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1

Review: probability spaces, random variables,

distributions, independence

1.1 Probability spaces and random variables

We start by reviewing the basic idea of a probability space introduced in last year’s course.

This framework underlies modern probability theory, even though we will seldom need to

appeal to it directly in this course.

A probability space is a collection (Ω,F ,P) with the following structure:

(i) Ω is a set, which we call the sample space.

(ii) F is a collection of subsets of Ω. An element of F is called an event.

(iii) The probability measure P is a function from F to [0, 1]. It assigns a probability

to each event in F .

We can think of the probability space as modelling an experiment. The sample space Ω

represents the set of all possible outcomes of the experiment.

The set F of events should satisfy certain natural conditions:

(1) Ω ∈ F .

(2) If F contains a set A, then it also contains the complement Ac (i.e. Ω \A).

(3) If (Ai, i ∈ I) is a finite or countably infinite collection of events in F , then their union⋃
i∈I Ai is also in F .

By combining (2) and (3), we can also obtain finite or countable intersections, as well as

unions.

Finally, the probability measure P should satisfy the following conditions (the probability

axioms):

(1) P(Ω) = 1.
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(2) If (Ai, i ∈ I) is a finite or countably infinite collection of disjoint events, then

P

(⋃
i∈I

Ai

)
=
∑
i∈I

P(Ai). (1.1)

A random variable is a function defined on Ω. We will consider real-valued random

variables, i.e. functions from Ω to R.

A random variable represents an observable in our experiment; something we can “mea-

sure”.

Formally, for a function X from Ω to R to be a random variable, we require that the

subset

{ω ∈ Ω: X(ω) ≤ x}

of Ω is an event in F , for every x ∈ R. (Then, by taking complements, unions and intersec-

tions, we will in fact have that the set {ω ∈ Ω: X(ω) ∈ B} is in F for a very large class of

sets B).

We will usually write X rather than X(ω) for the value taken by a random variable. Thus

if X is a random variable we can talk about the probability of the event

{X ∈ B} = {ω ∈ Ω: X(ω) ∈ B},

which we will write as P(X ∈ B).

Within one experiment, there will be many observables! That is, on the same probability

space we can consider many different random variables.

Remarks:

(a) For very simple models, there may be a natural way to set up the sample space Ω (e.g.

to represent the set of possible outcomes of the throw of a die or a coin). For more

complicated models, this quickly becomes less straightforward. In practice, we hardly

ever want to consider Ω directly; instead we work directly with the “events” and “random

variables” (the “observables”) in the experiment.

(b) In contrast, there are settings in probability theory where we care a lot about the collection

of events F , and its structure. (For example, modelling a process evolving in time, we

might have a family of different collections Ft, t ≥ 0, where Ft represents the set of events

which can be observed by watching the evolution of the process up to time t). However,

for the purposes of this course we will hardly ever worry about F directly; we will be safe

to assume that F will always contain any event that we wish to consider.

1.1.1 Examples

Here are some examples of systems (or “experiments”) that we might model using a prob-

ability space, and, for each one, some examples of random variables that we might want to

consider within our model:

• We throw two dice, one red and one blue. Random variables: the score on the red die;

the score on the blue die; the sum of the two; the maximum of the two; the indicator

function of the event that the blue score exceeds the red score....
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• A Geiger counter detecting particles emitted by a radioactive source. Random variables:

the time of the kth particle detected, for k = 1, 2, . . . ; the number of particles detected

in the time interval [0, t], for t ∈ [0,∞)....

• A model for the evolution of a financial market. Random variables: the prices of various

stocks at various times; interest rates at various times; exchange rates at various times....

• The growth of a colony of bacteria. Random variables: the number of bacteria present

at a given time; the diameter of the colonised region at given times; the number of

generations observed in a given time interval....

• A call-centre. The time of arrival of the kth call; the length of service required by the

kth caller; the wait-time of the kth caller in the queue before receiving service....

1.2 Probability distributions

We consider the distribution of a random variable X. This can be summarised by the dis-

tribution function (or cumulative distribution function) of X, defined by

F (x) = P(X ≤ x)

for x ∈ R. (Once we know F , we can derive the probabilities P(X ∈ B) for a very wide class

of sets B by taking complements, intersections and unions. Formally, the distribution of a

random variable X is the map B 7→ P(X ∈ B), considered on a suitable collection of subsets

B ⊆ R. In practice, we identify distributions by identifying the cumulative distribution

function or any other associated function that uniquely determines a distribution.)

Any distribution function F must obey the following properties:

(1) F is non-decreasing.

(2) F is right-continuous.

