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Markov chains: Introduction

Let Xn, n = 0, 1, 2, . . . be a “random process”, taking values in some set I called the state

space. That is, X0, X1, X2, . . . are random variables with Xn ∈ I for all n.

Often Xn represents some quantity evolving in time. So far we have been working with

random variables taking values which are real numbers of some kind, but there is no problem

in considering a more general state space. For example, we might consider processes of the

following kind:

• I = Z2, Xn=position at nth step of a “random walk” on the two-dimensional lattice.

• I = {A,B,C, . . . , a, b, c, . . . , ., ?, !, . . . }, Xn=nth character in a text or in an email.

• I = {C,G,A, T} (representing cytosine, guanine, adenine, thymine, the four bases of

DNA), Xn=base appearing in nth position in a DNA sequence.

We will assume that the state space I is finite or countably infinite (i.e. discrete). A

(probability) distribution on I is a collection λ = (λi, i ∈ I) with λi ≥ 0 for all i, and∑
λi = 1. This is really just the same idea as the probability mass function of a discrete

random variable. We will often think of λ as a row vector. We will say that a random

variable Y taking values in I has distribution λ if P(Y = i) = λi for all i.

5.1 Markov chains

Let X = (X0, X1, X2, . . . ) be a sequence of random variables taking values in I. The process

X is called a Markov chain if for any n ≥ 0 and any i0, i1, . . . , in+1 ∈ I,

P
(
Xn+1 = in+1

∣∣Xn = in, . . . , X0 = i0
)

= P
(
Xn+1 = in+1

∣∣Xn = in
)
. (5.1)

(To be precise, we should restrict (5.1) to cases where these conditional probabilities are

well-defined, i.e. where the event {Xn = in, . . . , X0 = i0} has positive probability.)

The Markov chain is called (time) homogeneous if in addition P
(
Xn+1 = j

∣∣Xn = i
)

depends only on i and j, not on n. In that case we write

pij = P
(
Xn+1 = j

∣∣Xn = i
)

39
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(or we will often write pi,j rather than pij , according to convenience). The quantities pij are

known as the transition probabilities of the chain.

We will work almost always with homogeneous chains. To describe such a chain, it is

enough to specify two things:

• the initial distribution λ of X0. For each i ∈ I, λi = P(X0 = i).

• the transition matrix P = (pij)i,j∈I .

P is a square (maybe infinite) matrix, whose rows and columns are indexed by I. P is a

“stochastic matrix” which means that all its entries are non-negative and every row sums

to 1. Equivalently, every row of P is a probability distribution. The ith row of P is the

distribution of Xn+1 given Xn = i.

Theorem 5.1. For i0, i1, . . . , in ∈ I,

P (X0 = i0, X1 = i1, . . . , Xn = in) = λi0pi0i1pi1i2 . . . pin−1in .

Proof. By the definition of conditional probabilities and cancellations,

P (X0 = i0, X1 = i1, . . . , Xn = in)

= P (X0 = i0)P
(
X1 = i1

∣∣X0 = i0
)
P
(
X2 = i2

∣∣X1 = i1, X0 = i0
)
× . . .

· · · × P
(
Xn = in

∣∣Xn−1 = in−1, . . . , X0 = i0
)

= P (X0 = i0)P
(
X1 = i1

∣∣X0 = i0
)
P
(
X2 = i2

∣∣X1 = i1
)
. . .P

(
Xn = in

∣∣Xn−1 = in−1
)

= λi0pi0i1pi1i2 . . . pin−1in ,

where we used the definition of a Markov chain to get the penultimate line.

If X is a Markov chain with initial distribution λ and transition matrix P , we will some-

times write “X ∼ Markov(λ, P )”.

Markov chains are “memoryless”. If we know the current state, any information about

previous states is irrelevant to the future evolution of the chain. We can say that “the future

is independent of the past, given the present”. This is known as the Markov property:

P (Xn+1 ∈ An+1, . . . , Xn+m ∈ An+m|X0 ∈ A0, . . . , Xn−1 ∈ An−1, Xn = i)

= P (Xn+1 ∈ An+1, . . . , Xn+m ∈ An+m|Xn = i)

= P (X1 ∈ An+1, . . . , Xm ∈ An+m|X0 = i) .

for all A0, . . . , Am+n ⊆ I with P(X0 ∈ A0, . . . , Xn−1 ∈ An−1, Xn = i) > 0, or equivalently

(by the definition of conditional probabilities and cancellations)

P (X0 ∈ A0, . . . , Xn−1 ∈ An−1, Xn+1 ∈ An+1, . . . , Xn+m ∈ An+m|Xn = i)

= P (X0 ∈ A0, . . . , Xn−1 ∈ An−1|Xn = i)P (Xn+1 ∈ An+1, . . . , Xn+m ∈ An+m|Xn = i)

= P (X0 ∈ A0, . . . , Xn−1 ∈ An−1|Xn = i)P (X1 ∈ An+1, . . . , Xm ∈ An+m|X0 = i) .

Notation: it will be convenient to write Pi for the distribution conditioned on X0 = i. For

example Pi(X1 = j) = pij . Similarly E i for expectation conditioned on X0 = i.
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5.2 n-step transition probabilities

Write p
(n)
ij = P

(
Xk+n

∣∣Xk = i
)
. This is an n-step transition probability of the Markov

chain.

Theorem 5.2. (Chapman-Kolmogorov equations)

(i) p
(n+m)
ik =

∑
j∈I p

(n)
ij p

(m)
jk .

(ii) p
(n)
ij = (Pn)i,j.

Here Pn is the nth power of the transition matrix. As ever, matrix multiplication is given

by (AB)i,j =
∑
k(A)i,k(B)k,j , whether the matrices are finite or infinite.

Proof. (i) We condition on Xn, i.e. we consider the partition {Xn = j}, j ∈ I, and use the

Law of Total Probability:

P
(
Xn+m = k

∣∣X0 = i
)

=
∑
j

P
(
Xn = j

∣∣X0 = i
)
P
(
Xn+m = k

∣∣Xn = j,X0 = i
)

=
∑
j

P
(
Xn = j

∣∣X0 = i
)
P
(
Xn+m = k

∣∣Xn = j
)

(using the Markov property)

=
∑
j

p
(n)
ij p

(m)
jk .

(ii) For n = 1, this holds by definition of P . Inductively, if this holds for any n ≥ 1,

p
(n+1)
ik =

∑
j

p
(n)
ij p

(1)
jk =

∑
j

(Pn)i,j
(
P
)
j,k

= (PnP )i,k =
(
Pn+1

)
i,k
.

Theorem 5.3. Let λ be the initial distribution (i.e. the distribution of X0). Then the distri-

bution of X1 is λP , and more generally the distribution of Xn is λPn.

Here we are thinking of λ as a row vector, so that λPn is also a row vector; (λA)i =∑
k λkAki as usual, whether the dimensions are finite or infinite.

Proof. Just condition on the initial state, i.e. apply the Law of Total Probability for the

partition {X0 = i}, i ∈ I:

P (X1 = j) =
∑
i

P (X0 = i)P
(
X1 = j

∣∣X0 = i
)

=
∑
i

λipij

= (λP )j ,

and similarly for Xn with pij and P replaced by p
(n)
ij and Pn.
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Using this result and the Markov property it is easy to get the following property: if

(X0, X1, X2, . . . ) is a Markov chain with initial distribution λ and transition matrix P , then

(X0, Xk, X2k, . . . ) is a Markov chain with initial distribution λ and transition matrix P k.

Example 5.4 (General two-state Markov chain). Let I = {1, 2} and

P =

(
1− α α

β 1− β

)
.

What is p
(n)
11 ? Two approaches:

(1) P has eigenvalues 1 and 1− α− β (check! Every Markov transition matrix has 1 as an

eigenvalue – why?). So we can diagonalise:

P = U−1

(
1 0

0 1− α− β

)
U,

Pn = U−1

(
1 0

0 (1− α− β)n

)
U.

We get (Pn)11 = A+B(1− α− β)n for some constants A and B.

