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Xi are i.i.d. Bernoulli(p) random variables. (We can think of the Xi as indicator functions of

independent events, all with the same probability, e.g. arising from random sampling).

The Xi each have mean p and variance p(1− p). So we can apply the CLT to obtain

Yn − np√
n

d→ N
(
0, p(1− p)

)
as n→∞.

Now instead of considering fixed p, consider random variables Wn with Binomial(n, pn)

distribution, where pn → 0 as n → ∞. Now a very different limit applies, describing a

situation in which we have a very large number of trials but each one has a very small

probability of success. Let λn = npn, the mean of Wn. Suppose that λn converges to a limit

λ as n → ∞, so that the expected total number of successes stays approximately constant.

Then we will show that Wn converges in distribution to Poisson(λ).

It is enough to show (check!) that for each fixed k = 0, 1, . . . ,

P(Wn = k)→ λk

k!
e−λ

(since the RHS is the probability that a Poisson(λ) random variable takes the value k).

We have

P(Wn = k) =

(
n

k

)
pkn(1− pn)n−k

=

(
n

k

)(
λn
n

)k (
1− λn

n

)n−k
=
n(n− 1) · · · (n− k + 1)

nk
λkn
k!

(
1− λn

n

)n(
1− λn

n

)−k
→ 1 · λ

k

k!
e−λ · 1

as n→∞, as desired.



3

Generating functions

3.1 Review of probability generating functions

Let X be a random variable taking non-negative integer values, and let pX be its probability

mass function. The probability generating function of X is defined by

G(z) := E
(
zX
)

=

∞∑
k=0

pX(k)zk.

G is a power series whose radius of convergence is at least 1. We can recover the coefficients

of the power series, i.e. the values of the function pX , from the behaviour of G and its

derivatives at the point 0, and we can compute the moments of X from the behaviour of G

and its derivatives at 1:

Theorem 3.1.

(a) G(k)(0) = k! pX(k) for k = 0, 1, 2, . . . .

(b) G(1) = 1 and G(k)(1) = E
[
X(X − 1) · · · (X − k + 1)] for k = 1, 2, . . . .

Here if the radius of convergence of G is exactly 1, then G(k)(1) should be taken to mean

limz↑1G
(k)(z). In this case, the limit may be finite or infinite.

From Theorem 3.1(a), we see immediately that a distribution is determined by its gener-

ating function:

Theorem 3.2 (Uniqueness theorem for probability generating functions). If X and Y have

the same generating function, then they have the same distribution.

From Theorem 3.1(b), we have, for example, E (X) = G′(1), Var(X) = G′′(1) + G′(1) −
[G′(1)]2.

Generating functions are extremely useful tools for dealing with sums of independent

random variables. Let X and Y be independent random variables with generating functions

GX and GY . Then the generating function of their sum is given by

GX+Y (z) = E
(
zX+Y

)
= E

(
zXzY

)
20
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= E
(
zX
)
E
(
zY
)

(by independence)

= GX(z)GY (z).

(Again, “independence means multiply”).

We can also treat the sum of a random number of random variables. Let X1, X2, . . . be

i.i.d. random variables (taking non-negative integer values), and let N be another random

variable, also taking non-negative integer values, independent of the sequence Xi. Define

S = X1 + · · ·+XN . Then we can write the generating function of S in terms of the common

generating function of the Xi and the generating function of N by

GS(z) = E
(
zS
)

= E
(
zX1+···+XN

)
= E

(
E
(
zX1+···+XN

∣∣N) )
= E

(
E
((
zX1

))N )
= E

(
(GX(z))

N
)

= GN (GX(z)) .

3.2 Moment generating functions

The probability generating function is well-adapted for handling random variables which

take non-negative integer values. To treat random variables with general distribution, we

now introduce two related objects, the moment generating function and the characteristic

function.

The moment generating function of a random variable X is defined by

MX(t) := E
(
etX
)
. (3.1)

This expectation may be finite or infinite.