(3) F (x)→ 0 as x→ −∞.

(4) F (x)→ 1 as x→∞.

Remark 1.1. Note that two different random variables can have the same distribution! For

example, consider the model of two dice mentioned above. If the dice are “fair”, then the

distribution of the score on the blue die might be the same as the distribution of the score

on the red die. However, that does not mean that the two scores are always the same! They

are two different “observables” within the same experiment.

If two random variables X and Y have the same distribution, we write X
d
= Y .

We single out two important classes of random variables: discrete and continuous.
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1.2.1 Discrete random variables

A random variable X is discrete if there is a finite or countably infinite set B such that

P(X ∈ B) = 1.

We can represent the distribution of a discrete random variable X by its probability mass

function

pX(x) = P(X = x)

for x ∈ R. This function is zero except at a finite or countably infinite set of points. We have

•
∑
x pX(x) = 1.

• P(X ∈ A) =
∑
x∈A pX(x) for any set A ⊆ R.

The points x where P(X = x) > 0 are sometimes called the atoms of the distribution of

X. In many examples these will be a set of integers such as {1, 2, . . . , n} or {0, 1, 2, . . . } or

{1, 2, 3, . . . }.
The cumulative distribution function of X has jumps at the location of the atoms, and is

constant on any interval that does not contain an atom.

1.2.2 Continuous random variables

A random variable X is called (absolutely) continuous if its distribution function F can be

written as an integral. That is, there is a function f such that

P(X ≤ x) = F (x) =

∫ x

−∞
f(u)du.

f is called the density function (or probability density function) of X.

This certainly implies that F is a continuous function (although note that not all con-

tinuous F can be written in this way). In particular, P(X = x) = F (x) − limy↑x F (y) = 0

for any x. The density function is not unique; for example, we can change the value of f at

any single point without affecting the integral of f . At points where F is differentiable, it is

natural to take f(x) = F ′(x). For any a < b, we have

P(a ≤ X ≤ b) =

∫ b

a

f(u)du.

1.2.3 Median

The median of a distribution with cumulative distribution function F is m ∈ R such that

F (m) = 1/2, if such m is unique, or the midpoint m = (a+ b)/2 of the interval (a, b), where

where F (x) = 1/2, x ∈ (a, b).

1.3 Expectation and variance

Let X be a discrete random variable with probability mass function pX(x) = P(X = x). The

expectation (or mean) of X is defined by

EX = E (X) =
∑
x

xpX(x), (1.2)
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when this sum converges.

If instead X is a continuous random variable with density function f , then its expectation

is given by

EX = E (X) =

∫ ∞
−∞

xf(x)dx, (1.3)

when this integral converges.

We often want to express the expectation of a function of a random variable X in terms

of the density function or the mass function of X. We have

E g(X) =
∑
x

g(x)pX(x)

in the discrete case, and

E g(X) =

∫ ∞
−∞

g(x)f(x)dx

in the continuous case, always provided that the expectation exists, i.e. that the sum or

integral converges.

It is rather unsatisfactory that we have two different definitions of expectation for two

different cases, and no definition at all for random variables which are neither continuous

nor discrete. In fact it is not difficult to unify the definitions. A very natural way is to

consider approximations of a general random variable by discrete random variables. This is

analogous to the construction of the integral of a general function by defining the integral

of a step function using sums, and then defining the integral of a general function using an

approximation by step functions, which you saw in last year’s analysis course.

This unifies the two definitions above, and extends the definition to all types of random

variable, whether discrete, continuous or neither. We will not pursue this here – but we will

collect together basic properties of expectation which we will use constantly:

(1) For any event A, write 1A for the indicator function of A. Then E1A = P(A).

(2) If P(X ≥ 0) = 1, then EX ≥ 0.

(3) (Linearity 1): E (aX) = aEX for any constant a.

(4) (Linearity 2): E (X + Y ) = EX + EY .

Formally, E is a linear operator on the vector space of random variables X : Ω → R whose

expectations exist.

1.3.1 Variance and covariance

The variance of a random variable X is defined by

Var(X) = E [(X − EX)2],

provided that the expectations exist. This can then alternatively be expressed as

Var(X) = E (X2)− (EX)2.
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The covariance of two random variables X and Y is defined by

Cov(X,Y ) = E [(X − EX)(Y − EY )],

if the expectations exist, which can then alternatively be expressed as

Cov(X,Y ) = E (XY )− (EX)(EY ).

Note that Var(X) = Cov(X,X). From the linearity of expectation, we get a bi-linearity

property for covariance:

Cov(aX + b, cY + d) = acCov(X,Y ).