Since we know p
(0)
11 = 1 and we have p

(1)
11 = 1− α, we can solve for A and B to get

p
(n)
11 =

β

α+ β
+

α

α+ β
(1− α− β)n. (5.2)

(2) Alternatively, we can condition on the state at step n− 1:

p
(n)
11 = p

(n−1)
11 (1− α) + p

(n−1)
12 β

= p
(n−1)
11 (1− α) +

(
1− p(n−1)11

)
β

= (1− α− β)p
(n−1)
11 + β.

This gives a linear recurrence relation for p
(n)
11 , which we can solve using standard

methods to give (5.2) again.

5.3 A few examples

Random walk on a cycle

I = {0, 1, 2, . . . ,M − 1}. At each step the walk increases by 1 (mod M) with probability p

and decreases by 1 (mod M) with probability 1− p. That is,

pij =


p if j ≡ i+ 1 mod M,

1− p if j ≡ i− 1 mod M,

0 otherwise,
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or

P =



0 p 0 0 · · · 0 0 1− p
1− p 0 p 0 · · · 0 0 0

0 1− p 0 p
. . . 0 0 0

0 0 1− p 0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0 p 0

0 0 0 0
. . . 1− p 0 p

p 0 0 0 · · · 0 1− p 0



.

Simple symmetric random walk on Zd

I = Zd. At each step the walk moves from its current site to one of its 2d neighbours chosen

uniformly at random.

pij =

 1
2d if |i− j| = 1,

0, otherwise

where |i− j| = |i1 − j1|+ · · ·+ |id − jd| for states i = (i1, . . . , id) and j = (j1, . . . , jd).

Card-shuffling

Let I be the set of orderings of 52 cards. We can regard I as the permutation group S52.

There are many interesting Markov chains on permutation groups. We can think of shuffling

a pack of cards. A simple and not very practical example of a shuffle: at each step, choose

a and b independently and uniformly in {1, 2, . . . , 52} and exchange the cards in positions a

and b. This gives

pαβ =



2

522
if α = βτ for some transposition τ ,

1

52
if α = β,

0 otherwise.

5.4 Exploring the Markov property

Let us look at a few examples of simple processes where the Markov property holds or fails.

We can do this in the context of a simple random walk on Z.

Let Xi be i.i.d. with P(Xi = 1) = p and P(Xi = −1) = 1− p.
Let S0 = 0 and Sn =

∑n
i=1Xi.

Then:

(1) Xn is a Markov chain. In fact, Xn are i.i.d., which is a stronger property. Given any

history, the next state is equal to 1 with probability p and −1 with probability 1−p. The

matrix of the chain Xn (with rows and columns indexed by {−1, 1}) is P =

(
1− p p

1− p p

)
.
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(2) The random walk Sn is also a Markov chain. Its transition probabilities are pi,i+1 = p

and pi,i−1 = p for all i ∈ Z.

(3) Consider the process Mn = max0≤k≤n Sk. Try drawing some possible paths of the pro-

cess Sn, and the corresponding paths of the ”maximum process” Mn. Is this maximum

process a Markov chain?

We can consider two different ways of arriving at the same state. Suppose we observe

(M0, . . . ,M4) = (0, 0, 0, 1, 2). This implies S4 = 2 (the maximum process has just

increased, so now the walk must be at its current maximum.) In that case, if the

random walk moves up at the next step, then the maximum will also increase. So

P(M5 = 3|(M0, . . . ,M4) = (0, 0, 0, 1, 2)) = p.

Suppose instead that (M0, . . . ,M4) = (0, 1, 2, 2, 2). In that case, both S4 = 2 and S4 = 0

are possible (check! – find the corresponding paths). As a consequence, sometimes the

maximum will stay the same at the next step, even when the random walk moves up.

So we have

P(M5 = 3|(M0, . . . ,M4) = (0, 1, 2, 2, 2)) < p.

We see that the path to M4 = 2 affects the conditional probability of the next step of

the process. So Mn is not a Markov chain.

The next result gives a criterion for the Markov property to hold.

Proposition 5.5. Suppose that (Yn, n ≥ 0) is a random process, and for some function f we

can write, for each n,

Yn+1 = f(Yn, Xn+1),

where Xn+1 is independent of Y0, Y1, . . . , Yn. Then (Yn) is a Markov chain.

Proof. The idea is that to update the chain, we use only the current state and some “new”

randomness. We have

P
(
Yn+1 = in+1

∣∣Yn = in, . . . , Y0 = i0
)

= P
(
f(in, Xn+1) = in+1

∣∣Yn = in, . . . , Y0 = i0
)

= P (f(in, Xn+1) = in+1) (by independence of Xn+1 from Y0, . . . , Yn)

= P
(
f(in, Xn+1) = in+1

∣∣Yn = in
)

(by independence of Xn+1 from Yn)

= P
(
Yn+1 = in+1

∣∣Yn = in
)
.

For example, for the simple random walk above, we can put Sn+1 = f(Sn, Xn+1), where

f(s, x) = s + x. For the card-shuffling example in the previous section, if Yn ∈ S52 is the

permutation after step n, we can put Yn+1 = f(Yn, Xn+1) where for a permutation β and a

transposition τ , f(β, τ) = βτ , and where (Xn) is an i.i.d. sequence in which each member is

uniform in the set of transpositions.
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5.5 Class structure

Let i, j ∈ I. We say that “i leads to j” and write “i→ j” if Pi(Xn = j) > 0 for some n ≥ 0,

i.e. p
(n)
ij > 0 for some n ≥ 0.

If i→ j and j → i then we say “i communicates with j” and write i↔ j.

Then ↔ is an equivalence relation (check!). It partitions the state space I into commu-

nicating classes.

A class C is called closed if pij = 0 whenever i ∈ C, j /∈ C, or equivalently i 6→ j for any

i ∈ C, j /∈ C. Once the chain enters a closed class, it can never escape from it. If {i} is a

closed class then pii = 1, and i is called an absorbing state. If C is not closed it is called

open.

A chain (or more precisely a transition matrix) for which I consists of a single communi-

cating class is called irreducible. Equivalently, i→ j for all i, j ∈ I.

Example 5.6. Let I = {1, 2, 3, 4, 5, 6, 7}. The communicating classes for the transition

matrix

P =



0 1
2 0 0 0 0 1

2

0 0 1 0 0 0 0
1
2 0 0 1

4
1
4 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1


are {1, 2, 3}, {4}, {5, 6} and {7}. The closed classes are {5, 6} and {7} (so 7 is an absorbing

state). Draw a diagram to visualise the chain!

5.6 Periodicity

Consider the transition matrix 
0 1 0 0 0
1
2 0 1

2 0 0

0 1
2 0 1

2 0
1
3 0 1

3 0 1
3

0 0 0 1 0

 .

Again, draw a diagram to visualise the chain. Note that p
(n)
ii = 0 whenever n is odd.

For a general chain and a state i ∈ I, the period of the state i is defined to be the greatest

common divisor of the set
{
n ≥ 1: p

(n)
ii > 0

}
. (If p

(n)
ii = 0 for all n > 0, then the period is

not defined). All the states in the chain above have period 2.

In Example 5.6, states 1, 2 and 3 have period 3, the period of state 4 is undefined, 5 and

6 have period 2 and the absorbing state 7 has period 1.

i is called aperiodic if this g.c.d. is 1 (and otherwise periodic). Equivalently (check!), i

is aperiodic if p
(n)
ii > 0 for all sufficiently large n.

Fact. All states in a communicating class have the same period.
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Proof. Suppose i↔ j and d|n whenever p
(n)
ii > 0.

Since i and j communicate, we can find a and b with p
(a)
ij > 0 and p

(b)
ji > 0. Then also

p
(a+b)
ii > 0.

Suppose p
(m)
jj > 0. Then also p

(a+m+b)
ii > 0.

Then d|a+ b and d|a+m+ b, so also d|m.

This demonstrates that the sets
{
n ≥ 1: p

(n)
ii > 0

}
and

{
m ≥ 1: p

(m)
jj > 0

}
have the same

divisors, and hence the same greatest common divisor.

In particular, if a chain is irreducible, then all states have the same period. If this period

is 1, we say that the chain is aperiodic (otherwise we say the chain is periodic).

Remark. Notice that both irreducibility and periodicity are “structural properties” in the

following sense: they depend only on which transition probabilities pij are positive and which

are zero, not on the particular values taken by those which are positive.