(Note that we could obtain the moment generating function by substituting z = et in the

definition of the probability generating function above. An advantage of this form is that we

can conveniently consider an expansion around t = 0, whereas the expansion around z = 0,

convenient when the random variables took only non-negative integer values, no longer gives

a power series in the general case.)

For the same reason as for probability generating functions, the mgf of a sum of indepen-

dent random variables is the product of the mgfs:

Theorem 3.3.

(a) If Y = aX + b, then MY (t) = ebtMX(at).

(b) Let X1, . . . , Xn be independent random variables, with mgfs MX1 , . . . ,MXn . Then the

mgf of their sum is given by

MX1+···+Xn(t) = MX1(t) . . .MXn(t).
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Proof. (a): easy exercise. Part (b) is also straightforward:

MX1+···+Xn(t) = E
(
etX1+···+tXn

)
= E

(
etX1 . . . etXn

)
= E

(
etX1

)
. . .E

(
etXn

)
(by independence)

= MX1(t) . . .MXn(t).

An immediate disadvantage of the moment generating function is that it may not be well

defined. If the positive tail of the distribution is too heavy, the expectation in the definition

in (3.1) may be infinite for all t > 0: while if the negative tail is too heavy, the expectation

may be infinite for all t < 0.

For the moment generating function to be useful, we will require E et0|X| < ∞ for some

t0 > 0. That is, X has “finite exponential moments” of some order (equivalently, the tails

of the distribution function decay at least exponentially fast). Then (exercise!) the moment

generating function is finite for all t ∈ (−t0, t0), and also all the moments EXk are finite.

Most of the classical distributions that we have looked at are either bounded or have

tails that decay at least exponentially (for example uniform, geometric/exponential, normal,

Poisson...). However, distributions with heavier tails are also of great importance, especially

in many modelling contexts. For those distributions, the moment generating function is of

no use; however, we can consider a variant of it, the characteristic function (see later).

The next result explains the terminology “moment generating function”; the mgf of X

can be expanded as a power series around 0, in which the coefficients are the moments of X.

Theorem 3.4. Suppose MX(t) is finite for |t| ≤ t0, for some t0 > 0. Then

(a) MX(t) =
∑∞
k=0

tkE (Xk)
k! for |t| ≤ t0.

(b) M
(k)
X (0) = E (Xk).

Informal proof.

MX(t) = E (etX)

= E
(

1 + tX +
(tX)2

2!
+

(tX)3

3!
+ . . .

)
= 1 + tE(X) +

t2E (X2)

2!
+
t3E (X3)

3!
+ . . . ,

using linearity of expectation. This gives (a) and taking derivatives at 0 gives (b). Exchanging

expectation with an infinite sum, as we did here, really needs extra justification. In this case

there is no problem (for example, it is always fine in the case where the sum of the absolute

values also has finite expectation – in this case this gives E e|tX| <∞ which is easily seen to

be true); but we do not pursue it further here.

The following uniqueness and continuity results will be key to our applications of the

moment generating function.
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Theorem 3.5. If X and Y are random variables with the same moment generating function,

which is finite on [−t0, t0] for some t0 > 0, then X and Y have the same distribution.

Theorem 3.6. Suppose Y and X1, X2, . . . are random variables whose moment generating

functions MY and MX1 ,MX2 , . . . are all finite on [−t0, t0] for some t0 > 0. If

MXn
(t)→MY (t) as n→∞, for all t ∈ [−t0, t0],

then

Xn
d→ Y as n→∞.

The proofs of the uniqueness and continuity results for mgfs are beyond the scope of

the course. They correspond to an inversion theorem from Fourier analysis, by which the

distribution function of X can be written in a suitable way as a linear mixture over t of terms

E eitX .

Example 3.7. Find the moment generating function of the exponential distribution with

parameter λ.

Solution:

M(t) = E (etX)

=

∫ ∞
0

etxf(x)dx

=

∫ ∞
0

λetxe−λxdx

=
λ

λ− t

∫ ∞
0

(λ− t) exp−(λ−t)x dx

=
λ

λ− t
for t ∈ (−∞, λ).