As a special case we can obtain

Var(aX + b) = a2 Var(X).

We also have the property

Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y )

and more generally

Var(X1 +X2 + · · ·+Xn) =

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n

Cov(Xi, Xj),

always provided that all expectations exist.

1.4 Independence

Events A and B are independent if

P(A ∩B) = P(A)P(B).

More generally, a family of events (Ai, i ∈ I), possibly infinite, even uncountable, is called

independent if for all finite subsets J of I,

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai).

Remark 1.2. Remember that this is a stronger condition than pairwise independence! Even

for three events, it is possible that A1, A2 are independent, A2, A3 are independent and A1, A3

are independent but that A1, A2, A3 are not independent.

Random variables X1, X2, . . . , Xn are independent if for all B1, B2, . . . , Bn ⊂ R, the events

{X1 ∈ B1}, {X2 ∈ B2}, . . . , {Xn ∈ Bn} are independent.

In fact, it turns out to be enough to check that for all x1, x2, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn)

= FX1(x1) · · ·FXn(xn).
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If the random variables are all discrete, another equivalent condition is that

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · ·P(Xn = xn).

When X and Y are independent random variables whose expectations exist, we have

E (XY ) = E (X)E (Y ), or equivalently Cov(X,Y ) = 0. That is, X and Y are uncorrelated.

The converse is not true; uncorrelated does not imply independent!

Various of the properties above can be summarised by the phrase “independence means

multiply”.

1.5 Examples of probability distributions

We review some of the families of probability distributions which are of particular importance

in applications and in theory.

1.5.1 Continuous distributions

Uniform distribution

X has the uniform distribution on an interval [a, b] if its probability density function is given

by

f(x) =

 1
b−a , if a ≤ x ≤ b,

0, otherwise.

We write X ∼ U [a, b].

Exponential distribution

X has exponential distribution with parameter (or rate) λ if its distribution function is given

by

F (x) =

0, x < 0,

1− e−λx, x ≥ 0.

Its density function is

f(x) =

0 x < 0

λe−λx x ≥ 0
.

We write X ∼ Exp(λ). We have EX = 1/λ and VarX = 1/λ2. If X ∼ Exp(λ) and

a > 0, then aX ∼ Exp(λ/a). An important property of the distribution is the memoryless

property: P(X > x+ t |X > t) does not depend on t.

Normal distribution

X has the normal (or Gaussian) distribution with mean µ and variance σ2 if its density

function is given by

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.
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We write X ∼ N(µ, σ2). The standard normal distribution is N(0, 1).

If X ∼ N(µ, σ2) then aX + b ∼ N(aµ + b, a2σ2). In particular, (X − µ)/σ has standard

normal distribution.

If X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ) are independent, X +Y ∼ N(µX +µY , σ

2
X +σ2

Y ).

The normal distribution has an extremely important role in probability theory, exemplified

by the fact that it appears as the limit in the Central Limit Theorem.

We often write Φ for the distribution function of the standard normal distribution:

Φ(x) =

∫ x

−∞

1√
2π

exp

(
−z

2

2

)
dz.

Gamma distribution

The family of gamma distributions generalises the family of exponential distributions. The

gamma distribution with rate λ and shape r has density

f(x) =


λr

Γ(r)
xr−1e−λx x ≥ 0

0 x < 0
.

Here Γ(r) is the gamma function, defined by Γ(r) =
∫∞
0
zr−1e−zdz. It is the analytic contin-

uation of the factorial function, in that Γ(r) = (r − 1)! when r is an integer.

A gamma distribution with shape r = 1 is an exponential distribution.

If X ∼ Gamma(rX , λ) and Y ∼ Gamma(rY , λ) are independent, then we have X + Y ∼
Gamma(rX + rY , λ). As a special case, if X1, X2, . . . , Xn are i.i.d. with Exp(λ) distribution,

then X1 +X2 + · · ·+Xn has Gamma(n, λ) distribution.

1.5.2 Discrete distributions

Discrete uniform distribution

X has the discrete uniform distribution on a set B of size n (for example the set {1, 2, . . . , n})
if

pX(x) =

1/n, x ∈ B

0, x /∈ B
.

Bernoulli distribution

X has Bernoulli distribution with parameter p if

pX(1) = p, pX(0) = 1− p

(and so of course pX(x) = 0 for other values of x).

We have EX = p and VarX = p(1− p).
If A is an event with P(A) = p, then its indicator function 1A has Bernoulli distribution

with parameter p.
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Binomial distribution

If X1, X2, . . . , Xn are i.i.d. Bernoulli random variables with the same parameter p, then their

sum X1 + · · ·+Xn has Binomial distribution with parameters n and p.