Example. Look back at the three examples in Section 5.3 and consider which are irreducible

and which are periodic.

The random walk on the cycle is irreducible (since every site is accessible from every

other). It has period 2 if M is even, and is aperiodic if M is odd.

The random walk on Zd is irreducible and has period 2 for any d.

The card-shuffling chain is irreducible (because the set of transpositions is a set of gener-

ators for the group S52). It is aperiodic, since there is a positive transition probability from

any state to itself.

Remark. Later we will show results about convergence to equilibrium for Markov chains.

The idea will be that after a long time, a Markov chain should more or less “forget where it

started”. There are essentially two reasons why this might not happen: (a) periodicity; for

example if a chain has period 2, then it alternates between, say, “odd” and “even” states;

even an arbitrarily long time, the chain will still remember whether it started at an “odd” or

“even” state. (b) lack of irreducibility. A chain with more than one closed class can never

move from one to the other, and so again will retain some memory of where it started, for

ever. When we prove results about convergence to equilibrium, it will be under the condition

that the chain is irreducible and aperiodic.

5.7 Hitting probabilities

Let A be a subset of the state space I. Define hAi = Pi (Xn ∈ A for some n ≥ 0), the hitting

probability of A starting from state i.

If A is a closed class, we might call hAi the absorption probability.

Example. Let I = {1, 2, 3, 4} and

P =


1 0 0 0
1
2 0 1

2 0

0 1
2 0 1

2

0 0 0 1

 .
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Starting from 2, what is the probability of absorption at 4?

Write hi = Pi(Xn = 4 for some n ≥ 0). Then h4 = 1, and h1 = 0 since 1 is itself

absorbing. Also by conditioning on the first jump and applying the Markov property, we

have

h2 =P2(X1 = 1)P2(Xn = 4 for some n ≥ 1|X1 = 1)

+ P2(X1 = 3)P2(Xn = 4 for some n ≥ 1|X1 = 3)

= 1
2h1 + 1

2h3,

h3 = 1
2h2 + 1

2h4.

Solving, we get h2 = 1/3 and h3 = 2/3.

Theorem 5.7. The vector of hitting probabilities
(
hAi , i ∈ I

)
is the minimal non-negative

solution to the equations

hAi =

1 if i ∈ A∑
j pijh

A
j if i /∈ A

. (5.3)

Here by “minimal” we mean that if (xi, i ∈ I) is another non-negative solution to the

system (5.3), then hi ≤ xi for all i.

Proof. To see that hAi satisfies (5.3), we condition on the first jump of the process. If i /∈ A,

then

hAi = Pi (Xn ∈ A for some n ≥ 0)

= Pi (Xn ∈ A for some n ≥ 1)

=
∑
j

Pi(X1 = j)P
(
Xn ∈ A for some n ≥ 1

∣∣X0 = i,X1 = j
)

=
∑
j

pijP
(
Xn ∈ A for some n ≥ 1

∣∣X1 = j
)

=
∑
j

pijh
A
j .

To obtain the penultimate line we applied the Markov property. Meanwhile for i ∈ A, hAi = 1

by definition. So indeed (5.3) holds.

To prove minimality, suppose (xi, i ∈ I) is any non-negative solution to (5.3). We want

to show that hAi ≤ xi for all i.

We make the following claim: for any M ∈ N, and for all i,

xi ≥ Pi(Xn ∈ A for some n ≤M). (5.4)

We will prove (5.4) by induction on M .

The case M = 0 is easy; the LHS is 1 for i ∈ A, while the RHS is 0 for i /∈ A.

For the induction step, suppose that for all i, xi ≥ Pi(Xn ∈ A for some n ≤ M − 1). If

i ∈ A, then again xi = 1 and (5.4) is clear. If i /∈ A, then

Pi(Xn ∈ A for some n ≤M) =
∑
j

pijPi(Xn ∈ A for some n ∈ {1, 2, . . . ,M}|X1 = j)
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=
∑
j

pijPj (Xn ∈ A for some n ∈ {0, 1, . . . ,M − 1})

≤
∑
j

pijxj

= xi,

and the induction step is complete. Hence (5.4) holds for all i and M as desired. Then, using

the fact that the sequence of events in (5.4) is increasing in M , we have

xi ≥ lim
M→∞

Pi(Xn ∈ A for some n ≤M)

= Pi
(⋃
M

{Xn ∈ A for some n ≤M}
)

= Pi(Xn ∈ A for some n)

= hAi .

Important example: “Gambler’s ruin”

Let I = {0, 1, 2 . . . }. Let p ∈ (0, 1) and q = 1 − p, and consider the transition probabilities

given by

p00 = 1

pi,i−1 = q for i ≥ 1 (5.5)

pi,i+1 = p for i ≥ 1.

The name “gambler’s ruin” comes from the interpretation where the state is the current

capital of a gambler, who repeatedly bets 1 (against an infinitely rich bank). Will the gambler

inevitably go broke? But chains like this come up in a wide range of settings. Chains on

Z+ in which all transitions are steps up and down by 1 are called “birth-and-death chains”

(modelling the size of a population). This is one of the simplest examples.

Let hi = Pi(hit 0). To find hi, we need the minimal non-negative solution to

h0 = 1 (5.6)

hi = phi+1 + qhi−1 for i ≥ 1. (5.7)

If p 6= q, (5.7) has general solution

hi = A+B

(
q

p

)i
.

We look at three cases:

p < q Jumps downwards are more likely than jumps upward. From (5.6), A + B = 1. Then

for minimality, we take A = 1 and B = 0, since
(
q
p

)i
≥ 1 for all i.

We obtain hi = 1 for all i. So with probability 1, the chain will hit 0.
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p > q Again A + B = 1. Also
(
q
p

)i
→ 0 as i → ∞, so we need A ≥ 0 for a non-negative

solution. Then for a minimal solution, we will want A = 0, B = 1, since 1 ≥
(
q
p

)i
for

all i.

Hence hi =
(
q
p

)i
. The chain has a positive probability of “escaping to infinity”.

p = q Now the general solution of (5.7) is hi = A + Bi. From i = 0 we get A = 1. For

non-negativity we need B ≥ 0, and then for minimality B = 0. We get hi = 1 again.

Now there is no drift, but still with probability 1 the chain will hit 0 eventually.

Remark. Notice that we could have seen hi = αi for some α, by a direct argument. Since the

chain can only descend by one step at a time,

Pi(hit 0) = Pi(hit i− 1)Pi−1(hit i− 2) . . .P1(hit 0), (5.8)

and all terms in the product are the same, since the transition probabilities are the same at

every level.

5.8 Recurrence and transience

If the chain starts in state i, what is the chance that it returns to i at some point in the

future? We can distinguish two possibilities:

(1)

Pi(Xn = i for some n ≥ 1) = p < 1.

Then the total number of visits to i has geometric distribution with parameter 1 − p
(since each time we return to i, we have chance 1 − p of never returning again). We

have

Pi(hit i infinitely often) = 0.

The state i is called transient.

(2)

Pi(Xn = i for some n ≥ 1) = 1.

Then

Pi(hit i infinitely often) = 1.

The state i is called recurrent.

The definition is very simple, but the concept of recurrence and transience is extremely

rich (mainly for infinite chains).

There is an important criterion for recurrence and transience in terms of the transition

probabilities:

Theorem 5.8. State i is recurrent if and only if
∑∞
n=0 p

(n)
ii =∞.
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Proof. The total number of visits to i is
∑∞
n=0 1{Xn = i} which has expectation

∞∑
n=0

E1{Xn = i} =

∞∑
n=0

P(Xn = i) =

∞∑
n=0

p
(n)
ii .

If i is transient, the number of visits to i is geometric with parameter 1 − p, and hence

with mean 1
1−p <∞.

On the other hand if i is recurrent, the number of visits to i is infinite with probability 1,

and so has mean ∞.

This gives the statement of the theorem.

Theorem 5.9. (a) Let C be a communicating class. Either all states in C are recurrent,

or all are transient (so we may refer to the whole class as transient or recurrent).

(b) Every recurrent class is closed.

(c) Every finite closed class is recurrent.