In the last step we used the fact that the integrand is the density function of a random

variable, namely one with Exp(λ− t) distribution, so that the integral is 1.

Example 3.8. Find the moment generating function of a random variable with N(µ, σ2)

distribution. If Y1 ∼ N(µ1, σ
2
1) and Y2 ∼ N(µ2, σ

2
2) are independent, show that Y1 + Y2 ∼

N(µ1 + µ2, σ
2
1 + σ2

2).

Solution: Let X ∼ N(µ, σ2). Then X = σZ + µ, where Z is standard normal. We have

MZ(t) = E (etZ)

=

∫ ∞
−∞

exp(tz)
1√
2π

exp

(
−z2

2

)
dz

=

∫ ∞
−∞

1√
2π

exp

(
−(z2 − 2tz)

2

)
dz

=

∫ ∞
−∞

exp

(
t2

2

)
1√
2π

exp

(
−(z − t)2

2

)
dz

(this is “completing the square”)

= exp

(
t2

2

)∫ ∞
−∞

1√
2π

exp

(
−(z − t)2

2

)
dz
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= et
2/2

(the same trick as before: the integrand is the density function of N(t, 1) so the integral is 1).

Then from the first part of Theorem 3.3, MX(t) = eµtMZ(σt) = eµt+σ
2t2/2.

For the second part,

MY1+Y2
(t) = MY1

(t)MY2
(t)

= eµ1t+σ
2
1t

2/2eµ2t+σ
2
2t

2/2

= e(µ1+µ2)t+(σ2
1+σ

2
2)t

2/2.

Since this is the mgf of N(µ1 + µ2, σ
2
1 + σ2

2), and it is finite on an interval [−t0, t0] (in fact,

for all t), the uniqueness theorem for mgfs tells us that indeed that must be the distribution

of Y1 + Y2.

3.2.1 Proof of WLLN and CLT using moment generating functions

Let X1, X2, . . . be a sequence of i.i.d. random variables with finite exponential moments of

some order (i.e. their moment generating function is finite on some interval containing the

origin in its interior).

Let Sn = X1 + X2 + · · · + Xn. We can use moment generating functions to give a very

compact proof of the Central Limit Theorem for the sequence Sn (and, even more simply, the

Weak Law of Large Numbers).

Let the Xi have mean µ and variance σ2, and let M be their moment generating function.

Weak law of large numbers

From Taylor’s Theorem and the expansion of M as a power series around 0 (Theorem 3.4)

we can write, as h→ 0,

M(h) = M(0) + hM ′(0) + o(h)

= 1 + hµ+ o(h).

Here, we use notation “f(h) = o(g(h)) as h → 0” to mean f(h)/g(h) → 0 as h → 0. We

will similarly use notation “an = o(bn) as n → ∞” to mean an/bn → 0 as n → ∞. Here,

specifically, we therefore have (M(h)−M(0)− hM ′(0))/h→ 0 as h→ 0.

Let Mn be the mgf of Sn/n. Using the independence of the Xi, we have

Mn(t) = E (etSn/n)

= E
(
etX1/n . . . etXn/n

)
= (M(t/n))

n

=

(
1 +

t

n
µ+ o(t/n)

)n
as n→∞

→ etµ as n→∞.

But etµ is the mgf of a random variable which takes the constant value µ with probability 1.

From the continuity theorem for mgfs, Sn/n
d→ µ as n → ∞, and we have proved the weak

law of large numbers.
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Central limit theorem

Let Yi = Xi − µ, and let MY be the mgf of the common distribution of the Yi. Taking one

more term in the Taylor expansion, we have that as h→ 0,

MY (h) = MY (0) + hM ′Y (0) +
h2

2
M ′′Y (0) + o(h2)

= 1 + hE (Y ) +
h2

2
Var(Y ) + o(h2)

= 1 + h2σ2/2 + o(h2).