Equivalently, if A1, . . . , An are independent events, each with probability p, then the total

number of those events which occur has Binomial(n, p) distribution.

If X ∼ Binomial(n, p) then

pX(k) =

(
n

k

)
pk(1− p)n−k for k ∈ {0, 1, . . . , n}.

EX = np and VarX = np(1− p).

Geometric distribution

Let p ∈ (0, 1) and let X have mass function

pX(k) = (1− p)k−1p for k ∈ {1, 2, 3, . . . }.

Let Y = X − 1; then Y has mass function

pY (k) = (1− p)kp for k ∈ {0, 1, 2, . . . }.

The terminology is not consistent; eitherX or Y might be said to have a geometric distribution

with parameter p. (Or even sometimes with parameter 1− p).
If we have a sequence of independent trials, with probability p of success at each trial,

then X could represent the number of trials needed for the first success to occur, while Y

could represent the number of failures needed before the first success occurs.

We have

P(X > k) = P(Y ≥ k) = (1− p)k for k = 0, 1, 2, . . . .

The geometric distribution can be thought of as a discrete anaologue of the exponential

distribution. It too has a memoryless property; for k,m ∈ {0, 1, 2, . . . }, the conditional

probability P(X > k +m |X > k) does not depend on k.

Poisson distribution

X has Poisson distribution with mean λ if

P(X = r) =
e−λλr

r!
for r = 0, 1, 2, . . . .

EX = λ and VarX = λ.

If X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent, then X + Y ∼ Poisson(λ+ µ).

The Poisson distribution arises in many applications; it is a good model for the total

number of events occurring when there are a large number of possible events which each

occur with small probability. There are close connections between the Poisson distribution

and the exponential distribution, which we will see in detail when we study Poisson processes

at the end of the course.



2

Convergence of random variables, and limit

theorems

Let X and Y be random variables. What might we mean by saying “X and Y are close”?

(1) We might be describing a particular realisation. For example, we made an observation of

X and Y , and on this occasion |X − Y | < ε.

(2) We might be making a statement about the joint distribution of X and Y , for example

P(|X − Y | < ε) > 1− ε,

or

E
(
|X − Y |

)
< ε.

(3) We might be comparing the distribution of X with the distribution of Y , for example

|FX(x)− FY (x)| < ε for all x.

Correspondingly, there are several different things we might mean when we say that a sequence

of random variables converges to a limit.

2.1 Modes of convergence

Let X1, X2, . . . and X be random variables.

Note that {Xn → X as n→∞} is an event. More formally we could write

{ω ∈ Ω: Xn(ω)→ X(ω) as n→∞}

to emphasise the dependence on ω; the event might hold for some ω but not for others.

Definition. Xn → X almost surely (or “with probability 1”) if

P (Xn → X as n→∞) = 1. (2.1)

We often abbreviate to “Xn → X a.s.”.

10
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Definition. Xn → X in probability (written Xn
P→ X) if for every ε > 0,

P
(∣∣Xn −X

∣∣ < ε
)
→ 1 as n→∞. (2.2)

Let F1, F2, . . . and F be the distribution functions of X1, X2, . . . and X respectively.

Definition. Xn → X in distribution (or weakly), written Xn
d→ X, if, for every x such

that F is continuous at x,

Fn(x)→ F (x) as n→∞. (2.3)

We will see later that these formulations are in decreasing order of strength.

2.2 Convergence in distribution

Notice that in the definition of convergence in distribution in (2.3), the random variables

involved appear only through their distributions. Hence we do not even need all the random

variables to be defined on the same probability space. This is really a definition about conver-

gence of distributions, not about convergence of random variables. The joint distribution of

the random variables does not need to be defined. This is in contrast to the definitions of al-

most sure convergence in (2.1) and of convergence in probability in (2.2), where we genuinely

do need all the random variables to be defined on the same space.

As a result, we might sometimes vary the notation by writing a distribution rather than

a random variable on the right-hand side; e.g. “Xn
d→ N(0, 1)” if the limit in distribution is

the standard normal, or “Xn
d→ U [0, 1]” if the limit in distribution is the uniform distribution

on [0, 1].

In many cases the limit will be deterministic; e.g. if the limit is a distribution which puts

all its mass at the value 0, then we will write Xn
d→ 0.

In (2.3), why did we ask for the limit to hold only for x which are continuity points of F ,

rather than at all x? The first couple of examples (which are almost trivial) make this clear.