Proof. Exercises – see example sheet 3. For part (a), use Theorem 5.8 to show that if i is

recurrent and i↔ j, then j is also recurrent.

The theorem tells us that recurrence and transience are quite boring for finite chains:

state i is recurrent if and only if its communicating class is closed. But infinite chains are

more interesting! An infinite closed class may be either transient or recurrent.

5.9 Random walk in Zd

Consider a simple symmetric random walk on the d-dimensional integer lattice. This is a

Markov chain with state space Zd and transition probabilities pxy = 1/2d if |x− y| = 1, and

pxy = 0 otherwise. The chain is irreducible, with period 2.

In this section we will show that the random walk is recurrent when d = 1 or d = 2 but

transient in higher dimensions.

5.9.1 d=1

The analysis after (5.7) (for p = q = 1/2) shows us that for the simple symmetric random

walk on Z, the hitting probability of 0 from any i > 0 is 1. By symmetry, the same is true

from any negative state. This shows that starting from 0, the probability of returning to 0 is

1. Hence state 0 is recurrent (and so by irreducibility the whole chain is recurrent).

An alternative approach uses Theorem 5.8. This gives a good warm-up for the approach

we will use in higher dimensions.

We need to show that
∑∞
n=0 p

(n)
00 =∞. We will use Stirling’s formula, which tells us that

n! ∼
√

2π nn+1/2e−n as n→∞. (5.9)

(The constant
√

2π will not be important.)
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Suppose X0 = 0. If n is odd, then P0(Xn = 0) = 0, since the chain has period 2. For

X2m = 0 we need m “ups” and m “downs” in the first 2m steps. Applying Stirling’s formula

to the binomial probability we obtain

p
(2m)
00 =

(
2m

m

)(
1

2

)2m

=
(2m)!

m!m!

(
1

2

)2m

∼ 1√
π

1

m1/2
. (5.10)

Since
∑
m−1/2 =∞, we have

∑
p
(n)
00 =∞ and the chain is recurrent.

Exercise. Use Stirling’s formula to show that if p 6= q, then the chain is transient. (We

could also deduce this from the hitting probability analysis after (5.7).)

5.9.2 d=2

Why should the walk be recurrent in 1 and 2 dimensions but transient in 3 dimensions?

An intuitive answer is as follows. A d-dimensional random walk behaves in some sense like

d independent 1-dimensional walks. For the d-dimensional walk to be back at the origin,

we require all d of the 1-dimensional walks to be at 0. From (5.10), the probability that a

1-dimensional walk is at 0 decays like m−1/2. Hence the probability that a 2-dimensional

walk is at the origin decays like m−1, which sums to infinity, leading to recurrence, while the

corresponding probability for a 3-dimensional walk decays like m−3/2 which has finite sum,

leading to transience.

In two dimensions we can make this precise in a very direct way. Let Xn be the walk in

Z2 and consider its projections onto the diagonal lines x = y and x = −y in the plane.

Each step of the walk increases or decreases the projection onto x = y by 1/
√

2, and also

increases or decreases the projection onto x = −y by 1/
√

2. All four possibilities are equally

likely.

Hence if we write W+
n and W−n for the two projections of Xn, we have that the processes

W+
n and W−n are independent of each other, and both of them are simple symmetric random

walks on 2−1/2Z.

Then we have

P(X2m = 0) = P(W+
2m = 0)P(W−2m = 0)

∼
(

1√
π

1

m1/2

)2

=
1

πm
.

Hence
∑
p
(2m)
00 =∞ and the walk is recurrent.

5.9.3 d=3

The trick from the previous section does not work in d = 3, so we need to do a little more

combinatorics. As the walk has period 2 we have a positive chance of return to the origin
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only when n is even. Each step is ±e1,±e2 or ±e3 where ei, i = 1, 2, 3 are the three unit

coordinate vectors. To return to the origin after 2m steps, we should have made, say, i steps

in each of the directions ±e1, j steps in each of the directions ±e2, and k steps in each of the

directions ±e3 for some i, j, k with i + j + k = m. Considering all the possible orderings of

these steps among the first 2m steps of the walk, we get

p
(2m)
00 =

∑
i,j,k≥0

i+j+k=m

(2m)!

i!2j!2k!2

(
1

6

)2m

=

(
2m

m

)(
1

2

)2m ∑
i,j,k≥0

i+j+k=m

(
m

i, j, k

)2(
1

3

)2m

≤

(
2m

m

)(
1

2

)2m

 ∑
i,j,k≥0

i+j+k=m

(
m

i, j, k

)(
1

3

)m max
i,j,k≥0

i+j+k=m

(
m

i, j, k

)(
1

3

)m
. (5.11)

Here, if i+ j + k = m, we write

(
m

i, j, k

)
=

m!

i!j!k!
. Note that

∑
i,j,k≥0

i+j+k=m

(
m

i, j, k

)(
1

3

)m
= 1,

since it is the sum of the mass function of a “trinomial(1/3, 1/3, 1/3)” distribution (consider

the number of ways of putting 3 balls into m boxes).

If m is divisible by 3, say m = 3r, then it is easy to check that the max in (5.11) is attained

when i = j = k = r, giving

p
(2m)
00 ≤

(
2m

m

)(
1

2

)2m
(

m

m/3,m/3,m/3

)(
1

3

)m
∼ 1√

2π

1

m1/2
× 1

2π

1

m

∼ 1

(2π)3/2
m−3/2,

where we used Stirling’s formula again for the last line. Hence we have
∑∞
r=0 p

(6r)
00 <∞.

Note also that p
(6r)
00 ≥

(
1
6

)2
p
(6r−2)
00 and p

(6r)
00 ≥

(
1
6

)4
p
(6r−4)
00 , so overall,

∑∞
n=0 p

(n)
00 < ∞,

and the walk is transient.

5.9.4 d ≥ 4

If we have a walk on Zd for d ≥ 4, we can obtain from it a walk on Z3 by looking only at

the first 3 coordinates, and ignoring any transitions that do not change them. Since we know

that a walk on Z3 only visits the origin finitely often, the same must be true for the walk in

higher dimensions also. Hence we have transience for all d ≥ 3.
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5.9.5 Mean hitting time

Let HA = inf{n ≥ 0: Xn ∈ A}, the first hitting-time of the set A, with the convention that

HA =∞ if Xn 6∈ A for all n ≥ 1. In fact if hAi is the hitting probability defined above, then

hAi = Pi(HA <∞).

Let kAi = E i(H
A), the mean hitting time of A from i. If hAi < 1, then Pi(HA = ∞) > 0

and certainly kAi =∞. Also maybe kAi =∞ even when hAi = 1.

Theorem 5.10. The vector of mean hitting times kA = (kAi , i ∈ S) is the minimal non-

negative solution to

kAi =

0 if i ∈ A

1 +
∑
j pijk

A
j if i /∈ A

.

Proof. “Condition on the first jump” again. For i /∈ A,

kAi = E i(H
A) =

∑
j

E i(H
A|X1 = j)Pi(X1 = j)

=
∑
j

pij(1 + kAj )

= 1 +
∑
j

pijk
A
j .

For the minimality, one can use a similar idea to that at (5.4) in the proof of Theorem 5.7

above. Specifically, one can show by induction that if (yi) is any non-negative solution to the

recursions, then yi ≥ E i min
(
HA,m

)
for all m ≥ 0; we omit the details.

5.9.6 Gambler’s ruin, continued

What is the expected hitting time of 0 from state i in the gambler’s ruin chain at (5.5)?

Let ki be the mean time to hit 0 starting from i. We give brief details (of course, one can

be more formal!).

If ki <∞, one can see that ki = βi for some β, since (compare the remark at (5.8) above),

E i(time to 0) = E i(time to i− 1) + E i−1(time to i− 2) + · · ·+ E 1(time to 0).

To satisfy the recursion in Theorem (5.10), we need

ki = 1 + qki−1 + pki+1

which leads to (q − p)β = 1. We obtain:

p < q ki = 1
q−p i; the chain takes a finite time on average to hit 0.

p > q We already know hi < 1, so certainly ki =∞.

p = q There is no suitable β, so ki =∞ here also, even though hi = 1. The chain hits 0 with

probability 1, but the mean time to arrive there is infinite.
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5.10 Null recurrence and positive recurrence

Define mi, the mean return time to a state i by

mi : = E i (inf{n ≥ 1 : Xn = i}) (5.12)

= 1 +
∑

pijk
{i}
j

(where k
{i}
j is the mean hitting time of i starting from j).

