ = EΨ ,

−i~∇Ψ = ~kΨ = pΨ .

In particular, taking the divergence of the second equation implies that −~2∇2Ψ = |p|2Ψ,

where ∇2 is the Laplacian.

The de Broglie relations apply to a free particle, for which the particle’s energy is equal to its

kinetic energy (since F = 0 the potential is constant, and we take this constant to be zero). If

the particle has mass m, then E = Ekinetic = |p|2/2m. Using the de Broglie relations (1.4) then

implies

ω =
E

~
=

~|k|2

2m
. (2.1)

Putting everything together, we have

i~
∂Ψ

∂t
= EΨ =

|p|2

2m
Ψ = − ~2

2m
∇2Ψ . (2.2)

Thus we may associate to a free particle of mass m a plane wave Ψ(r, t), using the de Broglie

relations, which then satisfies the equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ . (2.3)

This is essentially expressing the relation (2.1), which is simply the relation between energy

and momentum for a free particle.

More generally, a particle of mass m moving in a potential V = V (r) has energy

E =
|p|2

2m
+ V . (2.4)

This led Schrödinger to
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Definition / postulate A single, non-relativistic particle of mass m moving in a potential

V (r) is described by a wave function Ψ(r, t) that is governed by the Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ . (2.5)

The wave function Ψ(r, t) is precisely de Broglie’s matter-wave.

Let us make some remarks about what we have done above, which is deceptively straightfor-

ward, and about the Schrödinger equation itself:

1. It is important to realize that we have not derived the Schrödinger equation, in any rigorous

sense. In particular, in the last step we have taken formulae that apply to free particles,

that have been suggested by a combination of experiments and theoretical arguments, and

extrapolated this, using the classical formula (2.4) for energy, to an equation governing

the matter-wave of a particle moving in a general potential. It turns out this equation is

indeed correct, but nothing in the rather naive argument we gave really guarantees this.

The real test of the Schrödinger equation is that it agrees with experiments.

2. The Schrödinger equation is a linear partial differential equation for a complex-valued

function Ψ(r, t). Thus if Ψ1,Ψ2 are solutions, then so is α1Ψ1 + α2Ψ2, for any complex

constants α1, α2 ∈ C. This implies that solutions form a (usually infinite-dimensional)

vector space over C. It is precisely this superposition of wave functions that leads to

interference effects, as in the double slit experiment with electrons. Notice that, in contrast

with the classical wave equation, the Schrödinger equation (2.5) is complex, due to the

i =
√
−1 on the left hand side.

3. Although we began our exposition by discussing photons, it is important to remark that the

photon is a massless, relativistic particle, and as such is not governed by the Schrödinger

equation. The quantum theory of photons is a much more involved theory, known as

quantum electrodynamics, that requires a thorough understanding of both classical elec-

tromagnetism and Special Relativity, as well as quantum ideas. We shall only refer to the

photon again in the context of emission/absorption in atoms, for which we need only the

Einstein-Planck relation.

Before continuing to discuss some basic mathematical properties of the Schrödinger equation,

and looking at our first example, let us pause to comment on the change of viewpoint that is

already implicit in what we have said so far. Consider the classical problem of a point particle

of mass m moving in a potential V . The dynamics is governed by Newton’s law with F = −∇V ,

the solutions of which give the particle’s trajectory r(t). For given initial conditions, say the

particle’s position r and momentum p = mṙ at time t = t0, one solves for the trajectory r(t),

which gives the particle’s location and momentum at any subsequent time.

The corresponding quantum mechanical problem is very different. Given a quantum point

particle of mass m moving in a potential V , we should instead solve the Schrödinger equation
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(2.5). We shall discuss the boundary conditions involved later, but notice immediately that the

result will be some complex-valued function Ψ(r, t). You might immediately wonder what this

function has to do with the particle’s position at some time t. Again, we shall address this

shortly.

2.2 Stationary states

It is natural to seek separable solutions to the Schrödinger equation. Thus we write Ψ(r, t) =

ψ(r)T (t), so that the Schrödinger equation (2.5) becomes

i~dT
dt

T
=
− ~2

2m∇
2ψ + V ψ

ψ
. (2.6)

Since the left hand side depends only on t, while the right hand side depends only on r, both

sides must be constant. If we call this constant E (anticipating that this will be the energy of

the particle), then in particular we have

i~
dT

dt
= ET , (2.7)

which immediately integrates to

T (t) = e−iEt/~ . (2.8)

Here we have absorbed the overall multiplicative integration constant into ψ. The full wave

function is thus

Ψ(r, t) = ψ(r) e−iEt/~ . (2.9)

That E is then indeed the energy of the particle follows from the de Broglie relation between

energy and angular frequency for matter-waves: for this wave function the angular frequency is

ω = E/~, or equivalently E = ~ω. The function ψ then satisfies

Definition The time-independent, or stationary state, Schrödinger equation for a particle of

mass m and energy E moving in a potential V = V (r) is

− ~2

2m
∇2ψ + V ψ = Eψ . (2.10)

The wave function Ψ(r, t) = ψ(r) e−iEt/~ is then called a stationary state wave function of

energy E, although in a common abuse of language the function ψ is also often referred to as

the stationary state wave function.
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2.3 One-dimensional equations

Although ultimately we are interested in studying particles moving in the three spatial dimen-

sions that we observe, it is often technically more straightforward to study the one-dimensional

Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ , (2.11)

with corresponding stationary state equation

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ , (2.12)

and

Ψ(x, t) = ψ(x) e−iEt/~ . (2.13)

Here we have replaced the Laplacian ∇2 by the corresponding one-dimensional operator,

which is simply ∂2/∂x2.Equations (2.11), (2.12) govern a particle propagating on the x-axis with

potential V = V (x). Similar remarks apply in two dimensions. Although the one-dimensional

equation looks somewhat unphysical, in fact sometimes a three-dimensional problem effectively

reduces to a lower-dimensional Schrödinger equation; for example, due to symmetry reduction

(see section 8), or because the particle is constrained to lie in some subspace.

2.4 Particle in a box

Consider a particle inside a “box” on the x-axis. This means that the particle moves freely

inside some interval [0, a] ⊂ R, but cannot leave this region. One can model this by a potential

function V = V (x) that is zero inside the interval/box, and infinite outside:

V (x) =

{
0 , 0 < x < a ,

+∞ , otherwise .
(2.14)

This is also sometimes referred to as the infinite square well potential. See Figure 4.

Before discussing the quantum problem, let us briefly comment on the classical problem. Since

V = 0 inside the box, the classical particle moves at some constant velocity, or equivalently

constant momentum p. Since the energy E = p2/2m is conserved when the particle hits the

edge of the box, after the collision p is replaced by −p and the particle heads towards the other

edge of the box. Classically, notice that E may take any non-negative value.

Now let us consider the quantum particle. The stationary state Schrödinger equation (2.12)

inside the box is
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Figure 4: A particle in box [0, a] on the x-axis.

d2ψ

dx2
= −2mE

~2
ψ , (2.15)

for x ∈ (0, a). We shall discuss boundary conditions more systematically in section 3.2, but

here we note that since V =∞ outside the box, the Schrödinger equation will make sense only

if ψ = 0 there.2 When we come to discuss the physical meaning of the wave function, we shall

see that this assertion is very well justified physically. If we also assume that ψ is continuous,

then we must solve (2.15) subject to the boundary condition ψ(0) = ψ(a) = 0.

The general solution to (2.15) is

ψ(x) =


A cos

√
2mE
~ x+B sin

√
2mE
~ x , E > 0 ,

A+Bx , E = 0 ,

A cosh
√
−2mE
~ x+B sinh

√
−2mE
~ x , E < 0 .

(2.16)

In all cases the boundary condition ψ(0) = 0 implies A = 0. When E ≤ 0, ψ(a) = 0 implies

also B = 0. Thus the only solution is ψ ≡ 0, which is always a physically meaningless solution

to the Schrödinger equation (again, we shall discuss this more later). On the other hand, for

E > 0 the boundary condition ψ(a) = 0 implies that (either B = 0 and ψ ≡ 0 or)

√
2mE

~
=

nπ

a
, (2.17)

for some integer n ∈ Z. Thus the solutions

ψ(x) = ψn(x) =

{
B sin nπx

a , 0 < x < a ,

0 , otherwise ,
(2.18)

are labelled by n. Notice that, without loss of generality, we may take n > 0. The first three

wave functions, for n = 1, 2, 3, are shown in Figure 5.

The associated energies are, from (2.17),

E = En =
n2π2~2

2ma2
. (2.19)

2This is not a very rigorous statement. We can make the discussion rigorous by simply declaring that a particle
in a box by definition has ψ = 0 outside the box and that ψ is everywhere continuous. See also section 3.2.
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Figure 5: Wave functions for the first three states of a particle in a box. ψ1(x) is the ground
state wave function.

We see immediately that the energy is quantized, i.e. it takes values in a discrete set, here

labelled by a positive integer. This is in stark contrast with the energy of the classical particle,

which may take any real non-negative value. There is also a lowest energy, given by setting

n = 1.

Definition When the possible energies of a quantum system are discrete and bounded below,

the lowest possible energy is called the ground state energy (also sometimes called the zero point

energy). The higher energies are, in increasing order, the first excited state energy, second excited

state energy, etc. The corresponding wave functions are called the ground state wave function,

kth excited state wave function.

* Are these values of energy reasonable?
For the particle in a box the ground state energy is E1 = π2~2/2ma2, while En = n2E1.
Of course, we precisely wanted a theoretical understanding of such quantized energies in
order to explain the energy levels of the hydrogen atom, determined empirically as (1.3).
For the particle in a box, if we take m = me− ' 9.11 × 10−31 kg to be the mass of an
electron and a = 10−10 m to be the approximate size of an atom, we obtain

En ' 5.97× 10−18 n2 J . (2.20)

In particular, the difference in energies between the ground state and first excited state is
E2 − E1 ' 1.79× 10−17 J. A photon that is emitted in a transition between these energy
levels then has a wavelength λ ' 1.12× 10−8 m (on the boundary between the ultraviolet
and X-ray parts of the electromagnetic spectrum), which is indeed the correct order of
magnitude observed in atomic transitions! Here we are effectively modelling a hydrogen
atom as an electron confined to an atom-sized box, which is very crude; we shall treat
the hydrogen atom more precisely in section 8. Nevertheless, the above computation is
encouraging.