Let M̃n be the mgf of Sn−µn
σ
√
n

. Then we have

M̃n(t) = E
(

exp

(
t(Sn − µn)

σ
√
n

))
= E

(
exp

(
t(X1 − µ)

σ
√
n

)
. . . exp

(
t(Xn − µ)

σ
√
n

))
= MY

(
t

σ
√
n

)n
=

(
1 +

t2

2n
+ o

(
t2

n

))n
as n→∞

→ exp

(
t2

2

)
as n→∞.

But the last line is the mgf of N(0, 1). Using the continuity theorem again,

Sn − µn
σ
√
n

d→ N(0, 1),

and we have proved the CLT.

3.3 Using moment generating functions for tail bounds

Using a version of Markov’s inequality applied to a random variable like etX , we can get

bounds on the tail of a distribution in terms of the moment generating function which are

much better than we would get from, for example, Chebyshev’s inequality, which is the

application of Markov’s inequality to the random variable (X−µ)2. (Of course, this can only

work if the moment generating function exists!)

For example, we can apply this to simple random walk. Let Xi be i.i.d. taking values −1

and 1 with probability 1/2 each. Let Sn = X1 + · · ·+Xn, so that Sn is the position of simple

random walk on Z after n steps.

We know from the central limit theorem that, for large n, Sn is typically on the order of
√
n. So an event like {|Sn| > na}, for some a > 0, ought to have probability which gets small

as n→∞.

First we bound the probability using Chebyshev. We have ESn = 0 and VarSn = n. So

P(|Sn| > na) ≤ VarSn
(na)2
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=
1

na2
.

This goes to 0 as desired but not very quickly!

Let us try instead using the moment generating function. We have

E etXi =
et + e−t

2

= cosh t

≤ exp

(
t2

2

)
for all t.

(The inequality cosh t ≤ exp(t2/2) can be checked directly by expanding the exponential

functions and comparing coefficients in the power series).

For t > 0, we can now write

P(Sn > na) = P (exp(tSn) > exp(tna))

≤ E exp(tSn)

exp(tna)
(this is from Markov’s inequality)

=

(
E exp(tXi)

exp(ta)

)n
≤
(
exp

(
t2/2− ta

))n
.

Note that this is true for any positive t, so we are free to choose whichever one we like.

Naturally, we want to minimise the RHS. It is easy to check (just differentiate) that this is

done by choosing t = a, which gives

P(Sn > na) ≤ exp
(
−na2/2

)
.

By symmetry the bound on P(Sn < −na) is exactly the same. Combining the two we get

P(|Sn| > na) ≤ 2 exp
(
−na2/2

)
.

This decays much quicker than the bound from Chebyshev above!

3.4 Characteristic functions

The characteristic function is defined by replacing t by it in the definition of the moment

generating function. The characteristic function of X is given by

φX(t) := E (eitX),

for t ∈ R. We can write

φX(t) = E (cos(tX)) + iE (sin(tX)).

As a result we can see that the characteristic function is finite for every t, whatever the

distribution of X. In fact, |φX(t)| ≤ 1 for all t.

This means that many of the results for the moment generating function which depended

on exponential tails of the distribution have analogues for the characteristic function which
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hold for any distribution. Just as before we have φX+Y (t) = φX(t)φY (t). The uniqueness

and continuity theorems given for mgfs hold in a similar way for characteristic functions. The

Taylor expansion of the characteristic function around the origin involves the moments of the

distribution in a similar way (except now with an added factor of ik for the kth term):

φX(t) = 1 + itEX + i2t2
EX2

2
+ · · ·+ iktk

EXk

k!
+ o(tk) (3.2)

as t→ 0, whenever EXk is finite. Hence by following exactly the same strategy, we could give

a proof of the central limit theorem using characteristic functions instead of mgfs. This would

now prove the CLT without any additional assumption on the distribution (only finiteness of

the variance is needed). Apart from working with complex power series instead of real power

series, there are no additional complications when translating the proof from mgfs to cfs.

When the mgf is finite in an interval containing the origin in its interior, the theory of

analytic continuation of complex functions allows us to obtain the characteristic function

easily, by replacing t with it in the mgf.