This quantity will be particularly important when we consider equilibrium behaviour of

a Markov chain – loosely speaking, the long-run proportion of time spent in state i ought to

be the reciprocal of the mean return time.

If i is transient, then certainly mi =∞ (since the return time itself is infinite with positive

probability).

If i is recurrent, then the return time is also finite, but nonetheless the mean could be

infinite.

If i is recurrent but mi =∞, the state i is said to be null recurrent.

If mi <∞ then the state i is said to be positive recurrent.

For similar reasons to those in Theorem 5.9, null recurrence and positive recurrence are

class properties; if one state in a communicating class is null (resp. positive) recurrent, then

every state in the class is null (resp. positive) recurrent.

If the chain is irreducible, we can therefore call the whole chain either transient, or null

recurrent, or positive recurrent.



6

Markov chains: stationary distributions and

convergence to equilibrium

6.1 Stationary distributions

Let π = (πi, i ∈ I) be a distribution on the state space I.

We say that π is a stationary distribution, or invariant distribution, or equilibrium

distribution, for the transition matrix P if

πP = π .

That is, for all j, πj =
∑
i πipij . The row vector π is a left eigenvector for the matrix P , with

eigenvalue 1.

If X0 has distribution π, then we know that Xn has distribution πPn. Hence if π is

stationary, then Xn has distribution π for all n. It follows that the sequence

(Xn, Xn+1, Xn+2, . . . )

has the same distribution as

(X0, X1, X2, . . . )

for any n.

6.2 Main theorems

Theorem 6.1 (Existence and uniqueness of stationary distributions). Let P be an irreducible

transition matrix.

(a) P has a stationary distribution if and only if P is positive recurrent.

(b) In that case, the stationary distribution π is unique, and is given by πi = 1/mi for all

i (where mi is the mean return time to state i defined at (5.12)).

55
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Theorem 6.2 (Convergence to equilibrium). Suppose P is irreducible and aperiodic, with

stationary distribution π. If Xn is a Markov chain with transition matrix P and any initial

distribution, then for all j ∈ I,

P(Xn = j)→ πj as n→∞.

In particular,

p
(n)
ij → πj as n→∞, for all i and j.

Theorem 6.3 (Ergodic theorem). Let P be irreducible. Let Vi(n) be the number of visits to

state i before time n, that is

Vi(n) =

n−1∑
r=0

I (Xr = i) .

Then for any initial distribution, and for all i ∈ I,

Vi(n)

n
→ 1

mi
almost surely, as n→∞.

That is,

P
(
Vi(n)

n
→ 1

mi
as n→∞

)
= 1.

The ergodic theorem concerns the “long-run proportion of time” spent in a state.

In the positive recurrent case, 1/mi = πi where π is the stationary distribution, so the

ergodic theorem says that (with probability 1) the long-run proportion of time spent in a

state is the stationary probability of that state.

In the null-recurrent or transient case, 1/mi = 0, so the ergodic theorem says that with

probability 1 the long-run proportion of time spent in a state is 0.

We can see the ergodic theorem as a generalisation of the strong law of large numbers. If

Xn is an i.i.d. sequence, then the strong law tells us that, with probability 1, the long run

proportion of entries in the sequence which are equal to i is equal to the probability that any

given entry is equal to i. The ergodic theorem can be seen as extending this to the case where

Xn is not i.i.d. but is a Markov chain.

6.3 Examples of stationary distributions

Example 6.4. Let P =

 0 1 0

0 1/2 1/2

1/2 0 1/2

. (Draw the diagram of the chain.)

For π to be stationary, we need

π1 = 1
2π3

π2 = π1 + 1
2π2

π3 = 1
2π2 + 1

2π3.

One of these equations is redundant, and we need the added relation π1 + π2 + π3 = 1 to

normalise the solution (so that π is a distribution).
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Solving, we obtain (π1, π2, π3) = (1/5, 2/5, 2/5).

Correspondingly, the vector of mean return times is given by (m1,m2,m3) = (5, 5/2, 5/2).

Note that this chain is aperiodic and irreducible. Hence, from any initial state, the distri-

bution at time n converges to π as n→∞. For example, p
(n)
11 → 1/5 as n→∞.

By the way, be careful to solve the equation πP = π and not to solve Pπ = π by mistake!

For any transition matrix P , the equation Pπ = π is solved by any vector π all of whose entries

are the same (why is this?) which could trap you into thinking that the uniform distribution

is stationary, which, of course, is not the case in general. We want the left eigenvector, rather

than the right eigenvector.

Example 6.5. Recall the example of a simple symmetric random walk on a cycle of size M

in Section 5.3. The distribution π with πi = 1/M for all i is stationary, since it solves

πi = 1
2πi+1 + 1

2πi−1

for each i. Because of the symmetry of the chain, it is not surprising that the stationary

distribution is uniform.

Is it the true that p
(n)
00 → 1/M as n→∞? If M is odd, then the chain is aperiodic (check

this!), so the answer is yes.

However, if M is even then the chain has period 2. Then p
(n)
00 = 0 whenever n is odd. In

fact p
(2m)
00 → 2π0 = 2/M as m → ∞ (exercise; consider the 2-step chain X0, X2, X4, . . . on

the subset of the state space which consists just of even sites. Is it irreducible? What is its

stationary distribution?)

Example 6.6 (Random walk on a graph). A “graph” in the combinatorial sense is a collection

of vertices joined by edges. For example, the following graph has 6 vertices and 7 edges.

1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

2

4 5 63
�
�
�
�

Let I be the set of vertices. Two vertices are neighbours in the graph if they are joined by an

edge. The degree of a vertex is its number of neighbours. Let di be the degree of vertex i. In

the graph above, the vector of vertex degrees is (di, i ∈ I) = (3, 2, 2, 4, 2, 1).

Assume di > 0 for all i. A random walk on the graph is a Markov chain with state space

I, evolving as follows; if i is the current vertex, then at the next step move to each of the

neighbours of i with probability 1/di.

Assume irreducibility of the chain (equivalently, that there is a path between any two

vertices in the graph). Then the stationary distribution of the chain π is unique.

In fact, the stationary probability of a vertex is proportional to its degree. To show this,

we will check that dP = d where d is the vector of vertex degrees and P is the transition

matrix of the chain:

dj =
∑
i

1(i is a neighbour of j)
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=
∑
i

di
1

di
1(i is a neighbour of j)

=
∑
i

dipij ,

as required.

To obtain the stationary distribution we simply need to normalise d. So we obtain πi =

di/
∑
j dj .

For the graph above,
∑
j dj = 14, and we obtain

π =

(
3

14
,

1

7
,

1

7
,

2

7
,

1

7
,

1

14

)
.

From this we can deduce the mean return times. For example, m1 = 1/π1 = 14/3.

Notice that the chain is aperiodic. As a result, we also have convergence to the stationary

distribution. For example, starting from any initial distribution, the probability that the walk

is at vertex 1 at step n converges to 3/14 as n→∞.

Example 6.7 (One-dimensional random walk). Consider again the familiar example of a

one-dimensional random walk. Let I = {0, 1, 2, . . . } and let

pi,i+1 = p for i ≥ 0,

pi,i−1 = q = 1− p for i ≥ 1,

p0,0 = q.

If p > q, we found previously that the walk is transient, so no stationary distribution will

exist.

If p = q, the walk is recurrent, but the mean return time is infinite, so again there is no

stationary distribution.

If p < q, the walk is positive recurrent. For stationarity, we need πi = πi−1p + πi+1q

for i ≥ 1. This is (not coincidentally) reminiscent of the hitting probability equation we

previously found for the model (except the values of p and q are reversed). It has general

solution πi = A+B(p/q)i.

We need
∑
πi = 1, which forces A = 0 and B = (1− p/q), giving

πi =

(
1− p

q

)(
p

q

)i
.

That is, the stationary distribution of the walk is geometric with parameter 1− p
q .

Example 6.8 (A two-state chain and a non-irreducible chain).