The full time-dependent wave functions (2.13) are

Ψn(x, t) =

{
B sin nπx

a e−in2π2~t/2ma2 , 0 < x < a ,

0 , otherwise .
(2.21)

Any linear combination of such wave functions satisfies the time-dependent Schrödinger equa-

tion (2.11); in particular, the space of solutions, or possible wave functions, is infinite dimen-

sional. In this example the energy levels En, and associated stationary state wave functions ψn,
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are labelled naturally by a (positive) integer n. As we shall see throughout the course, such

integers arise in many important solutions to the Schrödinger equation, and they are generally

known as quantum numbers (although it is difficult to give a precise general definition).

2.5 Degeneracy

Having studied a particle in a one-dimensional box, it is now straightforward to extend this to

a three-dimensional box.

Consider a particle confined to the box region given by {(x, y, z) ∈ R3 | 0 ≤ x ≤ a, 0 ≤ y ≤
b, 0 ≤ z ≤ c} ⊂ R3, where the potential is zero inside the box. In other words,

V (x, y, z) =

{
0 , 0 < x < a , 0 < y < b , 0 < z < c ,

+∞ , otherwise .
(2.22)

As before, the stationary state wave function ψ(r) = ψ(x, y, z) is taken to be zero on, and outside,

the boundary of the box region. Inside the box the stationary state Schrödinger equation (2.10)

reduces to

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= −2mE

~2
ψ . (2.23)

This may be solved by separation of variables. Equation (2.23) essentially reduces to three copies

of the one-dimensional equation, with the wave functions labelled by three quantum numbers

n1, n2, n3 ∈ Z>0. Explicitly, inside the box these are given by

ψn1,n2,n3(x, y, z) = B sin
n1πx

a
sin

n2πy

b
sin

n3πz

c
, (2.24)

with B again an arbitrary constant, and the corresponding energies are

En1,n2,n3 =
π2~2

2m

(
n2

1

a2
+
n2

2

b2
+
n2

3

c2

)
. (2.25)

Exercise (Problem Sheet 1) Derive the wave functions (2.24) and energies (2.25) by solving

(2.23) by separation of variables.

Definition If the space of solutions to the stationary state Schrödinger equation with energy

E has dimension d > 1, we say this energy level is d-fold degenerate; if it is one-dimensional we

say E is a non-degenerate energy level.

For the one-dimensional particle in a box all the energy levels are non-degenerate. However,

consider now the three-dimensional box with equal length sides a = b = c, so that

En1,n2,n3 =
π2~2

2ma2

(
n2

1 + n2
2 + n2

3

)
. (2.26)

In this case there are linearly independent wave functions with the same energy. For example,

we may take (n1, n2, n3) to be any of (2, 1, 1), (1, 2, 1), (1, 1, 2), all of which have the same energy

E = 6π2~2/2ma2. There is thus a three-fold degeneracy in the number of quantum stationary

states with this energy. The degeneracy in this case is related to the symmetry of the potential.

We shall see other examples of this later.
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3 The Born interpretation

We have now met the Schrödinger equation and solved it in the simplest interesting example,

namely a particle confined to a box. We have seen that this leads to quantized energy levels,

and that by crudely modelling a hydrogen atom as an electron confined to an atom-sized box,

we obtain energies of the correct order of magnitude seen in atomic transitions.

An immediate question is: what is the physical meaning of the wave function Ψ(r, t) that we

are solving for? Comparing to the corresponding classical problem, described at the end of

section 2.1, we may also ask: where is the particle at time t? In this section we shall answer

these questions.

3.1 Probability density

In order to motivate the interpretation that follows, we begin by going back to the double slit

experiment in section 1.3. In fact let us begin by discussing the corresponding experiment with

light (also called Young’s experiment). In this case the intensity of the light hitting the detector

screen forms an interference pattern, and in classical electromagnetic theory this intensity is

proportional to the absolute value squared of the amplitude of the wave. Unfortunately we won’t

have time to explain this in detail here, but this fact would have been well-known to the pioneers

of quantum theory in the early 20th century. In the double slit experiment with electrons, we

instead plot the spatial distribution of electrons hitting the detector screen over some long period

of time, and then reinterpret this as a probability distribution for where any given electron will

hit the screen.

If we now conflate these observations, we are led to the hypothesis that the probability density

function for an electron hitting the detector screen is given by the absolute value squared of the

de Broglie wave associated to the electron. Of course, the detector screen could be anywhere,

and the de Broglie wave is precisely the wave function Ψ(r, t) appearing in the Schrödinger

equation. Hence we arrive at:

Definition / postulate The function

ρ(r, t) ≡ |Ψ(r, t)|2 , (3.1)

is a probability density function for the position of the particle, where Ψ(r, t) is the particle’s

wave function.

This interpretation of Schrödinger’s wave function is due to Born.

The assertion (3.1) is equivalent to the statement that the probability of finding the particle

in a volume D ⊂ R3 is given by

PΨ(D) =

∫
D
|Ψ(r, t)|2 d3x . (3.2)

This probability depends both on the region D, and also on the wave function Ψ(r, t) satisfying

the Schrödinger equation. We have already seen for the particle in a box that the space of
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solutions to the Schrödinger equation is an infinite-dimensional vector space, with basis (2.21).

A given solution is said to describe the state of the particle, so that the probabilities (3.2) depend

on the state. Notice PΨ(D) also depends in general on time t, although this is suppressed in the

notation.

Of course, the above assertions immediately raise some issues. In particular, the probability of

finding the particle somewhere in R3 should equal 1, at any time. Thus for (3.1), or equivalently

(3.2), to make sense, the wave function must be normalized in the following sense:

Definition A wave function Ψ is said to be normalizable if∫
R3

|Ψ(r, t)|2 d3x < ∞ , ∀ time t . (3.3)

Moreover, if ∫
R3

|Ψ(r, t)|2 d3x = 1 , ∀ time t , (3.4)

then Ψ is said to be a normalized wave function.

Similar definitions apply in one dimension. For example, the normalized condition (3.4) becomes∫ ∞
−∞
|Ψ(x, t)|2 dx = 1 . (3.5)

Let us make some remarks:

1. The normalized condition (3.4) fixes the freedom to multiply a given solution to the

Schrödinger equation by a complex constant, up to a constant phase eiϕ. The latter

is in fact not physical, so that wave functions differing by a constant phase are physically

equivalent. Notice also that the normalized condition rules out the trivial solution Ψ ≡ 0.

2. For the particle in a box, the wave functions (2.21) are normalizable:∫ ∞
−∞
|Ψn(x, t)|2 dx = |B|2

∫ a

0
sin2 nπx

a
dx =

1

2
a|B|2 . (3.6)

The total wave functions

Ψn(x, t) =

{ √
2
a sin nπx

a e−in2π2~t/2ma2 , 0 < x < a ,

0 , otherwise ,
(3.7)

with B =
√

2/a, are then normalized. Note that a particle being “confined to a box” may

be interpreted as saying that there is zero probability of finding it anywhere outside the

box, or in other words that the wave function is identically zero outside the box.

3. More generally, notice that for a stationary state of energy E, we have

ρ(r, t) = |Ψ(r, t)|2 =
∣∣∣ψ(r) e−iEt/~

∣∣∣2 = |ψ(r)|2 . (3.8)

Thus Ψ(r, t) is normalized for all time provided ψ(r) is normalized, i.e.∫
R3

|ψ(r)|2 d3x = 1 . (3.9)
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4. Recall that the plane wave

Ψ(r, t) = A exp

[
i

(
k · r− ~|k|2t

2m

)]
, (3.10)

satisfies the free Schrödinger equation (V = 0), and was interpreted as describing a free

particle of mass m and momentum p = ~k – see the discussion around equation (2.1).

However, clearly |Ψ(r, t)|2 = |A|2 is not integrable over R3, and thus the plane wave is not

normalizable! In fact the plane wave is better interpreted as a beam of particles of mass

m and momentum p.

Example (Particle in a box) Let us apply the above ideas to the particle in a one-dimensional

box. The normalized wave functions are (3.7). The corresponding probability density functions

are then, for x ∈ [0, a], given by

ρn(x) =
2

a
sin2 nπx

a
=

1

a

(
1− cos

2nπx

a

)
, (3.11)

and identically zero outside the box. Plots of the probability density functions for the ground

state and first two excited states are shown in Figure 6.

(x)1 (x)2 (x)3

0 0 0 aaa

a
2

a
2

a
2

Figure 6: Probability density functions for the first three states of a particle in a box.

As usual in probability theory, we may define the distribution function as

Fn(x) ≡
∫ x

0
ρn(y) dy =

x

a
− 1

2nπ
sin

2nπx

a
. (3.12)

Notice in particular that the first term, x
a , is the result for the uniform distribution, where the

particle is equally likely to be found anywhere in [0, a]. This is interpreted as the classical result.

By this we mean that if we are ignorant of the state of the classical particle before we observe

its position, then because it moves at constant velocity back and forth across the box, it is

equally likely to be found anywhere. The second, oscillatory term in (3.12) is then a quantum

contribution, or quantum correction, to the classical result.

Let us compute some example probabilities using these formulae. The probability that the

particle is within a
4 distance from the centre of the box is given by∫ 3a

4

a
4

|ψn(x)|2 dx = Fn

(
3a

4

)
− Fn

(a
4

)
,

=
1

2
+

1

nπ
sin

nπ

2
,

=

{
1
2 , n even ,
1
2 + (−1)(n−1)/2

nπ , n odd .
(3.13)

17



In particular, we see that this approaches the classical result of 1
2 , for the uniform distribution,

as n → ∞. The tendancy of quantum results to approach those of the corresponding classical

theory for large quantum numbers is called the correspondence principle.

We may similarly use the probability density ρ to compute expectation values:

Definition In quantum mechanics the expectation value of a function of position f(r) is denoted

EΨ(f(r)) ≡
∫
R3

f(r) |Ψ(r, t)|2 d3x . (3.14)

Notice that this expectation value depends on the wave function/state Ψ, and in general is a

function of time t.

Example For the particle in a box we compute the expected value of its position

EΨn(x) =

∫ a

0
x ρn(x) dx ,

= [xFn(x)]a0 −
∫ a

0
Fn(x) dx ,

= a−
[
x2

2a
+

a

4n2π2
cos

2nπx

a

]a
0

,

=
1

2
a , (3.15)

agreeing with the classical result for the uniform distribution.

3.2 The continuity equation and boundary conditions

In this section we consider more carefully the boundary conditions involved in the Schrödinger

equation.