Example 3.9. (a) The mgf of N(0, 1) is exp(t2/2), and the cf is exp((it)2/2) = exp(−t2/2).

(b) The mgf of Exp(1) is 1/(1− t), and the cf is 1/(1− it).

(c) Suppose X has Cauchy distribution with density f(x) = 1
π(1+x2) . The moment generating

function is infinite for all t 6= 0 (in fact, even the mean does not exist as E |X| = ∞ –

exercise). The characteristic function is given by

φX(t) = E eitX =

∫ ∞
−∞

eitx

π(1 + x2)
dx

and this can be evaluated by contour integration to give e−|t|.

Note that φX is not differentiable at 0; from (3.2), this corresponds to the fact that the

mean does not exist.

In fact, consider X1, X2, . . . Xn i.i.d. Cauchy, and Sn = X1 + · · ·+Xn. Then

φSn/n(t) = φ

(
t

n

)n
=
(
e−|t|/n

)n
= e−|t| = φX(t).

So Sn/n and Xi have the same distribution! The law of large numbers and the CLT do

not apply (since the mean does not exist).

3.4.1 Comparing moment generating functions and characteristic

functions

Question M4(a)(ii) on Part A paper AO2 from 2011 asks:

State one purpose for which you should use the characteristic function rather than the

moment generating function, and one purpose for which you would want to use the

moment generating function rather than the characteristic function.
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The previous section gives an obvious answer to the first part of the question: when the

distribution does not have exponentially decaying tails, the moment generating function is

not useful but the characteristic function certainly is (to prove the CLT, for example). In

the other direction, one could refer to the use of the mgf to give bounds on the tail of a

distribution. In Section 3.3 we did this using Markov’s inequality applied to the random

variable etX ; replacing this with eitX would give nothing sensible, since that function is not

real-valued, let alone monotonic.



4

Joint distribution of continuous random

variables

4.1 Review of jointly continuous random variables

The joint cumulative distribution function of two random variables X and Y is defined

by

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

X and Y are said to be jointly continuous if their joint cdf can be written as an integral:

FX,Y (x, y) =

∫ x

u=−∞

∫ y

v=−∞
f(u, v)du dv.

Then f is said to be the joint pdf of X and Y , often written as fX,Y . As in the case of a

single random variable, we might more properly say “a joint pdf” rather than “the joint pdf”

because we can, for example, change the value of f at finitely many points without changing

the value of any integrals of f . But it is natural to put

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)

whenever FX,Y is differentiable at (x, y).

For general (suitably nice1) sets A ⊂ R2 we have

P ((X,Y ) ∈ A) =

∫ ∫
A

fX,Y (x, y)dx dy. (4.1)

If fX,Y satisfies (4.1) for all (nice) A ⊂ R2, then, clearly, fX,Y is a joint pdf of (X,Y ). It

suffices to check (4.1) for rectangles A or just for sets of the form A = (−∞, u] × (−∞, v],

which yield the joint cdf.

We can recover the distribution of one of the random variables X or of Y by integrating

over the other one. (In this context the distribution of one of the variables is called the

marginal distribution).

fX(x) =

∫ ∞
y=−∞

fX,Y (x, y)dy

1The suitable definition of “nice” is “Borel measurable”. See Part A Integration.

29
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fY (y) =

∫ ∞
x=−∞

fX,Y (x, y)dx

A function of X and Y is itself a random variable. Its expectation is given by

Eh(X,Y ) =

∫ ∞
x=−∞

∫ ∞
y=−∞

h(x, y)fX,Y (x, y)dx dy.

Recall that X and Y are independent if FX,Y (x, y) = FX(x)FY (y) for all x, y. Equiva-

lently, the joint density can be written as a product:

fX,Y (x, y) = fX(x)fY (y).

All the above can be naturally generalised to describe the joint distribution of more than

two random variables.

4.2 Change of variables

Often there is more than one natural coordinate system in which to view a model. We have

the following change of variables result:

Theorem 4.1. Suppose T : (x, y) 7→ (u, v) is a one-to-one mapping from some domain

D ⊆ R2 to some range R ⊆ R2.