Consider the two-state chain on {1, 2} with transition matrix P =

(
1− α α

β 1− β

)
.

Solving πP = π and normalising we obtain that π =
(

β
α+β ,

α
α+β

)
.

Notice that this agrees with what we found in Example 5.4; the expression for p
(n)
11 given

in (5.2) satisfies p
(n)
11 → π1 = β

α+β as n → ∞, as it should do because of the convergence to

equilibrium in Theorem 6.2.
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Now consider the chain on {1, 2, 3, 4} whose transition matrix is

P =


1− α α 0 0

β 1− β 0 0

0 0 1− γ γ

0 0 δ 1− δ

 .

This chain is not irreducible. We can view it as two separate two-state chains, on {1, 2} and

{3, 4}, with no communication between them. Both
(

β
α+β ,

α
α+β , 0, 0

)
and

(
0, 0, δ

γ+δ ,
γ
γ+δ

)
are stationary distributions. But also any mixture of these is stationary (since if π(1) and π(2)

are eigenvectors of P with eigenvalue 1, then so is any linear combination of π(1) and π(2)).

So any distribution(
x

β

α+ β
, x

α

α+ β
, (1− x)

δ

γ + δ
, (1− x)

γ

γ + δ

)
,

where x ∈ [0, 1], is stationary. (In fact, these are all the stationary distributions – exercise).

The uniqueness result in Theorem 6.1 does not apply because the transition matrix is not

irreducible.

6.4 Proof of Theorems 6.1, 6.2 and 6.3. (non-examinable)

The proofs below are given partly rather informally. They are not examinable; however, they

are very helpful in developing your intuition about the results. The “coupling” idea used in

the proof of Theorem 6.2 is particularly pretty and I certainly recommend thinking about it,

but it will not be examined. (The results themselves are very much examinable!)

Proof of Theorem 6.3. This proof is essentially an application of the strong law of large num-

bers.

If the chain is transient, then with probability 1 there are only finitely many visits to any

state, so Vi(n) is bounded with probability 1. So

P
(
Vi(n)

n
→ 0 as n→∞

)
= 1,

which is the result we want since mi =∞.

Suppose instead that the chain is recurrent. In this case we will visit state i infinitely

often. Let Rk be the time between the kth and the (k+ 1)st visits to i. Then R1, R2, R3, . . .

are i.i.d. with mean mi (which is finite in the positive recurrent case and infinite in the null

recurrent case).

So by the strong law of large numbers,

P
(
R1 +R2 + · · ·+RK

K
→ mi as K →∞

)
= 1. (6.1)

Let TK be the time of the Kth visit to i. Then TK = T1 + X1 + X2 + · · · + XK−1. It is

easy to obtain that, for any c, TK/K → c if and only if (R1 + · · ·+RK)/K → c. Hence from

(6.1) we have

P
(
TK
K
→ mi as k →∞

)
= 1. (6.2)
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Notice that TK/K is the time per visit (averaged over the first K visits) whereas Vi(n)/n

is the number of visits per unit time (averaged over the first n times). It is straightforward

to obtain (check!) that, for any c, TK/K → c as K → ∞ if and only if Vi(n)/n → 1/c as

n→∞.

Hence from (6.2) we have

P
(
Vi(n)

n
→ 1

mi
as n→∞

)
= 1

as required.

Lemma 6.9. If P is positive recurrent, then it has stationary distribution π with πi = 1/mi.

Proof. We give an informal version of the proof, which could quite easily be made rigorous.

From the ergodic theorem, we know that (with probability 1) the long-run proportion of

visits to state i is 1/mi.

Each time the chain visits state i, it has probability pij of jumping from there to state j.

We can obtain that the long-run proportion of jumps from i to j is 1
mi
pij .

First consider the case where the state space I is finite. By summing over i ∈ I, we get

that the long-run proportion of jumps into state j is
∑
i

1
mi
pij .

But the long-run proportion of jumps into j is the same as the long-run proportion of

visits to j, which (by the ergodic theorem) is 1/mj .

We obtain
1

mj
=
∑
i

1

mi
pij ,

i.e. πj =
∑
i πipij , so that π satisfies πP = π and is stationary as desired.

If i is infinite, it is not immediate that the long-run proportion of jumps into j is the sum

over i of the long-run proportions of jumps from i to j. However (by considering as large a

finite set of i as desired) the second quantity does give an upper bound for the first, so we get

1

mj
≤
∑
i

1

mi
pij

for all j ∈ I. But summing both sides over j gives the same (finite) amount, since
∑
j pij = 1

for all i. So in fact we must have equality for all j as required.

Lemma 6.10. If π is any stationary distribution then πi = 1/mi.

Proof. Suppose π is stationary for P , and let X be a Markov chain with initial distribution

π and transition matrix P . Then by stationarity, P(Xn = i) = πi for all n, and

EVn(i)

n
=

1

n

n−1∑
r=0

E
(
1{Xn = i}

)
=

1

n

n−1∑
r=0

P(Xn = i)

= πi. (6.3)
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From the ergodic theorem, for any ε

P
(∣∣∣∣Vn(i)

n
− 1

mi

∣∣∣∣ > ε

)
< ε (6.4)

for large enough n (since almost sure convergence implies convergence in probability).

But since Vn(i)/n is bounded between 0 and 1, it follows from (6.4) (check!) that

EVn(i)

n
→ 1

mi
as n→∞.

Comparing to (6.3), we obtain πi = 1/mi.

This gives uniqueness of the stationary distribution for positive recurrent chains, and

shows that no stationary distribution can exist for null recurrent and transient chains. So we

have proved Theorem 6.1.

Finally, we prove the result on convergence to equilibrium.

Proof of Theorem 6.2. Let P be irreducible and aperiodic, with stationary distribution π.

Let λ be any initial distribution, and let (Xn, n ≥ 0) be Markov(λ, P ). We wish to show

that P(Xn = j)→ πj as n→∞, for any j.

Consider another chain (Yn, n ≥ 0) which is Markov(π, P ), and which is independent of

Z. Since π is stationary, Yn has distribution π for all n.

Let T = inf{n ≥ 0 : Xn = Yn}. We will claim that P(T < ∞) = 1; that is, the chains X

and Y will meet at some point.

Suppose this claim is true. Then define another chain Z by

Zn =

Xn if n < T

Yn if n ≥ T
.

The idea is that Z starts in distribution λ, and evolves independently of the chain Y , until

they first meet. As soon as that happens, Z copies the moves of Y exactly.

Then Z is also Markov(λ, P ), since Zn starts in distribution λ and each jump is done

according to P , first by copying X up to time T , and then by copying Y after time T .

The idea is that the chain Y is “in equilibrium” (since it starts in the equilibrium distri-

bution π) so that if there is high probability that Yn = Zn, then the distribution of Zn must

be close to π. More precisely:

|P(Zn = j)− πj | = |P(Zn = j)− P(Yn = j)|

≤ P(Zn 6= Yn)

= P(T > n)

→ 0 as n→∞.

Then we have P(Zn = j)→ πj .

But the chains X and Z have the same distribution (they are both Markov(λ, P )). So we

have also shown that P(Xn = j)→ πj , as required.
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It remains to prove the claim that T is finite with probability 1. Fix any state b ∈ I and

define Tb = inf{n ≥ 0 : Xn = Yn = b}. Then T ≤ Tb. We will show that Tb is finite with

probability 1.

Consider the process Wn = (Xn, Yn). Since Xn and Yn evolve independently, Wn is a

Markov chain on the state space I × I with transition probabilities

p̃(i,k)(j,l) = pijpkl,

and initial distribution

µ(i,k) = λiπk.

P is aperiodic and irreducible, so for all i, j, k, l, we have that

p̃
(n)
(i,k)(j,l) = p

(n)
ij p

(n)
kl > 0

for all large enough n. So P̃ is irreducible.

P̃ has an invariant distribution given by

π̃(i,k) = πiπk.

Hence P̃ is recurrent (by Theorem 6.1). But Tb = inf{n ≥ 0 : Wn = (b, b)}. Then indeed

P(Tb <∞) = 1 (since an irreducible recurrent chain visits every state with probability 1).