Example 2.1. Let Xn have the uniform distribution on the interval [−1/n, 1/n]. Then

Fn(x)→ 0 for all x < 0, and Fn(x)→ 1 for all x > 0.

So we have Xn
d→ 0, i.e. the distribution of Xn converges to that of a deterministic random

variable which is equal to 0 with probability 1. Such a random variable has distribution

function given by F (x) = 0 for x < 0 and F (x) = 1 for x ≥ 0.

Note that Fn(0) = 1/2 for all n, while F (0) = 1. So convergence does not hold at the

point 0 itself (but this is OK, since 0 is not a continuity point of F ).

Example 2.2. Let Xn be a deterministic random variable taking the value 1/n with prob-

ability 1. Let X be a deterministic random variable taking the value 0 with probability

1 (as above). Then once again, Xn
d→ X, (even though P(Xn ≤ 0) = 0 for all n while

P(X ≤ 0) = 1).

There are many situations in which a sequence of discrete random variables converges to

a continuous limit. Here is one example, showing that a geometric distribution with a small

parameter is well approximated by an exponential distribution:
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Example 2.3. Let Xn have geometric distribution on the positive integers, with parameter

pn, i.e. P(Xn = k) = (1 − pn)k−1pn for k = 1, 2, . . . . Show that if pn → 0 as n → ∞, then

pnXn converges in distribution to the exponential distribution with mean 1.

Solution: We have P(Xn > k) = (1− pn)k for k = 0, 1, 2, . . . . For x ≥ 0, we have

P(pnXn > x) = P
(
Xn >

x

pn

)
= P

(
Xn >

⌊
x

pn

⌋)
= (1− pn)bx/pnc

→ e−x as n→∞

because pn → 0; here we use the fact that (1 − ε)x/ε → e−x as ε → 0, and also that⌊
x/pn

⌋
− x/pn is bounded.

Hence if Fn is the distribution function of pnXn, then 1 − Fn(x) → e−x as n → ∞. So

Fn(x)→ 1− e−x for all x > 0, while Fn(x) = 0 for all x ≤ 0 and all n.

So indeed Fn(x) → F (x) for all x, where F is the distribution function of a random

variable with Exp(1) distribution.

There are several more examples on the problem sheets.

2.3 Comparison of different modes of convergence

Theorem 2.4. The following implications hold:

Xn → X almost surely ⇒ Xn → X in probability ⇒ Xn → X in distribution

The reverse implications do not hold in general.

Before starting the proof we note a useful fact, which is a simple consequence of the

countable additivity axiom for unions of disjoint sets (1.1).

Lemma 2.5. Let An, n ≥ 1, be an increasing sequence of events; that is, A1 ⊆ A2 ⊆ A3 ⊆ . . . .
Then

lim
n→∞

P(An) = P

⋃
n≥1

An

 . (2.4)

Proof. Because the sequence An is increasing, it is easy to rewrite the union as a disjoint

union:

P

⋃
n≥1

An

 = P
(
A1 ∪

⋃
n≥1

(An+1 \An)
)

= P(A1) +

∞∑
i=1

P
(
Ai+1 \Ai

)
(using countable additivity)

= P(A1) + lim
n→∞

n−1∑
i=1

P (Ai+1 \Ai)
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= lim
n→∞

(
P(A1) +

n−1∑
i=1

P (Ai+1 \Ai)
)

= lim
n→∞

P
(
A1 ∪

⋃
1≤i≤n−1

(Ai+1 \Ai)
)

= lim
n→∞

P(An).

Proof of Theorem 2.4.

(1) First we will show that convergence in probability implies convergence in distribution.

Let Fn be the distribution function of Xn, and F the distribution function of X. Fix any x

such that F is continuous at x, and fix any ε > 0.

Observe that if Xn ≤ x, then either X ≤ x+ ε or |Xn −X| > ε. Hence

Fn(x) = P(Xn ≤ x)

≤ P
(
X ≤ x+ ε or |Xn −X| > ε

)
≤ P

(
X ≤ x+ ε

)
+ P

(
|Xn −X| > ε

)
→ F (x+ ε) as n→∞,

using the convergence in probability. So Fn(x) < F (x+ ε) + ε for all large enough n.

Similarly by looking at 1− Fn(x) = P(Xn > x), we can obtain that Fn(x) > F (x− ε)− ε
for all large enough n.

Since ε > 0 is arbitrary, and since F is continuous at x, this implies that Fn(x) → F (x)

as n→∞.