Proposition 3.1 The Schrödinger equation implies the continuity equation

∂ρ

∂t
+∇ · j = 0 , (3.16)

where ρ(r, t) = |Ψ(r, t)|2 is the probability density we have already met, and the vector field

j(r, t) ≡ i~
2m

(
Ψ(r, t)(∇Ψ)(r, t)−Ψ(r, t)(∇Ψ)(r, t)

)
, (3.17)

is the probability current j.

Proof This is a direct computation:

∂

∂t
|Ψ(r, t)|2 =

(
∂

∂t
Ψ(r, t)

)
Ψ(r, t) + Ψ(r, t)

∂

∂t
Ψ(r, t) ,

=

[
− i

~

(
− ~2

2m
∇2Ψ + VΨ

)]
Ψ + Ψ

[
− i

~

(
− ~2

2m
∇2Ψ + VΨ

)]
, (Schrödinger)

=
i

~

(
− ~2

2m
∇2Ψ + VΨ

)
Ψ−Ψ

i

~

(
− ~2

2m
∇2Ψ + VΨ

)
, (V is real)

=
i~

2m

(
Ψ∇2Ψ−Ψ∇2Ψ

)
,

=
i~

2m
∇ ·
(
Ψ∇Ψ−Ψ∇Ψ

)
= −∇ · j . (3.18)
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This leads to the following result:

Proposition 3.2 Suppose that ∀ time t, j(r, t) satisfies the boundary condition that it tends to

zero faster than 1/|r|2 as |r| = r →∞. Then∫
R3

|Ψ(r, t)|2 d3x (3.19)

is independent of t. In particular, if Ψ is normalized at some time t = t∗, it is normalized ∀t.

Proof Let S be a closed surface that encloses a region D ⊂ R3. Then

∂

∂t

∫
D
|Ψ(r, t)|2 d3x =

∫
D

∂ρ

∂t
d3x , (derivative through the integral)

=

∫
D

(−∇ · j ) d3x , (continuity equation)

= −
∫
S

j · dS , (Divergence Theorem) . (3.20)

Now take S to be a sphere of radius r > 0, centred on the origin, so that D is a ball. Then

n =
r

r
and hence

j · dS = j · n r2 dSunit , (3.21)

where dSunit is the area element on a unit radius sphere. In general, the function j·n will depend

on r and the angular variables θ, φ on the sphere (and on time t). Provided j · n = o(1/r2),

uniformly in the angular coordinates, then using (3.21) the surface integral in (3.20) tends to

zero as r →∞, and hence

∂

∂t

∫
R3

|Ψ(r, t)|2 d3x = 0 , (3.22)

which implies that the expression in (3.19) is independent of t.

We now state more formally the conditions that solutions to the Schrödinger equation should

satisfy:

1. The wave function Ψ(r, t) should be a continuous, single-valued function. This condition

ensures that the probability density ρ = |Ψ|2 is single-valued and has no discontinuities.

We already imposed the continuity property for the particle in a box.

2. Ψ should be normalizable, i.e. the integral of |Ψ|2 over all space should be finite. Propo-

sition 3.2 ensures that if the probability current j in (3.17) tends to zero fast enough at

infinity, then this integral is independent of time t. Then if Ψ is normalizable, we may

normalize it for all time. Without this condition, the probabilistic interpretation of the

wave function is not possible. As already mentioned, this condition may be relaxed for

free particles and scattering problems.

3. ∇Ψ should be continuous everywhere, except where there is an infinite discontinuity in the

potential V . This condition follows since a finite discontinuity in ∇Ψ implies an infinite

discontinuity in ∇2Ψ, and thus from the Schrödinger equation an infinite discontinuity in

V . Again, we encountered precisely this behaviour for the particle in a box.
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3.3 Measurement of energy

In section 2.2 we found separable solutions to the time-dependent Schrödinger equation (2.5).

The corresponding stationary states (2.9) have definite frequency, and hence definite energy

E. For example, the complete set of stationary state wave functions for a particle in a box is

given by (3.7). Since the time-dependent Schrödinger equation is linear, any linear combination

of such stationary state wave functions also solves the Schrödinger equation. Thus we may in

general write

Ψ(r, t) =
∑
n

αn ψn(r) e−iEnt/~ , (3.23)

where n labels some set of stationary states ψn(r) of energy En, and αn ∈ C are constants.

For the particle in a box, (3.23) is simply a Fourier sine series. From Prelims you know that

any sufficiently well-behaved3 function f : [0, a]→ C with f(0) = f(a) = 0 can be expanded as

a Fourier sine series

f(x) =
∞∑
n=1

αn

√
2

a
sin

nπx

a
=

∞∑
n=1

αn ψn(x) , (3.24)

for appropriate αn. Then given any such function f(x), we obtain a corresponding solution to

the time-dependent Schrödinger equation using (3.23):

Ψ(x, t) =

∞∑
n=1

αn ψn(x) e−iEnt/~ , (3.25)

where the coefficients αn are determined via (3.24), and for the particle in a box the energies

En are given by (2.19). We have thus solved the initial value problem for the Schrödinger

equation, with Ψ(x, t = 0) = f(x). Note that the normalized stationary state wave functions

ψn(x) =
√

2
a sin nπx

a are also orthonormal

∫ a

0
ψm(x)ψn(x) dx = δmn . (3.26)

Definition / interpretation Suppose that the normalized wave function for a particle in a

box is given by (3.25). Then the probability of measuring the energy of the particle to be En is

|αn|2.

This definition makes sense, since

1 =

∫ a

0
|Ψ(x, t)|2 dx =

∞∑
m,n=1

αm αn e−i(En−Em)t/~
∫ a

0
ψm(x)ψn(x) dx =

∞∑
n=1

|αn|2 . (3.27)

Notice that if the particle’s wave function is a stationary state of energy En, then the probability

of measuring the particle’s energy to be En is 1. It thus makes sense to say that a stationary

state (2.9) describes a particle of definite energy E.

3* For the application to wave functions below, we require the wave function to be normalizable as in (3.3).
For the particle in a box example, this implies that

∫ a

0
|f(x)|2 dx < ∞. In fact this is then sufficient for the

Fourier series (3.24) to converge almost everywhere to f(x).
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In fact the expansion (3.23) of any wave function Ψ(r, t) exists under very general conditions,

i.e. for general choices of potential V (r), and generalizes to cases with degenerate energy levels

or even a continuous energy spectrum.

4 The harmonic oscillator

The quantum harmonic oscillator is probably the most important solution to the Schrödinger

equation.

4.1 The one-dimensional harmonic oscillator

By this we mean simple harmonic motion which is ubiquitous in classical mechanics as the

following discussion shows:

Consider a particle of mass m moving in one dimension under the influence of a potential

V (x). Near to a critical point x0 of V , where V ′(x0) = 0, we have the Taylor expansion

V (x) = V (x0) + 1
2V
′′(x0)(x− x0)2 +O

(
(x− x0)3

)
.

If V ′′(x0) > 0 then x0 is a local minimum of the potential. Without loss of generality let us

choose coordinates where the critical point x0 is at the origin. Then to lowest order the potential

near to x0 = 0 is

V (x) = V (0) +
1

2
mω2x2 ,

where we have defined ω2 = V ′′(0)/m. The dynamics is not affected by the value of V (0), since

an additive constant drops out of the force F = −V ′. The harmonic oscillator potential is

V (x) =
1

2
mω2x2 . (4.1)

The above analysis shows that any system near to a point of stable equilibrium is described by

this potential. Classically, we have the force F = −V ′ = −mω2x so that Newton’s equation can

be taken to be

mẍ = −mω2x.

We now turn to the corresponding quantum mechanical problem. The stationary state

Schrödinger equation (2.12) of energy E is

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ . (4.2)

The first thing to do is to redefine variables so as to remove the various physical constants:

ε ≡ 2E

~ω
, ξ ≡

√
mω

~
x , (4.3)

so that (4.2) becomes

−d2χ

dξ2
+ ξ2χ = εχ , (4.4)
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V(x)

x0

small
oscillations

Figure 7: A particle performing small oscillations around a point of stable equilibrium of any
potential V (x) is described to lowest order by a harmonic oscillator.

where we have defined

ψ(x) ≡ χ(ξ) = χ

(√
mω

~
x

)
. (4.5)

Although at first sight (4.4) looks like a fairly simple ODE, depending on a single constant ε,

in fact it is not so simple to solve. However, it is not difficult to spot that χ(ξ) = e∓ ξ
2/2 solve

(4.4) with ε = ±1. To see this, we compute

d

dξ

(
e∓ ξ

2/2
)

= ∓ ξ e∓ ξ
2/2 ,

d2

dξ2

(
e∓ ξ

2/2
)

= (ξ2 ∓ 1) e∓ ξ
2/2 . (4.6)

As discussed in section 3, we are only interested in normalizable solutions to the Schrödinger

equation. For a stationary state, this means that∫ ∞
−∞
|ψ(x)|2 dx <∞ . (4.7)

Via the change of variable (4.3), (4.5), for χ(ξ) = e∓ ξ
2/2 the left hand side of (4.7) is√

~
mω

∫ ∞
−∞

e∓ ξ
2

dξ , (4.8)

which is finite only for the minus sign, giving a Gaussian integral. Thus the solution χ(ξ) =

e+ ξ2/2, with ε = −1, is not normalizable, and we thus discard it.

We now again change variables by defining

χ(ξ) ≡ f(ξ) e−ξ
2/2 , (4.9)

so that

dχ

dξ
=

(
df

dξ
− ξf

)
e−ξ

2/2 ,

d2χ

dξ2
=

[
d2f

dξ2
− ξdf

dξ
− f − ξ

(
df

dξ
− ξf

)]
e−ξ

2/2 , (4.10)

and hence (4.4) becomes

d2f

dξ2
− 2ξ

df

dξ
+ (ε− 1) f = 0 . (4.11)
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If anything, this looks worse than (4.4), so you might wonder why we bothered with (4.9)! The

reasoning here is that for large values of |ξ| the ξ2χ term in (4.4) will dominate over the εχ term;

thus for large |ξ| one expects solutions for different ε to have the same behaviour to leading order.

This is why we have written χ(ξ) in (4.9) as the above normalizable ε = +1 solution times some

other function f(ξ).