Notice where the argument above fails when P is periodic. The chain Wn = (Xn, Yn) still

has the stationary distribution of the form above, but it is not irreducible, so it may never

reach the state (b, b). (For example, if P has period 2, and the chains X and Y start out with

“opposite parity”, then they will never meet).



7

Poisson processes

A Poisson process is a natural model for a stream of events occuring one by one in continuous

time, in an uncoordinated way. For example: the process of times of detections by a Geiger

counter near a radioactive source (a very accurate model); the process of times of arrivals of

calls at a call centre (often a good model); the process of times of arrivals of buses at a bus

stop (probably an inaccurate model; different buses are not really uncoordinated, for various

reasons).

Consider a random process Nt, t ∈ [0,∞). (Note that “time” for our process is now a

continuous rather than a discrete set!)

Such a process is called a counting process if Nt takes values in {0, 1, 2, . . . }, and Ns ≤ Nt
whenever s ≤ t. We will also assume that t 7→ Nt is right-continuous.

If Nt describes an arrival process, then Nt = k means that there have been k arrivals in

the time interval [0, t]. In fact we can describe the process by the sequence of arrival times,

which we might call “points” of the process. Let Tk = inf{t ≥ 0 : Nt ≥ k} for k ≥ 0. Then

T0 = 0 and Tk is the “kth arrival time”, for k ≥ 1. We also define Yk = Tk − Tk−1 for k ≥ 1.

Yk is the “interarrival time” between arrivals k − 1 and k.

For s < t, we write N(s, t] for Nt −Ns, which we can think of as the number of points of

the process which occur in the time-interval (s, t]. This is also called the “increment” of the

process N on the interval (s, t].

7.1 Poisson process: a choice of definitions

Let λ > 0. We will give two different definitions for what it means to be a Poisson process

of rate λ. Afterwards we will show that these definitions are equivalent.

Definition 7.1 (Definition of Poisson process via exponential interarrival times). (Nt, t ≥ 0)

is a Poisson process of rate λ if its interarrival times Y1, Y2, Y3, . . . are i.i.d. with Exp(λ)

distribution.

Definition 7.2 (Definition of Poisson process via Poisson distribution of increments). Nt, t ≥
0 is a Poisson process of rate λ if:

(i) N0 = 0.

63
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(ii) If (s1, t1), (s2, t2), . . . , (sk, tk) are disjoint intervals in R+, then the increments N(s1, t1],

N(s2, t2], . . . , N(sk, tk] are independent, where N(si, ti] = Nti −Nsi .

(iii) For any s < t, the increment N(s, t] has Poisson distribution with mean λ(t− s).

Property (ii) in Definition 7.2 is called the independent increments property. The

number of points falling in disjoint intervals is independent.

This can be seen as a version of the Markov property. For any t0, the distribution of the

process (N(t0, t0 + t], t ≥ 0), is independent of the process (Nt, t ≤ t0). Put another way, the

distribution of (Nt, t > t0) conditional on the process (Nt, t ≤ t0) depends only on the value

Nt0 .

7.2 Equivalence of the definitions

We wish to show that the properties listed in Definitions 7.1 and 7.2 are equivalent. The key

idea is that the memoryless property for the exponential distribution and the independent

increments property are telling us the same thing. The argument below is somewhat informal

(but can be made completely rigorous).

Interrarival definition implies independent Poisson increments definition

Suppose we have Definition 7.1 in terms of i.i.d. exponential interarrival times. We wish to

show that it implies the statements in Definition 7.2.

Property (i) is immediate: since Y1 = T1 = inf{t ≥ 0 : Nt ≥ 1} is strictly positive with

probability 1, also N0 = 0 with probability 1.

Now let us consider the distribution of the number of points in an interval. First let us

take s = 0 in (iii), and consider N(0, t]. We want N(0, t] ∼ Poisson(λt), i.e. that for all k,

P
(
N(0, t] = k

)
=
e−λt(λt)k

k!
. (7.1)

But we can rewrite the event on the LHS in terms of Tk and Tk+1. Since Tk is the sum

of k independent exponentials of rate λ, we have Tk ∼ Gamma(k, λ), and similarly Tk+1 ∼
Gamma(k + 1, λ). So

P
(
N(0, t] = k

)
= P (Tk ≤ t, Tk+1 > t)

= P (Tk ≤ t)− P (Tk+1 ≤ t)

=

∫ t

0

(λx)k−1e−λx

(k − 1)!
dx−

∫ t

0

(λx)ke−λx

k!
dx. (7.2)

Now we can check that the RHS of (7.1) and (7.2) are the same (for example, either by

integrating by parts in (7.2), or by differentiating in (7.1)). In this way we obtain that indeed

N(0, t] ∼ Poisson(λt).

Now we use the memoryless property of the exponential distribution to extend this to all

intervals and to give the independent increments property.
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Fix s, and suppose we condition on any outcome of the process on [0, s]. To be specific,

condition on the event that

Ns = k, T1 = t1, T2 = t2, . . . , Tk = tk.

Equivalently,

Y1 = t1, Y2 = t2 − t1, . . . , Yk = tk − tk−1, Yk+1 > s− tk. (7.3)

The memoryless property for Yk+1 tells us that conditional on Yk+1 > s − tk, the distri-

bution of Yk+1 − (s− tk) is again exponential with rate λ.

Combining this with the independence of the sequence Yi, we have that conditional on

(7.3), the sequence Yk+1 − (s− tk), Yk+2, Yk+3, . . . is i.i.d. with Exp(λ) distribution.

But this means that, conditional on (7.3), the distribution of the process N(s, s+u], u ≥ 0

is the same as the original distribution of the process Nu, u ≥ 0.

So indeed, the property (iii) extends to all s. Further, the increment on (s, t] is independent

of the whole process on (0, s], and applying this repeatedly we get independence of any set of

increments on disjoint intervals. So Definition 7.2 holds as desired.

Poisson definition characterises the distribution of the process

With some work we could show the reverse implication using a direct calculation. Instead

we appeal to a general (although rather subtle) property. The Poisson definition specifies

the joint distribution of Nt1 , Nt2 , . . . , Ntk for any sequence t1, t2, . . . , tk. It turns out that

such “finite dimensional distributions”, along with the assumption that the process is right-

continuous, are enough to characterise completely the distribution of the entire process. We

will not delve any further here into this fact from stochastic process theory. But it means

that at most one process could satisfy Definition 7.2, and since we have shown that a process

defined by Definition 7.1 does so, we have that Definition 7.2 implies 7.1 as desired.

7.2.1 The Poisson process as a limit of discrete-time processes

The calculation showing that (7.1) and (7.2) are the same is perhaps not very illuminating.

The case k = 0 is easy and is illustrated for example in Example 7.4(a) below. To get more

intuition for the relation between Poisson increments and exponential interarrivals, one can

also think about a related discrete-time process.

Let us recall some facts from earlier in the course:

(1) If Xn ∼ Binomial(n, λ/n), then Xn
d→ Poisson(λ) as n→∞. (See Example 2.9.)

(2) If Yn ∼ Geometric(λ/n), then Yn/n
d→ Exp(λ) as n→∞. (See Example 2.3.)

Now consider a sequence of independent Bernoulli trials. In each trial (or time-slot),

suppose we see a success with probability p and no event with probability 1− p. Then in any

run of M trials, the total number of successes has Binomial(M,p) distribution. Meanwhile

the distances between consecutive successes are i.i.d. with Geometric(p) distribution.

Now consider n large. Let p = λ/n, and rescale time by a factor of 1/n, so that a time-

interval of length t corresponds to a run of tn trials. Then the number of events in a time-

interval of length t has Binomial(tn, λ/n) distribution, which is approximately Poisson(λt),
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while the times between consecutive successes have Geometric(λ/n) distribution rescaled by

1/n, which is approximately Exp(λ).

So indeed, as n → ∞, we obtain a continuous-time process in which the interarrival

times are independent exponentials, and the increments on disjoint intervals are independent

Poisson random variables. So we can see this exponential/Poisson relationship in the Pois-

son process as a limit of the geometric/binomial relationship which is already familiar from

sequences of independent trials.