(2) For convergence in distribution, we do not need the random variables to be defined on

the same probability space. But even if they are, convergence in distribution does not imply

convergence in probability. For example, suppose that X and Y are random variables with

the same distribution but with P(X = Y ) < 1. Then the sequence X,X,X, . . . converges to

Y in distribution, but not in probability.

(3) Now we will show that almost sure convergence implies convergence in probability. Fix

ε > 0 and for N ∈ N, define the event AN by

AN = {|Xn −X| < ε for all n ≥ N} .

Suppose that Xn → X almost surely. If the event {Xn → X} occurs, then the event AN

must occur for some N , so we have P
(⋃

AN
)

= 1. AN is an increasing sequence of events,

so (2.4) then gives limN→∞ P(AN ) = 1.

But AN implies
∣∣XN −X

∣∣ < ε, giving P
(∣∣XN −X

∣∣ < ε
)
→ 1. Since ε is arbitrary, this

means that Xn → X in probability, as desired.
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(4) Finally we want to show that convergence in probability does not imply almost sure

convergence.

Consider a sequence of independent random variables Xn where P(Xn = 1) = 1/n and

P(Xn = 0) = (n− 1)/n.

We have Xn → 0 in probability as n → ∞ because for any ε > 0, P(|Xn − 0| < ε) ≥
P(X = 0)→ 1.

Since Xn only take the values 0 and 1, the event {Xn → 0} is the same as the event

{Xn = 0 eventually}. This is
⋃
N≥1BN where BN = {Xn = 0 for all n ≥ N}.

But for any N and K,

P(BN ) ≤ P(Xn = 0 for all n = N, . . . , N +K) =
N − 1

N

N

N + 1

N + 1

N + 2
· · · N +K − 1

N +K

=
N − 1

N +K
.

As K ≥ 1 is arbitrary, we obtain that P(BN ) = 0. Hence also by Lemma 2.5, P(
⋃
N≥1BN ) =

0, and so P(Xn → 0) = 0. Hence it is not the case that Xn converges to 0 almost surely.

Although convergence in distribution is weaker than convergence in probability, there is

a partial converse, for the case when the limit is deterministic:

Theorem 2.6. Let X1, X2, . . . be a sequence of random variables defined on the same prob-

ability space. If Xn → c in distribution where c is some constant, then also Xn → c in

probability.

Proof. Exercise (see problem sheet).

2.4 Review: Weak law of large numbers

This was covered at the end of last year’s course (without explicitly introducing the notion

of convergence in probability).

Let Sn = X1 +X2 + · · ·+Xn, where Xi are i.i.d. with mean µ. The law of large numbers

tells us that, roughly speaking, Sn behaves to first order like nµ as n → ∞. The weak law

phrases this in terms of convergence in probability. (Later we will see a stronger result in

terms of almost sure convergence).

Theorem (Weak Law of Large Numbers). Let X1, X2, . . . be i.i.d. random variables with

finite mean µ. Let Sn = X1 +X2 + · · ·+Xn. Then

Sn
n

P→ µ as n→∞.

That is, for all ε > 0,

P
(∣∣∣∣Snn − µ

∣∣∣∣ < ε

)
→ 1 as n→∞. (2.5)

Given Theorem 2.6, we could equivalently write Sn

n

d→ µ.

We will give an extremely simple proof of the weak law of large numbers, under an

additional condition (that the Xi have finite variance). To do this, we need some results

which give probability bounds on the tail of a distribution in terms of its mean and variance.
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Theorem (Markov’s inequality). Let X be random variable taking non-negative values (i.e.

P(X ≥ 0) = 1). Then for any z > 0,

P(X ≥ z) ≤ EX
z
. (2.6)

Proof. We consider a random variable Xz = z1{X ≥ z}. So Xz takes the value 0 whenever

X is in [0, z) and the value z whenever X is in [z,∞). So X ≥ Xz always (here we use the

fact that X is non-negative).

Then EX ≥ EXz = zE1{X ≥ z} = zP(X ≥ z). Rearranging gives the result.

Theorem (Chebyshev’s inequality). Let Y be a random variable with finite mean and vari-

ance. Then for any ε > 0,

P
(
|Y − EY | ≥ ε

)
≤ VarY

ε2
.

Proof.

P
(
|Y − EY | ≥ ε

)
= P

(
[Y − EY ]2 ≥ ε2

)
≤

E
(
[Y − EY ]2

)
ε2

(by applying Markov’s inequality (2.6) with X = [Y − EY ]2 and z = ε2)

=
VarY

ε2
.

Proof of the weak law of large numbers in the case of random variables with finite variance.