It is still not clear how to solve (4.11) exactly, so as usual for this type of equation we try a

power series solution.4 Thus we write

f(ξ) =
∞∑
k=0

ak ξ
k , (4.12)

and compute

ξ
df

dξ
=

∞∑
k=0

k ak ξ
k , (4.13)

and

d2f

dξ2
=

∞∑
k=0

(k + 1)(k + 2) ak+2 ξ
k . (4.14)

Notice that the last expression involves a relabelling of the original sum. By substituting (4.12),

(4.13) and (4.14) into (4.11) we obtain

∞∑
k=0

[(k + 1)(k + 2) ak+2 − 2k ak + (ε− 1) ak] ξ
k = 0 . (4.15)

The coefficient of every power of ξ must be separately zero, so we obtain the recurrence relation

ak+2 =
2k + 1− ε

(k + 1)(k + 2)
ak . (4.16)

The even and odd powers are then decoupled, giving rise to the two linearly independent series

solutions

feven(ξ) = a0

[
1 +

(1− ε)
2!

ξ2 +
(5− ε)(1− ε)

4!
ξ4 + · · ·

]
,

fodd(ξ) = a1

[
ξ +

(3− ε)
3!

ξ3 +
(7− ε)(3− ε)

5!
ξ5 + · · ·

]
. (4.17)

Definition In one dimension a stationary state wave function satisfying ψ(−x) = ±ψ(x) is

said to describe an

{
even

odd

}
parity state.

Recalling equations (4.3), (4.5) and (4.9), the total stationary state wave functions are

feven/odd(ξ) e−ξ
2/2, which then describe even and odd parity states, respectively.

We must now determine when these solutions are normalizable. It turns out that this is the

case if and only if the series in (4.17) terminate. We shall not provide a full, rigorous proof

4 * This is a topic that could have been included in the ‘core’ Part A Differential Equations course, but has
been left to the DE2 option. The point ξ = 0 is an ordinary point of (4.11), and then Fuchs’ theorem guarantees
that any solution may be expressed as a convergent Taylor series (4.12). The interested reader is referred to
appendix A. Having said this, most quantum mechanics textbooks suppress these details.
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of this here, but instead sketch the proof. This is purely for reasons of time. A more detailed

treatment may be found in the book by Hannabuss.

Notice first that either of the series in (4.17) terminating is equivalent to the statement that

f(ξ) is a polynomial, which in turn is equivalent to the statement that an+2 = 0 for some integer

n ≥ 0, since then the recurrence relation (4.16) implies that ak = 0 for all k ≥ n+ 2. Note that

a0 and a1 are necessarily non-zero, otherwise feven/odd(ξ) ≡ 0, respectively.

Suppose that either series in (4.17) does not terminate. Then all the coefficients are non-zero,

and the ratio

ak+2

ak
−→ 2

k
, as k →∞ . (4.18)

Compare this asymptotic behaviour of the power series coefficients with that of the function eξ
2
:

eξ
2

=

∞∑
q=0

1

q!
ξ2q =

∞∑
k=0

bk ξ
k , (4.19)

where we have defined the coefficients

bk =

{
1
q! , k = 2q ,

0 , k = 2q + 1 .
(4.20)

For k = 2q even we then have

bk+2

bk
=

(
k
2

)
!(

k+2
2

)
!

=
2

k + 2
−→ 2

k
, as k →∞ . (4.21)

Comparing to (4.18), we thus see that feven(ξ) and eξ
2

have the same asymptotic expansion.

Hence the total stationary state wave function is

χ(ξ) = f(ξ) e−ξ
2/2 ∼ eξ

2/2 , (4.22)

and thus ψ(x) = χ(ξ) is not normalizable.5 A similar argument applies to fodd(ξ) and the

function ξ eξ
2
. Thus for a normalizable solution the series in (4.17) must terminate. If n ≥ 0 is

the least integer for which an+2 = 0 then the recurrence relation (4.16) implies

2n+ 1− ε = 0 . (4.23)

Recalling the definition ε = 2E/~ω in terms of the energy E in (4.3) then gives

E = En =
(
n+ 1

2

)
~ω . (4.24)

The quantum harmonic oscillator energies are hence labelled by the quantum number n ∈ Z≥0;

compare to (2.19) for the particle in a box (and notice there that we instead defined n so that

n ∈ Z>0). Also note that our initial solution with f ≡ 1 and ε = +1 is in fact the ground state,

with n = 0. Reverting back to the original spatial coordinate x via (4.3) and (4.5), the ground

state wave function is hence

ψ0(x) = a0 e−mωx
2/2~ , (4.25)

5It is the last step in (4.22) that needs a little more work to make rigorous.
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where a0 is a normalization constant, with corresponding ground state energy E0 = 1
2~ω. The

normalized ground state wave function may be obtained by imposing

1 = |a0|2
∫ ∞
−∞

e−mωx
2/~ dx . (4.26)

The Gaussian integral is that for a normal distribution of variance σ2 = ~/2mω, and thus via

the standard result for this integral we have

|a0|2 =

√
mω

π~
, (4.27)

leading to the full, normalized time-dependent ground state wave function

Ψ0(x, t) =
(mω
π~

)1/4
e−(mωx2+i ~ωt)/2~ . (4.28)

More generally the stationary state wave functions are χn(ξ) = fn(ξ) e−ξ
2/2, where fn(ξ) is an

even/odd polynomial in ξ =
√

mω
~ x of degree n, for n even/odd, respectively. The polynomials

fn may be determined explicitly by setting ε− 1 = 2n in the recurrence relation (4.16).

* Appropriately normalized, fn(ξ) ≡ Hn(ξ) is called the nth Hermite polynomial. The
first few polynomials are given in Table 1, with the corresponding wave functions shown
in Figure 8.

n Hn(ξ)

0 1

1 2ξ

2 4ξ2 − 2

3 8ξ3 − 12ξ

Table 1: The first four Hermite polynomials.

4.2 Higher dimensional oscillators

Having discussed the one-dimensional oscillator, it is now straightforward to extend this to

oscillators in higher dimensions.

Let us begin by considering a quantum harmonic oscillator in two dimensions, with potential

V (x, y) =
1

2
m
(
ω2

1x
2 + ω2

2y
2
)
. (4.29)

The corresponding stationary state Schrödinger equation (2.10) is

− ~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ V (x, y)ψ = Eψ . (4.30)

As for the particle in a box, this may be solved by separation of variables. One writes ψ(x, y) =

X(x)Y (y), so that (4.30) separates into

− ~2

2m

d2X

dx2
+

1

2
mω2

1x
2X = E1X ,

− ~2

2m

d2Y

dy2
+

1

2
mω2

2y
2Y = E2 Y , (4.31)
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(x)0 (x)1

(x)2 (x)3

Figure 8: The ground state and first three excited state wave functions of the harmonic oscillator.

where E1 + E2 = E. We thus have two decoupled one-dimensional oscillators, and it follows

from the previous section that

E = En1,n2 =
(
n1 + 1

2

)
~ω1 +

(
n2 + 1

2

)
~ω2 , (4.32)

where the quantum numbers n1, n2 ∈ Z≥0. The wave-functions will be products

ψn1n2(x, y) = ψn1(x)ψn2(y).

Of course the quadratic form appearing in (4.29) is rather special, in that it is diagonal. One

can treat more general quadratic forms by first changing to normal coordinates, i.e. one first

diagonalizes V by an orthogonal transformation. Let us illustrate with an example:

Example Consider the oscillator potential

V (x, y) = mω2(x2 + xy + y2) =
1

2
mω2

(
x y

)( 2 1

1 2

)(
x

y

)
. (4.33)

The matrix here has eigenvalues 3 and 1, so there exists an orthogonal transformation to coor-

dinates u, v with corresponding new potential

Ṽ (u, v) =
1

2
mω2

(
u v

)( 3 0

0 1

)(
u

v

)
,

=
1

2
m
(
3ω2u2 + ω2v2

)
, (4.34)

which is now of the form (4.29).6 The orthogonality of the transformation ensures that the

Laplacian/kinetic term in the Schrödinger equation is invariant, so

∂2

∂x2
+

∂2

∂y2
=

∂2

∂u2
+

∂2

∂v2
. (4.35)

6Explicitly, u = 1√
2
(x+ y), v = 1√

2
(x− y).
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Of course, since any quadratic form for V is described by a symmetric matrix, we may always

diagonalize the potential by an orthogonal transformation, thus reducing the problem to a

diagonal form for V , as in (4.29). These remarks apply in any dimension: first change to normal

coordinates, then separate variables one at a time. The Schrödinger equation for any quadratic

potential then reduces to a decoupled set of one-dimensional oscillators, so that the total energy

= sum of one-dimensional energies, and the total wave functions = product of one-dimensional

wave functions.

We conclude this section with another example of degenerate energy levels:

Example (Degeneracy) Consider the original two-dimensional oscillator potential (4.29) with

ω1 = ω2 = ω. Then

E = En = (n+ 1)~ω , (4.36)

where n = n1 + n2. The ground state is n1 = n2 = 0, which is the unique state of energy ~ω.

However, more generally at level n there are n + 1 linearly independent wave functions with

energy En, given by taking (n1, n2) to be (n, 0), (n − 1, 1), . . . , (1, n − 1), (0, n). Thus En has

degeneracy n+ 1. Again, notice this degeneracy is related to the symmetry of the potential.

5 The Mathematical Structure of Quantum Theory

Now that we have made some progress with quantum theory, we take some time to look at what

we have and give a more formal mathematical account.

5.1 States and Observables

Making precise where we’ve been led to, we introduce some formal definitions:

• the states of a quantum system are elements of a complex vector space H, finite or infinite

dimensional, equipped with a Hermitian inner product that we’ll write < u|v > for u, v ∈
H;

• proportional vectors represent the same state;

• a state ψ is normalised if

||ψ||2 :=< ψ|ψ >= 1,

(which allows the freedom ψ → ψeiθ) and normalisable if ||ψ||2 is finite.

• the observables of the quantum system are self-adjoint linear transformations A of H (so

A = A∗ where A∗ is defined by

< A∗φ|ψ >=< φ|Aψ > for φ, ψ ∈ H).

The important example is for H to be complex-valued functions ψ(x) on R3 with

< φ|ψ >:=

∫
R3

φ̄ψ.

Then there are some special observables:
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• the position operator X = (X1, X2, X3) defined by

Xjψ(x) = xjψ(x) for j = 1, 2, 3;

• the momentum operator P = (P1, P2, P3) defined by

Pjψ(x) = −i~ ∂

∂xj
ψ(x) for j = 1, 2, 3.