7.2.2 A third definition (non-examinable)

Reflecting some of the ideas in the previous section, there is in fact a third natural definition

of the Poisson process, which we include for completeness. This involves the independent

increments property as in the case of Definition 7.2, but instead of specifying that increments

have Poisson distribution, it specifies the behaviour of the increments on small time-intervals.

Namely, the probability of seeing an event in a small interval should behave like λ multiplied

by the length of the interval, and it should be very unlikely that two or more events occur

within the interval:

Definition 7.3 (Defintion of Poisson process via infinitesimal increments). Nt, t ≥ 0 is a

Poisson process of rate λ if:

(i) N0 = 0.

(ii) If (s1, t1), (s2, t2), . . . , (sk, tk) are disjoint intervals in R+, then the increments N(s1, t1],

N(s2, t2], . . . , N(sk, tk] are independent.

(iii) The distribution of N(s, s+ h] is the same for all s, and as h→ 0,

P(N(s, s+ h] = 0) = 1− λh+ o(h)

P(N(s, s+ h] = 1) = λh+ o(h) (7.4)

P(N(s, s+ h] ≥ 2) = o(h).

Note that any two of the conditions of (7.4) imply the third.

This kind of formulation is very natural when moving to the context of more general

continuous-time Markov jump processes (in which the rate at which jumps occur may depend

on the present state). The definition can again be shown to be equivalent to Definitions 7.1

and 7.2.

7.3 Thinning and superposition of Poisson processes

Theorem 7.1 (Superposition of Poisson processes). Let Lt and Mt be independent Poisson

processes of rate λ and µ respectively. Let Nt = Lt + Mt. Then Nt is a Poisson process of

rate λ+ µ.

Proof. We work from the definition of a Poisson process in terms of independent Poisson

increments for disjoint intervals. Clearly, N0 = L0 + M0 = 0 for property (i), and also
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Nt satisfies property (ii) (independent increments) since Lt and Mt both have independent

increments and are independent of each other.

So we need to show property (iii). Since L(s, t] ∼ Poisson(λt) and M(s, t] ∼ Poisson(µt)

independently of each other, we have N(s, t] ∼ Poisson((λ + µ)t) as required, by familiar

properties of the Poisson distribution.

Theorem 7.2 (Thinning of a Poisson process). Let Nt be a Poisson process of rate λ. “Mark”

each point of the process with probability p, independently for different points. Let Mt be the

counting process of the marked points. Then Mt is a Poisson process of rate pλ.

Proof. Again we will work with the definition in terms of independent Poisson increments.

Properties (i) and (ii) for M follow from the same properties for N .

Now consider any interval (s, t]. We have N(s, t] ∼ Poisson(λ(t− s)), and conditional on

N(s, t] = n, we have M(s, t] ∼ Binomial(n, p).

But if N ∼ Poisson(µ), and, conditional on N = n, M ∼ Binomial(n, p), then in fact

M ∼ Poisson(pµ). This fact was proved in two different ways in the Prelims course. For

example, it can be done using generating functions: let M = X1 + X2 + · · · + XN where

Xi are i.i.d. Bernoulli random variables; then GM (s) = GN (GX(s)). Alternatively, by direct

calculation:

P(M = k) =
∑
n

P(M = k|N = n)P(N = n)

=
∑
n≥k

e−µµn

n!

(
n

k

)
pk(1− p)n−k

...

=
e−pµ(pµ)k

k!
.

Hence indeed we have here that M(s, t] ∼ Poisson(pλ(t − s)). So indeed property (iii)

holds as desired, and M is a Poisson process of rate pλ.

Remark 7.3. In fact, it is not too hard to prove something stronger. If L is the process of

unmarked points, then L is a Poisson process of rate (1 − p)λ, and the processes L and M

are independent.

7.4 Poisson process examples

Example 7.4. A Geiger counter near a radioactive source detects particles at an average

rate of 1 per 2 seconds. (a) What is the probability that there is no particle detected for 3

seconds after the detector is switched on? (b) What is the probability of detecting at least 3

particles in the first 4 seconds?

Solution: We model the process of detections as a Poisson process with rate λ = 0.5 (where

the unit of time is 1 second).

For part (a), P(N3 = 0) = e−3λ = e−1.5, since N3, the number of points up to time

3, has Poisson(3λ) distribution. Alternatively, we could calculate the same probability as

P(T1 > 3) = e−3λ since T1, the time of the first point of the process, has distribution Exp(λ).
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For part (b), N4 has Poisson distribution with mean 4λ = 2. Then

P (N4 ≥ 3) = 1− P (N4 = 0)− P (N4 = 1)− P (N4 = 2)

= 1− e−2 − 2e−2 − 22e−2

2!

= 1− 5e−2.

Example 7.5. A call centre receives calls from existing customers at rate 1 per 20 seconds,

and calls from potential new customers at rate 1 per 30 seconds. Assume that these form

independent Poisson processes. (a) What is the distribution of the total number of calls in

a given minute? (b) What is the probability that the next call to arrive is from a potential

new customer? (c) Suppose each call from a potential new customer results in a contract

with probability 1/4 independently. What is the distribution of the number of new contracts

arising from calls in a given hour?

Solution: Let the unit of time be 1 minute, so that the Poisson processes in the question

have rates 3 and 2.

(a) From Theorem 7.1, the combined process of all calls is a Poisson process of rate 5.

The number of calls in a given minute has Poisson(5) distribution.

(b) From any given moment, the time until the next “existing” call, say U1, is exponential

with rate 3, and the time until the next “new” call, say V1, is exponential with rate 2.

P(U1 < V1) =

∫ ∞
u=0

∫ ∞
v=u

3e−3u × 2e−2vdvdu

=

∫ ∞
u=0

3e−3ue−2udu

= 3/(2 + 3)

= 3/5.

(In fact, it is not a coincidence that here the answer is the ratio of the rate of the “existing

customer” process to the rate of the two processes combined. This fact follows from Remark

7.3; we can consider a single process of rate 5 and “mark” each point with probability 3/5,

to arrive at two independent processes with rates 3 and 2. In particular, the probability that

the first point is marked is then 3/5.)

(c) The process of calls resulting in contracts is a thinning of the process of calls from

potential new customers. This gives us a new Poisson process of rate 1/4 × 2 = 1/2. So

the total number of calls resulting in new contracts in a given time interval of length 60 has

Poisson(30) distribution.

Example 7.6 (Genetic recombination model). An illustration of genetic recombination is

shown in the figure below. In most of our cells, we have two versions of each chromosome,

one inherited from our mother and one from our father. Sex cells – sperm and ova – contain

only one copy of each chromosome.

During meiosis – the process in which sperm and ova are created – the chromosomes are

broken at certain random “crossover” or “recombination” points, to form new chromosomes
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a b c d

a b c d

a

a

b c d

dcb

maternal

paternal

new chromosomes

Figure 7.1: Recombination

out of pieces of the maternal and paternal chromosomes. The crossover points are shown as

crosses in the top line of Figure 7.1.

Genes occur at particular positions along the chromosome. In early genetic research,

biologists investigated the position of genes on chromosomes by looking at how likely the

genes were to stay together, generation after generation. Genes on different chromosomes

should be passed on independently. Genes that are close together on the same chromosome

should almost always be passed on together, while genes that are on the same chromosome

but further apart should be more likely than chance to be inherited together, but not certain.

In Figure 7.1, genes b, c and d stay together but a is separated from them.

As a simple model, we can imagine the chromosome as a continuous line, and model the

recombination points as a Poisson process along it, of rate λ, say.

Consider two points a and b on the interval, representing the location of two genes. Let x

be the distance between a and b. The probability of seeing no crossover at all between a and

b is given by

P (no crossover in (a, b)) = e−λx.

But what we really want to compute is the probability of seeing an even number of crossovers

between a and b:

p = P (even number of crossovers in (a, b)) =

∞∑
k=0

e−λx
(λx)2k

(2k)!

= e−λx
(

1 +
(λx)2

2!
+

(λx)4

4!
+ . . .

)



Probability Part A, version of 2018/10/27 70

= e−λx
(
eλx + e−λx

2

)
=

1 + e−2λx

2
.

If we observe that a and b are inherited together with probability p > 1/2, we can invert the

expression above to estimate the distance between them by

x = − 1

2λ
log(2p− 1).