Let Xi be i.i.d. with mean µ and variance σ2. Recall Sn = X1 + · · ·+Xn. We want to show

that Sn/n
P→ µ as n→∞.

We have E (Sn/n) = µ, and (using the independence of the Xi),

Var

(
Sn
n

)
=

VarSn
n2

=
VarX1 + · · ·+ VarXn

n2

=
nσ2

n2

=
σ2

n
.

Fix any ε > 0. Using Chebyshev’s inequality applied to the random variable Sn/n, we have

P
(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ε) ≤ Var
(
Sn

n

)
ε2

=
σ2

nε2

→ 0 as n→∞.

So indeed (2.5) holds, as required.
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Remark. Observe that we could relax considerably the assumptions in the weak law of large

numbers, and still get the same result using almost the same proof. We never used at all the

assumption that the Xi all had the same distribution. We could also relax the assumption

that the Xi are independent, as long as the variance of Sn grows more slowly than n2. For

example, if we have an upper bound on the variance of each Xi, and a bound which is

o(n2) on the sum
∑

1≤i<j≤n Cov(Xi, Xj), then exactly the same idea applies to show that

(Sn − ESn)/n converges to 0 in distribution.

2.5 Strong law of large numbers

In the weak law of large numbers, we proved convergence in distribution of the average of

i.i.d. random variables to the mean. The strong law says more: the convergence occurs with

probability 1.

Theorem (Strong Law of Large Numbers). Let X1, X2, . . . be i.i.d. with mean µ. Let Sn =

X1 + · · ·+Xn. Then
Sn
n
→ µ almost surely as n→∞.

2.5.1 Proof of the strong law of large numbers (non-examinable)

A proof of the strong law of large numbers in full generality is somewhat involved. A nice proof

uses martingales and is part of next year’s course on Probability, Measure and Martingales.

However, if we assume an extra condition, namely that the distribution has a finite fourth

moment, then a relatively straightforward proof is possible. [NB the proof is not examinable.]

Proof of Strong Law of Large Numbers, under the additional condition EX4
n <∞.

Let us centre the Xn, writing Wn = Xn − µ.

Then EWn = 0, and we have EX4
n <∞⇒ EW 4

n <∞ (exercise).

Note also that

(EW 2
n)2 = E (W 4

n)−Var(W 2
n)

≤ E (W 4
n).

We will consider E
[
(Sn − nµ)4

]
. Expanding the fourth power and using linearity of

expectation, we obtain

E
[
(Sn − nµ)4

]
= E

[
(W1 +W2 + · · ·+Wn)4

]
=
∑

1≤i≤n

EW 4
i + 4

∑
1≤i,j≤n
i 6=j

EW 3
i Wj + 3

∑
1≤i,j≤n
i 6=j

EW 2
i W

2
j

+ 6
∑

1≤i,j,k≤n
i,j,k distinct

EW 2
i WjWk +

∑
1≤i,j,k,l≤n
i,j,k,l distinct

EWiWjWkWl.

(The exact constants in front of the sums are not too important!) Using independence and

EWi = 0, most of these terms vanish. For example, EW 3
i Wj = EW 3

i EWj = 0. We are left
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with only

E
[
(Sn − nµ)4

]
= nEW 4

1 + 3n(n− 1)
(
E [W 2

1 ]
)2

≤ 3n2EW 4
1 .

From this we have

E

[ ∞∑
n=1

(
Sn
n
− µ

)4
]

=

∞∑
n=1

E

[(
Sn
n
− µ

)4
]

=

∞∑
n=1

1

n4
E
[
(Sn − nµ)

4
]

≤
∞∑
n=1

3EW 4
1

n2

<∞.

Formally, interchanging the infinite series and expectation in the first line requires a justifica-

tion refining the notion of absolute convergence to a framework involving general expectations,

which is beyond the scope of this course in the present generality. This is not so hard for

discrete random variables (changing the order of terms in absolutely convergent series). The

theory for such interchanging of series and integrals is developed in next term’s course on

Integration and transferred to a general setting of expectations on probability spaces at the

very beginning of next year’s course on Probability, Measure and Martingales.

But if Z is a random variable with EZ < ∞, then certainly P(Z < ∞) = 1. Applying

this with Z =
(
Sn

n − µ
)4

, we get

P

( ∞∑
n=1

(
Sn
n
− µ

)4

<∞

)
= 1.

Finally, if
∑

(an−µ)4 is finite, then certainly an → µ as n→∞. So we can conclude that

P
(
Sn
n
→ µ as n→∞

)
= 1,

as required.