• Once we have those we can introduce a name for one we’ve seen before:

H :==
1

2m
(P 2

1 + P 2
2 + P 2

3 ) + V (X1, X2, X3),

which is the Hamiltonian for a particle of mass m nmoving in a potential V .

If we are concerned with the one-dimensional case we have instead

Xψ = xψ, Pψ = −i~ψ′.

Self-adjointness for X and X are obvious. We’ll check self-adjointness for the one-dimensional

P :

< P ∗φ|ψ >=< φ|Pψ >=

∫ ∞
−∞

φ̄(−i~)ψ′dx

= [−i~φψ]∞−∞ +

∫ ∞
−∞

i~φ̄′ψdx =< Pφ|ψ >,

so P ∗ = P . (This assumes that φ, ψ are both differentiable and fall off to zero at large distances.

This raises some technical issues which we’ll note but not deal with: X and P are in fact only

defined on a subspace of H.)

5.2 More mathematical refinements (not for examination)

More restrictions are actually necessary on H to be prevent it being ‘too infinite’. I’ll mention

these but not dwell on them.

• H must be complete, in the sense that every Cauchy sequence converges i.e. if {ψn} is a

sequence such that, for any ε there is an integer N with ||ψm−ψn|| < ε for m,n > N then

there is a limit ψ∞ ∈ H with ||ψn − ψ∞|| → 0.

• call a subset S of H dense if for any ψ ∈ H and any positive real ε there is a φ ∈ S with

||ψ − φ|| < ε. Then we insist that H contains a countable, dense subset.

With these two conditions, H is a Hilbert space. We’ve seen that there will also be technical

issues surrounding self-adjoint operators.
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5.3 Statistical Aspects of Quantum Theory

One of the assumptions of quantum theory is that the only possible result of the measurement

of an observable is one of the eigenvalues of the corresponding operator. This motivates the

definition: the expectation of an observable A in a normalisable state ψ is

Eψ(A) =
< ψ|Aψ >
< ψ|ψ >

. (5.1)

Evidently this simplifies for a normalised state to Eψ(A) =< ψ|Aψ >. With H being functions

on the line, this would give, for e.g. an operator V (x)

Eψ(V ) =< ψ|V ψ >=

∫
ψ̄V ψdx =

∫
ρV dx,

which is natural, and in line with (3.14) and (3.27).

5.3.1 Some Properties of Expectation

1. For the identity operator I, Eψ(I) = 1;

2. For self-adjoint A, Eψ(A) is real;

3. For positive A, Eψ(A) ≥ 0 (here positive just means < ψ|Aψ >≥ 0);

4. Linearity in A:

Eψ(αA+ βB) = αEψ(A) + βEψ(B).

Only the second is not obvious. For that

< ψ|Aψ >=< Aψ|ψ >= < ψ|Aψ >.

Expectation is like mean in probability. Then for standard deviation we define: the dispersion

of A in a state ψ is

∆ψ(A) = (Eψ(A2)− (Eψ(A))2)1/2. (5.2)

Proposition

∆ψ(A) = 0 iff ψ is an eigenstate of A.

Proof

Suppose ψ is normalised and consider, for real µ

Eψ((A− µI)2) =< ψ|(A− µI)2ψ >=< (A− µI)ψ|(a− µI)ψ >= ||(A− µI)ψ||2,

but also

= Eψ(A2)− 2µEψ(A) + µ2.

Now set µ = Eψ(A) then this is

= (∆ψ(A))2.

So ∆ψ(A) = 0 iff ||(A− µI)ψ|| = 0 iff (A− µI)ψ = 0, i.e. iff Aψ = µψ, which proves it.
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To make a connection with the Born interpretation, section 3, suppose that H has an or-

thonormal basis of eigen-vectors of A, say {ψλ} such that 〈ψλ|ψλ′〉 = δλ,λ′ and with

Aψλ = αλψλ,

then for any other normalised ψ ∈ H we have

ψ =
∑
λ

cλψλ

so that < ψλ|ψ >= cλ and

Eψ(A) =< ψ|Aψ >=
∑

cλ < ψ|Aψλ >

=
∑

cλαλ < ψ|ψλ >=
∑

αλ|cλ|2.

We make the identification:

|cλ|2 = Prob(measurement of A gives αλ)

then this is the expectation in the usual sense from probability theory.
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An Important Point

We can’t assume for any observable that there exists a basis of normalisable eigenvectors. For

example with P = −i~∂/∂x the eigenvectors are ψ = eikx which is never normalisable, while

with X = x the situation is worse: the eigenvalue equation would be

Xψ(x) = xψ(x) = aψ(x) or (x− a)ψ(x) = 0

so that ψ(x) = 0 whenever x 6= a; now continuity would force ψ = 0 always and there don’t

even exist continuous eigenfunctions.

5.3.2 Example

Recall the square well with Hamiltonian H = 1
2mP

2 and 0 ≤ x ≤ a. This has stationary

state eigenfunctions ψn =
√

2
a sin nπx

a with corresponding energy eigenvalue En = n2π2~2
a2

for any

positive integer n. For any stationary state we calculate

Eψn(P ) =

∫ a

0
ψ̄n(−i~)ψ′ndx

= −i~.2
a
.
nπ

a

∫ a

0
sin

nπx

a
cos

nπx

a
dx = 0.

Thus the expectation of P in a stationary state is zero: on the average the particle moves neither

left nor right. Next

Eψn(P 2) = 2mEψn(H) = 2mEn = 2m
n2π2~2

a2
,

and this is then (∆ψn(P ))2: the momentum has zero mean but nonzero dispersion.

5.4 Measurements and Collapse of the Wave Function

An assumption of quantum mechanics that we noted in subsection 5.3 is that a measurement of

an observable A in a state ψ must yield an eigenvalue of A, with different probabilities which

depend on ψ. However it is an assumption of physical reasonableness on the theory that a

second measurement immediately following the first must give the same answer with probability

one. This entails that, after the first measurement, the wave-function is in an eigenstate with

the measured eigenvalue. One says that the wave-function has collapsed into the eigenspace, or

just simply collapsed. The norm will no longer be one: the Schrödinger equation preserves the

norm with time but measurements do not.

* There may be degeneracy, i.e. the eigenspace for a particular eigenvector may have
dimension greater than one. In this case one is led to make Luder’s Postulate:
if Q is the projection to the subspace of H spanned by eigenvectors of A consistent with
the measurement on ψ then after the measurement the wave-function is Qψ.
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6 The Commutation Relations and the Uncertainty Principle

6.1 The Commutation Relations

Recall from section 5.1 the definitions

Xψ = xψ, Pψ = −i~ψ′.

Then

PXψ = −i~(xψ)′ = −i~(xψ′ + ψ),

while

XPψ = x(−i~ψ′),

so that

(PX −XP )ψ = −i~ψ,

and this will hold for all ψ.

Define the commutator of observables A,B as

[A,B] = AB −BA (6.1)

then we have found that

[P,X] = −i~I, (6.2)

where I is the identity operator. Repeating in 3 dimensions we see that

[Pi, Xj ] = −i~δijI, (6.3)

in terms of the Kronecker delta:

δij = 1 if i = j and is otherwise zero,

and that

[Pi, Pj ] = 0 = [Xi, Xj ]. (6.4)

6.1.1 Properties of Commutators

1. antisymmetry: [A,B] = −[B,A];

2. if [A,B] = iC with A,B self-adjoint, then C is also self-adjoint;

3. the Leibniz rule: [A,BC] = B[A,C] + [A,B]C;

4. linearity in A (and therefore in B too);

5. the Jacobi identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

These can all be proved by expanding the commutator (remembering to preserve the order of

terms).
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6.2 Heisenberg’s Uncertainty Principle

We’ll prove a proposition first:

Proposition

Given self-adjoint A,B,C with [A,B] = iC:

1. for real t, (A− itB)∗(A− itB) = A2 + tC + t2B2;

2. for any normalised ψ

||(A− itB)ψ||2 = Eψ(A2) + tEψ(C) + t2Eψ(B2);

3. for any normalised ψ

Eψ(A2)Eψ(B2) ≥ 1

4
(Eψ(C))2, (6.5)

with equality iff for some ψ and some real t, (A− itB)ψ = 0.

Proof

For 1:

(A− itB)∗(A− itB) = (A+ itB)(A− itB) = A2 − it(AB −BA) + t2B2 = A2 + tC + t2B2.

For 2:

||(A− itB)ψ||2 =< (A− itB)ψ|(A− itB)ψ >=< ψ|(A− itB)∗(A− itB)ψ >

=< ψ|(A2 + tC + t2B2)ψ >= Eψ(A2) + tEψ(C) + t2Eψ(B2).

Finally for 3, the LHS in 2 is greater than or equal to zero and vanishes only if (A− itB)ψ = 0,

so the RHS is a quadratic with nonpositive discriminant and this is (6.5).

Corollary: Heisenberg’s Uncertainty Principle

For normalised ψ we have

∆ψ(P )∆ψ(X) ≥ 1

2
~, (6.6)

with equality iff

ψ = constant × exp

(
− t

2~
(x− µ)2

)
, (6.7)

with positive real t and complex µ. (It is traditional to use t here but N.B. t is not time

here).

Proof

Set

A = P − Eψ(P ), B = X − Eψ(X),

Then

A,B] = [P,X] = −i~I so C = −~I.
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Next

Eψ(A2) = (∆ψ(P ))2, Eψ(B2) = (∆ψ(X))2, Eψ(C) = −~,

and now (6.5) gives (6.6).

For (6.7), equality means there are t, ψ with (A− itB)ψ = 0. Set λ = Eψ(P )− itEψ(X) then

0 = (A− itB)ψ = (−i~ d
dx
− itx− λ)ψ,

which can be rearranged as
ψ′

ψ
= −1

~
(tx− iλ)

and integrated

logψ = − 1

2~
(tx2 − 2iλx+ C) = − t

2~
(x− µ)2 + C ′,

introducing µ = it/λ. This is (6.7)

We call a state which attains the minimum in (6.6) a minimum uncertainty state. We’ve seen

an example: the ground state of the harmonic oscillator is

Ψ0(x) = constant × exp

(
−mωx

2

2~

)
which is (6.7) with µ = 0, t = mω.

6.3 Simultaneous Measurability

Why was this called Heisenberg’s Uncertainty Principle? From (6.6) a reduction in the dispersion

in momentum leads to an increase in the dispersion in position, and vice versa. Thus X and

P cannot simultaneously be measured to arbitrary accuracy – this is the uncertainty. They

are referred to as complementary observables and the same conclusion will hold for any pair of

observables A,B with [A,B] 6= 0.