2.6 Central limit theorem

The weak law of large numbers tells us that the distribution of Sn/n concentrates around µ

as n becomes large. The central limit theorem (CLT) goes much further, telling us that (if

the random variables Xi have finite variance) the “fluctuations” of Sn around nµ are of order
√
n. Moreover, the behaviour of these fluctuations is universal ; whatever the distribution of

the Xi, if we scale Sn − nµ by
√
n, we obtain a normal distribution as the limit as n→∞.

Theorem (Central Limit Theorem). Let X1, X2, . . . be i.i.d. random variables with mean µ

and variance σ2 ∈ (0,∞). Let Sn = X1 +X2 + · · ·+Xn. Then

Sn − nµ
σ
√
n

d→ N(0, 1) as n→∞. (2.7)
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We will prove the CLT later using generating functions.

Remark 2.7. We can summarise the CLT in three stages:

(1) The distribution of Sn concentrates around nµ;

(2) The fluctuations of Sn around nµ are of order
√
n;

(3) The asymptotic distribution of these fluctuations is normal.

These are somehow in increasing order of refinement. Some students take in the third of

these, but not the first two; they remember that the RHS in (2.7) is a normal distribution,

but are hazy about what is going on on the LHS. This is a bit perverse; without knowing the

scale of the fluctuations, or what they fluctuate around, knowing their distribution is not so

useful!

Example 2.8. An insurance company sells 10, 000 similar car insurance policies. They

estimate that the amount paid out in claims on a typical policy has mean £240 and standard

deviation £800. Estimate how much they need to put aside in reserves to be 99% sure that

the reserve will exceed the total amount claimed.

Solution: Let µ = £240, σ = £800, n = 10, 000, and note Φ−1(0.99) = 2.326 where Φ is the

distribution function of the standard normal.

Let Sn be the total amount claimed. For large n, the Central Limit Theorem tells us that

P
(
Sn − nµ
σ
√
n

< Φ−1(0.99)

)
≈ 0.99,

i.e.

P
(
Sn < Φ−1(0.99)σ

√
n+ nµ

)
≈ 0.99.

So the amount needed in reserves is approximately Φ−1(0.99)σ
√
n+nµ, which in this case is

£2, 586, 080.

Notice that the reserve required per customer is about £258, which is £18 higher than

µ. We can see from the calculation above that this surplus is proportional to n−1/2. If we

had 100 customers rather than 10,000, we would need a surplus 10 times bigger, while with

1,000,000 customers it would be 10 times smaller.

The fact that the amount per customer needed to cover the fluctuations around the mean

is decreasing in the number of customers is an example of risk pooling.

Of course, the example of identical customers is a bit simplistic, but the effect of risk

pooling that we observe is a very real one. Our analysis also assumed that the different cus-

tomers are independent – is that realistic? For car insurance, it is not such a bad assumption.

Similarly for life insurance. In the case of property insurance, it could be a very bad assump-

tion (for example, floods can damage many properties simultaneously). In that situation, the

effect of risk pooling is a lot smaller (which explains why obtaining insurance for a property

subject to a risk of flooding can be problematic, even if the risk is not that great).

Example 2.9 (Binomial distribution: CLT and Poisson approximation). Let p ∈ (0, 1) and

let Yn have Binomial(n, p) distribution. Then we can write Yn = X1 + · · · + Xn where the
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Xi are i.i.d. Bernoulli(p) random variables. (We can think of the Xi as indicator functions of

independent events, all with the same probability, e.g. arising from random sampling).

The Xi each have mean p and variance p(1− p). So we can apply the CLT to obtain

Yn − np√
n

d→ N
(
0, p(1− p)

)
as n→∞.

Now instead of considering fixed p, consider random variables Wn with Binomial(n, pn)

distribution, where pn → 0 as n → ∞. Now a very different limit applies, describing a

situation in which we have a very large number of trials but each one has a very small

probability of success. Let λn = npn, the mean of Wn. Suppose that λn converges to a limit

λ as n → ∞, so that the expected total number of successes stays approximately constant.

Then we will show that Wn converges in distribution to Poisson(λ).

It is enough to show (check!) that for each fixed k = 0, 1, . . . ,

P(Wn = k)→ λk

k!
e−λ

(since the RHS is the probability that a Poisson(λ) random variable takes the value k).

We have

P(Wn = k) = lim

(
n

k

)
pkn(1− pn)n−k

=

(
n

k

)(
λn
n

)k (
1− λn

n

)n−k
=
n(n− 1) · · · (n− k + 1)

nk
λkn
k!

(
1− λn

n

)n(
1− λn

n

)−k
= 1 · λ

k

k!
e−λ · 1

as desired.