For finite-dimensional H, if A,B commute then there will be a basis of common eigenvectors

and evidently if ψ is a common vector then ∆ψ(A) = 0 = ∆ψ(B). Now A and B can be

simultaneously measured to arbitrary accuracy. For infinite-dimensional H and commuting A,B

the most we can say is that on the subspace spanned by common eigenvectors this precision is

possible, but this may be sufficient for many purposes.

6.4 The Harmonic Oscillator Revisited

This is the big payoff with the method of abstraction. Recall the harmonic oscillator Hamilto-

nian:

H =
1

2m
P 2 +

1

2
mω2X2,

and introduce the operator

a− = P − imωX. (6.8)

This is not self-adjoint and in fact

a+ := (a−)∗ = P + imωX.

We explore these operators:
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6.4.1 Properties of a±

1.

a+a− = 2m(H − 1

2
~ω),

a−a+ = 2m(H +
1

2
~ω),

[a−, a+] = 2m~ω;

2. For normalised ψ:

||a−ψ||2 = 2m(Eψ(H)− 1

2
~ω),

||a+ψ||2 = 2m(Eψ(H) +
1

2
~ω);

3.

[H, a−] = −~ωa−,

[H, a+] = ~ωa+;

Proofs

For the first, calculate

a+a− = (P + imωX)(P − imωX) = P 2 − imω(PX −XP ) +m2ω2X2 = 2mωH −m~ω,

and the others are similar.

For the second,

||a−ψ||2 =< a−ψ|a−ψ >=< ψ|a+a−ψ >

and use the first, etc.

For the third,

[H, a−] =
1

2m
[a+a−, a−] = −~ωa−,

etc.

Given these we can solve the harmonic oscillator algebraically:

6.4.2 The Harmonic Oscillator by Algebra

Suppose H has one normalisable eigenvector ψ ∈ H, then

1. H has a normalisable ground state ψ0 ∈ H with energy E0 = 1
2~ω;

2. H has normalisable excited states ψn = (a+)nψ0 ∈ H with energy En = (n+ 1
2)~ω;

3. if P = −i~ d
dx and X = x then these are all the eigenstates and ψ0 ∼ exp(−mωx2

2~ ).
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Proofs

Suppose the assumed ψ has Hψ = Eψ and consider a−ψ, then

Ha−ψ = (a−H +Ha− − a−H)ψ = (E − ~ω)a−ψ,

using part 3 of 8.4.1. Thus a−ψ is also an eigenvector now with eigenvalue E − ~ω, and it’s

normalisable since

||a−ψ||2 = 2m(E − 1

2
~ω)||ψ||2

by part 2 of 8.4.1.

Call this process lowering, then we may repeat it to obtain normalisable eigenvectors (a−)kψ

with eigenvalue E − k~ω and ||(a−)kψ||2 ∼ (Eψ(H) − (k − 1
2)~ω). Since the norm must be

positive, this process must terminate and it can only terminate on a (nonzero) state ψ0 with

energy E = E0 = 1
2~ω for then ||a−ψ0||2 = 0 and so a−ψ0 = 0.

We’ve found the (or strictly a) ground state. Now we raise: introduce ψ1 = a+ψ0 and

calculate:

Hψ1 = (Ha+ − a+H + a+H)ψ0 = ~ω(1 +
1

2
)ψ1.

This is an eigenvector with the eigenvalue raised and it’s easy to check it’s normalisable. In-

ductively set ψn = a+ψn−1 = (a+)nψ0 then this is a normalisable eigenvector with eigenvalue

En = (n+ 1
2)~ω. We’ve proved the second part.

For an abstract H there could be more than one linearly independent ground state but in the

case considered in the third part we have

0 = a−ψ0 = (P − imωX)ψ0 = (−i~ψ′0 − imωxψ0),

so that ψ′0/ψ0 = −mωx/~ which integrates to give

ψ0 ∼ exp(−mωx
2

2~
),

as expected. It’s important to notice that this is normalisable, and then one has a unique ground

state (up to scale), from which uniqueness of all the excited states follows.

6.4.3 Uniqueness of the Commutation Relations (not for examination)

In the last proof, we only used the explicit forms of H, P and X at the very end. In the

earlier parts, the important thing was just the commutator [P,X]. If we had assumed instead

an abstract Hilbert space say HΩ containing a unique one-dimensional kernel for a−, spanned

say by Ω, then the eigenvectors would have been ψΩ
n := (a+)nΩ. Now we could set up an

isomorphism of the two Hilbert spaces H and HΩ by mapping ψn(x) to ψΩ
n and this would map

x to X and −i~d/dx to P . We can conclude that this identification of X, P and H, while not

unique, is unique up to isomorphism.
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7 Angular Momentum in Quantum Mechanics

7.1 Angular Momentum Operators

From classical mechanics we have the definition of angular momentum as L = x∧ (mv) = x∧p,

so here we define the observables:

L1 = X2P3 −X3P2,

L2 = X3P1 −X1P3, (7.1)

L3 = X1P2 −X2P1.

An elegant why to write these uses the alternating symbol εijk defined by

εijk = +1 if ijk is an even permutation of 123

= −1 if ijk is an odd permutation of 123 (7.2)

= 0 otherwise

for then (A ∧B)i =
∑

j,k εijkAjBk and so

Li =
∑
j,k

εijkXjPk. (7.3)

We calculate some commutators:

Proposition

1. [Li, Pj ] = i~
∑

k εijkPk,

2. [Li, Xj ] = i~
∑

k εijkXk,

3. [Li, Lj ] = i~
∑

k εijkLk.

Proof

These are just exercises. As an example let’s do

[L1, L2] = [X2P3 −X3P2, X3P1 −X1P3]

= X2[P3, X3]P1 +X1[X3, P3]P2 = −i~X2P1 + i~X1P2 = i~L3.

Others follow by symmetry.

We’ll call any set of operators Ji with

[Ji, Jj ] = i~
∑
k

εijkJk (7.4)

an angular momentum operator. We can deduce:

Lemma

If A and B satisfy [Ji, Aj ] = i~
∑

k εijkAk and the same with Bj then

[Ji,A ·B] = 0. (7.5)
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This is just checking:

[Ji,A ·B] =
∑
j

[Ji, AjBj ] =
∑
j

(Aj [Ji, Bj ] + [Ji, Aj ]Bj)

= −i~
∑
j,k

εijk(AjBk +AkBj),

which vanishes (because εijk = −εikj).

From (7.5) we see at once that P ·P,X ·P,X ·X,L ·L and many similar expressions commute

with Li.

7.2 Ladder Operators

We want to work our way through to finding eigenvalues and eigenvectors for angular momentum

and we’ll do that following the algebraic treatment of the harmonic oscillator. We assume (7.4)

and then from (7.5), with J2 = J · J = J2
1 + J2

2 + J2
3 ,

[J2, Ji] = 0.

We single out one direction, usually J3, and look for common eigenvectors of J2 and J3 (since

they commute). Introduce the ladder operators

J± = J1 ± iJ2. (7.6)

Note that (J+)∗ = J− if the Ji are self-adjoint (which we assume).

7.2.1 Properties of Ladder Operators

1.

[J2, J±] = 0;

2.

J+J− = J2 − J2
3 + ~J3,

J−J+ = J2 − J2
3 − ~J3, (7.7)

[J+, J−] = 2~J3; (7.8)

3.

[J3, J±] = ±~J±. (7.9)

The first follows from (7.5). For the second calculate

J+J− = (J1 + iJ2)(J1 − iJ2) = J2
1 + J2

2 − i(J1J2 − J2J1) = J2 − J2
3 + ~J3,

and the other two are similar. For the third

[J3, J±] = [J3, J1 ± iJ2] = i~J2 ± ~J1 = ±~J±.
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7.2.2 Using the Ladder Operators

Now suppose we have a common eigenvector, ψ say, of J2 and J3, so that

J2ψ = λ~2ψ, J3ψ = m~ψ,

for some real λ,m.

Consider ψ+ = J+ψ and ψ− = J−ψ. Calculate

J2ψ+ = J2J+ψ = J+J
2ψ = λ~2J+ψ

so that ψ+ is also an eigenvector of J2 with the same eigenvalue (and ditto for ψ−).

Next

J3ψ− = J3J−ψ = (J3J− − J−J3 + J−J3)ψ = (m− 1)~ψ−,

so the J3-eigenvalue has been lowered by ~ (and raised by ~ for ψ+). For the norm we find

||J−ψ||2 =< J−ψ|J−ψ >=< ψ|J+J−ψ >

so from section 7.2.1

||J−ψ||2 = (λ−m2 +m)~2||ψ||2. (7.10)

Similarly

||J+ψ||2 = (λ−m2 −m)~2||ψ||2. (7.11)

We argue as with the harmonic oscillator: we can raise and lower m in integer steps but these

processes cannot be performed indefinitely as the norms in (7.10) and (7.11) cannot be negative.

We deduce

λ ≥ m(m− 1) and equality implies J−ψ = 0, (7.12)

λ ≥ m(m+ 1) and equality implies J+ψ = 0. (7.13)

We have enough results to deduce conditions on λ and m.

7.3 Representations of the Angular momentum Operators

Here ’representations’ means as operators acting on some explicit vector space, so we suppose

we have a finite-dimensional, complex vector space H of eigenvectors of J2:

J2ψ = λ~2ψ for all ψ ε H.

J3 will have an eigenvector in H say ψ with

J3ψ = m~ψ

We can obtain more eigenvectors of J3 by raising and lowering with J±, when m will go up

and down in integer steps. This can’t be repeated indefinitely, since (7.12,7.13) imply
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λ+
1

4
≥ m2 ±m+

1

4
= (m± 1

2
)2

so that |m| can’t be arbitrarily large. Thus there will be a maximum m, call it j with

corresponding ψj , and further raising must give zero:

J+ψj = 0

By (7.11), if the LHS vanishes, we find

λ = j(j + 1)

We lower ψj in integer steps and this will stop at a value of m at which further lowering gives

zero. By (7.10) this will happen when

0 = λ−m2 +m = j(j + 1)−m2 +m = (j +m)(j −m+ 1)

i.e. at m = −j since m = j+ 1 is not allowed (m must be less than its maximum value which

was j)

Thus we lower in integer steps from m = j to m = −j, which requires 2j to be a non-negative

integer.

Summarizing:

• the eigenvalues of J2 are j(j + 1)~2 where j = 0, 1
2 , 1,

3
2 , 2, ...;

• for each fixed j, the eigenvalues of J3 are m~ with m = −j,−j + 1, ..., j − 1, j;

• assuming no degeneracies, the eigenspace on which J2 = j(j + 1)~ has dimension 2j + 1.

• we can choose an orthonormal basis {ψm} whith

J3ψm = m~ψm

J±ψm = c±mψm±1

c±m = [(j ∓m)(j ±m+ 1)]1/2

We have proved all of this except the last part which comes from (7.10) and (7.11).

Important example: j = 1
2 (also called the spin representation)

Now 2j + 1 = 2 so H is 2-dimensional. The allowed values of m are m = ±1
2 so write ψ± for

ψ±1/2, then

J3ψ± = ±1

2
~ψ± (7.14)

and

J+ψ+ = J−ψ− = 0, J+ψ− = ~ψ+, J−ψ+ = ~ψ− (7.15)
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We can introduce a matrix formalism by taking as basis

ψ+ =

(
1

0

)
, ψ+ =

(
0

1

)
Then (7.14) and (7.15) fix the form of the operators to be

J3 =
1

2
~

(
1 0

0 −1

)
, J+ = ~

(
0 1

0 0

)
, J− = ~

(
0 0

1 0

)
so also

J1 =
1

2
~

(
0 1

1 0

)
, J2 =

1

2
~

(
0 −i
i 0

)
and one may check all the commutation relations. These formulae bring to our attention the

Pauli spin matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0

0 −1

)
(7.16)

which are Hermitian, trace zero and define the Ji for j = 1/2 via

Ji =
1

2
~σi (7.17)

from which many algebraic relations follow.

7.4 Orbital Angular Momentum and Spherical Harmonics

Let us focus in the particular case of orbital angular momentum J = L = X ∧ P. We seek a

space of functions for L to act on. As we will shortly see, we need j to be an integer, and it is

usually denoted by `. To justify this claim recall

L3 = X1P2 −X2P1 = −i~
(
x
∂

∂y
− y ∂

∂x

)
,

which in spherical polars becomes

L3 = −i~ ∂

∂φ
.

The eigenvector equation becomes

L3ψm = −i~∂ψm
∂φ

= m~ψm,

so that

ψm(r, θ, φ) = F (r, θ)eimφ.

Now the important point: if this is genuinely a function, i.e. single-valued, then we need

periodicity 2π in φ, so that as claimed m must be integral and therefore so must j. (This also

gives a hint about the strangeness of spin – if j = 1/2 then the wave-function changes sign under

2π-rotation.)

41



To pursue this line further, let’s calculate the other operators in spherical polar coordinates

L+ = L1 + iL2 = ~eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
and

L− = L1 − iL2 = −~e−iφ
(
∂

∂θ
− i cot θ

∂

∂φ

)
.

Knowing L3 we then obtain

L2 = −~2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
so the eigenvalue equation for L2 becomes(

∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
ψ = −`(`+ 1)ψ.

This is recognisable as the separated angular part of the Laplacian in spherical polar coordinates

(8.6) and so is the missing link in the study of the hydrogen atom. We don’t need to solve this

eigenvalue problem – we already know that the solutions will take the form

ψ = P`m(θ)eimφ, (7.18)

where P`m(θ) satisfies

L2P`m(θ)eimφ = `(`+ 1)~2P`m(θ)eimφ.

From problem 4 on sheet 4 we know that

P``(θ)e
i`φ ∼ (sin θ)`ei`φ

so we can if desired find P`m(θ)eimφ by lowering `−m times on this. Conventionally, and with

an appropriate normalisation, one defines

Y`m(θ, φ) = P`m(θ)eimφ,

and calls this the spherical harmonic of order `,m.

8 The hydrogen atom: a first look

8.1 Atoms

We begin with a discussion of Coulomb’s law.7 In general, a point charge e2 at the origin induces

an electrostatic force on another point charge e1 at position r given by the inverse square law

F =
1

4πε0

e1e2

r2

r

r
, (8.1)

where as usual r = |r|. Notice that the Coulomb force (8.1) is proportional to the product of the

charges, so that opposite (different sign) charges attract, while like (same sign) charges repel.

7 * Coulomb discovered his law in 1783. From a modern point of view, this law is subsumed into Maxwell’s
classical theory of electromagnetism (i.e. Coulomb’s law can be derived from Maxwell’s equations).
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Electric charge is measured in Coulombs, C, and the proportionality constant ε0 ' 8.85× 10−12

C2 N−1 m−2 in (8.1) is called the permittivity of free space. The Coulomb force is conservative,

of the form F = −∇V where

V (r) = V (r) =
1

4πε0

e1e2

r
, (8.2)

is the Coulomb potential.

An atom consists of negatively charged electrons e− orbiting a positively charged nucleus,

where the force of attraction is (predominantly) electrostatic. An electron carries electric charge

−e, where e ' 1.60 × 10−19 C. In general, the nucleus of an atom consists of Z positively

charged protons, each of charge +e, and A neutrons, of charge 0, and these are tightly bound

together (by the strong force). In the following we consider an atom of atomic number Z, with

a single orbiting electron. In particular, the hydrogen atom has Z = 1. Since the nucleus

is vastly heavier than the electron (mproton ' 1836me−), this implies that the centre of mass

of the atomic system will always be very close to the nucleus. We thus make the simplifying

assumption that the nucleus is fixed, at the origin. The potential for the force acting on the

electron is then given by (8.2) with e1 = −e, e2 = Ze (see Figure 9):

V (r) = − Z e2

4πε0 r
. (8.3)

nucleus:
protons
neutrons

Z
A

charge e = Ze2

single electron
charge e = - e1

Coulomb force

Figure 9: An atom consisting of a nucleus of atomic number Z and a single orbiting electron.

Recall that in section 1.2 we discussed the empirical formula (1.3) for the energy levels of the

hydrogen atom. Our task in the remainder of this course is to derive this formula theoretically,

using the Schrödinger equation. However, before moving on to this, as usual we pause to make

some comments on the corresponding classical problem. The 1/r Coulomb potential is formally

the same as Newton’s gravitational potential that you encountered in Prelims, the only difference

being that gravity is always attractive. Thus classically the atomic system in Figure 9 is similar
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to a planet orbiting the sun under gravity.8 In particular, the energy levels are continuous, not

discrete as in (1.3).

* There is an even more serious problem with the classical picture above. Maxwell’s clas-
sical theory of electromagnetism predicts that an accelerating charge, such as an electron
in orbit around a nucleus, emits electromagnetic radiation, and thus continuously loses
energy. The electron would quickly spiral in towards the nucleus, and all atoms would
hence be unstable! We shall see how quantum theory gets around this problem.

8.2 The spectrum of the hydrogen atom

For hydrogen-like atoms then we must solve the three-dimensional stationary state Schrödinger

equation (2.10) with potential (8.3):

− ~2

2m
∇2ψ − Z e2

4πε0 r
ψ = Eψ , (8.4)

where m = me− ∼ 9.12× 10−31 kg is the mass of an electron.

We’ll get a little way with this now and then return to it when we have more technology

available. It is no more complicated at the outset to consider any central force in other words

any potential which depends only on r, so

− ~2

2m
∇2ψ + V (r)ψ = Eψ. (8.5)

Separate in spherical polars so that

ψ = R(r)P (θ, φ).

Then we need the Laplacian in spherical polars from Prelims, which is

∇2ψ = P
1

r
(rR)′′ +R

1

r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
P. (8.6)

Substituting into (8.5) we see that we can separate all r-dependent terms to one side, leaving

1

P

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
P =

2mr2

~2
(V (r)− E)− r(rR)′′

R
.

Both sides must be constant, say λ. Then separate again: P (θ, φ) = Y (θ)Φ(φ)) to find

1

Y

(
∂2Y

∂θ2
+ cot θ

∂Y

∂θ

)
+

1

Φ sin2 θ

∂2Φ

∂φ2
= λ.

Now we can separate again to find

1

Φ

∂2Φ

∂φ2
= µ = λ sin2 θ − sin2 θ

Y

(
∂2Y

∂θ2
+ cot θ

∂Y

∂θ

)
,

for some constant µ. The φ-equation can be solved in terms of exponentials but we require

periodicity:Φ(φ + 2π) = Φ(φ); since otherwise the wave-function is not single-valued. This

8Of course there is also a gravitational attraction between the electron and nucleus, but this is many orders
of magnitude smaller.
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forces µ = −m2 for some integer m which we may assume is non-negative, and then Φ = e±miφ.

The equation for Y becomes

∂2Y

∂θ2
+ cot θ

∂Y

∂θ
+
( µ

sin2 θ
− λ

)
Y = 0,

and we still have the equation for R:

−r(rR)′′

R
+

2mr2

~2
(V (r)− E) = λ.

It is possible to solve these equations by series solutions but instead we will use some of the

ingredients we have developed in previous sections.

9 The Hydrogen Atom Revisited

9.1 Central Potentials

We saw in section 8 how to separate the time-independent Schrödinger equation with any central

potential, so that V = V (r) in spherical polars. The equation is

− ~2

2m
∇2ψ + V (r)ψ = Eψ,

and we separate in spherical polars so that

ψ = R(r)Y (θ, φ).

Then

∇2ψ = Y
1

r
(rR)′′ +R

1

r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
Y,

but now, by the previous section we see at once we can take Y = Y`m(θ, φ) and this is simplified

to

= Y`m

(
1

r
(rR)′′ − `(`+ 1)

r2
R

)
.

The Schrödinger equation, after multiplication by −2m/~2 and cancellation of Y`m, becomes

1

r
(rR)′′ − `(`+ 1)

r2
R− 2m

~2
V (r)R = −2mE

~2
R. (9.1)

(There is an inevitable clash of notation here between m the mass of the electron and m the

eigenvalue in Y`m: there is no way of avoiding this as both usages are firmly embedded in

custom.)

At this point we see that, for any central potential, the stationary states are simultaneously

eigenstates of the Hamiltonian H (of course!) and J2 and J3. This could have been foreseen:

with

H =
1

2m
P 2 + V (r),

one can calculate

[H,J2] = 0 = [H,J3],

and commuting operators can have simultaneous eigenvectors.
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9.1.1 The Hydrogen Atom

We model the hydrogen atom by writing down the Schrödinger equation for the electron, as-

suming the nucleus is fixed and the force is inverse-square electrostatic. It is no more difficult

to treat ‘hydrogen-like’ atoms so suppose the nucleus has charge Ze for positive integer Z and

the electron has charge −e and mass m. Then the potential is

V (r) = − Ze2

4πε0r
.

We can substitute this into (9.1) but it is easier first to redefine some constants as

−2mE

~2
= κ2, β =

2Z

a
, a =

4πε0~2

me2
. (9.2)

Here a has dimensions of length and is known as the Bohr radius – it gives a measure of the

size of an atom and comes out to be 5.29× 10−11 m.

Now set R = f(r)e−κr, then (9.1) becomes

f ′′ +

(
2

r
− 2κ

)
f ′ −

(
2κ− β
r

+
`(`+ 1)

r2

)
f = 0. (9.3)

As before we seek a series solution:

f =
∞∑
0

anr
n+c with a0 6= 0,

and substitute into (9.3):∑
(an(n+ c)(n+ c− 1)rn+c−2 + (

2

r
− 2κ)an(n+ c)rn+c−1

−(2κ− β +
`(`+ 1)

r
)anr

n+c−1) = 0.

The coefficient of rc−2 gives the indicial equation:

a0(c− `)(c+ `+ 1) = 0.

Here c = −` − 1 is forbidden as then ψ would not be continuous at r = 0, so c = `. Then the

coefficient of rn+c−1 gives the recurrence relation:

((n+ c+ 1)(n+ c) + 2(n+ c+ 1)− `(`+ 1))an+1 = (2κ(n+ c) + 2κ− β)an.

Suppose the series does not terminate, then for large n this implies

an
an−1

∼ 2κ/n,

at least to highest order, and this is unacceptable: compare with the power series

e2κr =

∞∑
0

bkr
k,

then bk = (2κ)k/k! so that
bn
bn−1

= 2κ/n.
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The two series look the same for large n and with a little more care one can deduce that

f(r) ∼ e2κr so that

R = fe−κr ∼ eκr

and ψ would not be normalisable.

Thus the series must terminate, which means there is an n for which

2κ(n+ c+ 1) = β.

Then ak = 0 for k > n and the series is a polynomial of degree n. This makes f a polynomial

of degree N = n+ c = n+ `, call it fN,` since both N and ` enter it’s definition, and κ = κN =
β

2(N+1) . In particular, (9.2) now gives the energy levels as

EN = −
~2κ2

N

2m
= − ~2β2

8m(N + 1)2
, (9.4)

for non-negative integer N . This is precisely of the form of (1.3) and was a great triumph for

quantum theory.

To summarise:

• the energy eigenvalue is

E = EN = −
~2κ2

N

2m
= − ~2β2

8m(N + 1)2
;

• the wave-function is a simultaneous eigenfunction of the Hamiltonian, J2 and J3 and can

be written

ψN`m ∼ fN,`(r)e−κNrY`m(θ, φ);

• the J2 eigenvalue is `(`+ 1)~2 and the J3 eigenvalue is m~;

• one can count the degeneracy of the energy eigenstates as follows: EN depends on N =

n+ `, so 0 ≤ ` ≤ N and for each ` there are 2`+ 1 allowed values of m; thus

degeneracy =

N∑
`=0

(2`+ 1) = (N + 1)2;

• the ground state has N = 0 and is nondegenerate;

There is some traditional terminology associated with the numbers N.`,m: conventionally

N + 1, `,m are called the principal quantum number, the azimuthal quantum number and

the magnetic quantum number respectively. Thus the energy level is inversely proportional to

the square of the principal quantum number.
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9.2 Rotationally symmetric solutions

We’ll start with the ground state for which N = ` = m = 0: so the wave-function is independent

of θ and φ and can be written

ψ000 = a0e
−κ0r, (9.5)

with κ0 = β/2 = Z/a. One might worry that this function is not differentiable at the origin,

but since the origin is the location of the nucleus and is a singular point for the potential that

need not be a surprise.

Normalising the wave-function to fix a0 we find

1 =

∫ ∫ ∫
|ψ000|2dV = 4π|a0|2

a3

4Z3
,

so that we may take a0 = (Z3/πa3)1/2.

If we calculate E[r] for the ground state we obtain

E[r] =
3a

2Z
,

so that, for the hydrogen atom ground state the expected value of r = |r| is 3a/2 which justifies

regarding a as a rough ‘size’ for the atom.

This is the first in an infinite series of rotationally symmetric or spherically symmetric solu-

tions, one at each energy level: just put ` = 0 = m. The wave-functions are of the form

ψN00 = fN,0(r)e−κNr

where fN,0 is a polynomial of degree N satisfying (9.3) with ` = 0, which is

f ′′ +

(
2

r
− 2κ

)
f ′ −

(
2κ− β
r

)
f = 0. (9.6)

with κ = κN == β
2(N+1) just as before. We know that fN,0 will be a polynomial of degree N so

that the first few can be easily obtained:

• evidently f0,0 = a0 = constant with κ0 = β/2;

• then f1,0 = aa + a1r and substituting with κ1 = β/4 rapidly gives f1,0 = a1(r − 4/β);

• pressing on, f2,0 = a2(r2 − 18r/β + 54/β2) with κ2 = β/6.

Various patterns emerge, for example that fN,0 has N zeroes, but another substitution is sug-

gested: set fN,0 = FN (s) where s = rβ/(N + 1). Then (9.6) becomes

d2FN
ds2

+

(
2

s
− 1

)
dFN
ds
− N

s
FN = 0. (9.7)

This is an ODE studied in the 19th century and its polynomial solutions are known for historical

reasons as generalized Laguerre polynomials, in fact specifically FN = L1
N . Now

ψN00 = L1
N (rβ/(N + 1)))e−κNr.

The first few L1
N are shown in figure 10.
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(r)1 (r)2

(r)3 (r)4

Figure 10: The ground state and first three (spherically symmetric) excited state wave functions
of the hydrogen atom.

10 Schrödinger’s Cat etc

Under this heading we’ll group a number of the puzzles that quantum mechanics leaves us with.

10.1 Schrödinger’s Cat

The idea of this thought experiment is to generate a ‘macroscopic superposition’, that is to use

a wave-function which is an evolving sum of two eigenstates to produce a state of affairs in the

classical (nonquantum) world which is also neither one thing nor another.

In its original form, one imagines a cat in a sealed box containing a vial of poison gas and

an apparatus for releasing the gas at the moment a radioactive atom decays. The radioactive

decay is a quantum process so that the radioactive atom is in a superposition of decayed and

nondecayed states which changes with time. What is the state of the cat? Is it also in a

superposition of alive and dead?

The state of the atom will collapse into an eigenstate when observed. Suppose this requires

opening the box. Does this mean that the cat will only be in an eigenstate when we open the

box and observe it?

In another form, one imagines the decay simply turning on a light and one replaces the cat

by a person, ‘Wigner’s friend’. Does the wave-function collapse when Wigner’s friend sees the

light go on, or only when we open the box?

Evidently this kind of example leads to other questions about the interpretation of the wave-

function: who or what is allowed to be an observer? If I make an observation and don’t tell you

the answer does the wave-function collapse for me but not for you? Can there be macroscopic

superpositions or (for example) does the wave-function collapse spontaneously?
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10.2 EPR Experiments

EPR stands for Einstein-Podolsky-Rosen who devised a class of thought experiments intended

to test the view of the world that quantum mechanics leaves us with, but which eventually led to

actual experiments confirming quantum mechanics. A simplified version is as follows: consider

a pair of particles, p1, p2, each with j = 1/2 so with m = ±1/2, and suppose them produced

in such a way that their m-values sum to zero; so either m1 = 1/2,m2 = −1/2 or vice versa

and we can write their wave function as a linear combination of the two possibilities: with an

obvious notation

ψ = c1ψ+− + c2ψ−+.

Imagine they are fired off in opposite directions and, after some time, arrive respectively at two

detectors D1, D2 which measure m1,m2 respectively. We know that if D1 measures m1 = 1/2

then D2 measures m2 = −1/2 and vice versa, even if the detectors are far apart and the

measurements are simultaneous. This is already a bit strange (‘spooky action at a distance’

in a famous phrase) but the interesting case is when D1 measures J3 (which is m) but D2

measures something else, like J1 or J1 cosα+J3 sinα. Now the predictions of quantum mechanics

are at odds with one’s classical expectations, but experiments based on these ideas lead to a

confirmation of quantum mechanics (one place to look for more is under ‘Bell’s theorem’ on

Wikipedia).
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A * Fuchs’ theorem and Frobenius series

This appendix is included only for interest and completeness. It is certainly not intended to be

part of the course.

In the main text we solved both the harmonic oscillator (4.11) and the radial part of the

hydrogen atom (9.3) using a (generalized) power series expansion. Here we discuss this problem

more generally. Consider the second order ODE

d2f

dx2
+ p(x)

df

dx
+ q(x) f = 0 , (A.1)

for the function f(x). A point x0 is called an ordinary point of (A.1) if p(x), q(x) have Taylor

expansions about x0, valid in some positive radius of convergence; otherwise x0 is called a

singular point. If x0 is a singular point, but (x − x0)p(x), (x − x0)2q(x) both have Taylor

expansions around x0, then x0 is called a regular singular point.

By a generalized power series, or Frobenius series, about x0 we mean

f(x) =

∞∑
k=0

ak (x− x0)k+c , (A.2)

for some real number c ∈ R. Without loss of generality, a0 6= 0. Notice that for c a non-negative

integer this reduces to a normal power series. Without loss of generality, we now set x0 = 0. The

equation obtained from the ODE (A.1) by setting the lowest power of x to zero in the expansion

(A.2) is called the indicial equation. Since (A.1) is second order, this is a quadratic equation for

c. Fuchs and Frobenius proved the following result:

Theorem A.1

• If x = 0 is an ordinary point, then (A.1) possesses two distinct power series solutions, so

that one can effectively set c = 0 in (A.2). These series converge for |x| < r, where r is

the minimum radius of convergence of p(x) and q(x).

• If x = 0 is a regular singular point, then there is at least one solution of (A.1) of the form

(A.2). Again, this series solution converges for |x| < r, where r is the minimum radius of

convergence of xp(x) and x2q(x).

The precise behaviour for regular singular points is a little involved. If the indicial equation

for c has distinct roots that differ by a non-integer, then there are two series solutions of the

form (A.2), with the corresponding values of c solving the indicial equation. Otherwise there is

not necessarily a second series solution; if there is not one can nevertheless say more about the

second solution, but we refer the interested reader to the literature for details.
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