Define the Jacobian J as a function of (u, v) by

J = det


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

Assume that the partial derivatives involved exists and are continuous.

If X,Y have joint probability density function fX,Y , then the random variables U, V defined

by (U, V ) = T (X,Y ) are jointly continuous with joint probability density function fU,V given

by

fU,V (u, v) =

fX,Y
(
x(u, v), y(u, v)

)
|J(u, v)| if (u, v) ∈ R

0 otherwise
.

Proof. The proof is simple using the familiar formula for change of variables in an integral.

Suppose that A ⊆ D and T (A) = B. Then, since T is one-to-one,

P ((U, V ) ∈ B) = P ((X,Y ) ∈ A)

=

∫ ∫
A

fX,Y (x, y)dx dy

=

∫ ∫
B

fX,Y (x(u, v), y(u, v)) |J(u, v)|du dv.

Hence the final integrand is the joint pdf of (U, V ).
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The formula for change of variables in the integral appeared in various contexts last year.

Recall the general idea: after a suitable translation, the transformation T looks locally like a

linear transformation whose matrix is the matrix of partial derivatives above. We know that

the factor by which the area of a set changes under a linear transformation is given by the

determinant of the matrix of the transformation. So, locally, the Jacobian J(u, v) gives the

ratio between the area of a rectangle (x, x+ dx)× (y, y + dy) and its image under T (which

is a parallelogram). Since we want the probability to stay the same, and probability is area

times density, we should rescale the density by the same amount J(u, v).

Example 4.2. Let X, Y be i.i.d. exponentials with rate λ. Let U = X/(X+Y ), V = X+Y .

What is the joint distribution of (U, V )?

Solution:

fX,Y (x, y) = λe−λxλe−λy

= λ2e−λ(x+y)

for (x, y) ∈ (0,∞)2. The transformation (u, v) = (x/(x + y), x + y) takes (0,∞)2 to (0, 1) ×
(0,∞). It is inverted by x = uv, y = v(1− u). The Jacobian is given by

J(u, v) = det


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 = det

(
v u

−v 1− u

)

= v(1− u) + uv

= v.

So we have

fU,V (u, v) = fX,Y
(
x(u, v), y(u, v)

)
|J(u, v)|

= λ2e−λ
(
x(u,v)+y(u,v)

)
|J(u, v)|

= vλ2e−λv

for (u, v) ∈ (0, 1)× (0,∞).

This factorises into a product of a function of u and a function of v (the function of u is

trivial). So U and V are independent, with

fU (u) = 1, u ∈ (0, 1)

fV (v) = λ2ve−λv, v ∈ (0,∞)

So U ∼ U [0, 1] and V ∼ Gamma(2, λ), independently.

Example 4.3. Let X and Y be independent Exp(λ) as in the previous example, and now

let V = X + Y , W = X − Y . This transformation takes (0,∞)2 to the set {(v, w) : |w| < v}.
The inverse transformation is

x =
v + w

2
, y =

v − w
2
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with Jacobian

J(v, w) = det

(
1
2

1
2

1
2 − 1

2

)
= −1

2
.

(Notice that any linear transformation always has constant Jacobian). So we have

fV,W (v, w) =

fX,Y
(
v+w
2 , v−w2

)
|J(v, w)| for |w| < v

0 otherwise

=

 1
2λ

2e−λv for |w| < v

0 otherwise .

It looks like the pdf factorises into a product as in the previous example. But here this is

not really the case! – because of the restriction to |w| < v. In fact, V and W could not be

independent here, otherwise we could not have P(|W | < V ) = 1.

From the previous example we already know that V ∼ Gamma(2, λ). What is the marginal

distribution of W?

fW (w) =

∫ ∞
v=|w|

1

2
λ2e−λvdv

=

[
−1

2
λe−λv

]∞
|w|

=
1

2
λe−λ|w|.

We see that the distribution of W is symmetric around 0, and by adding the density at w

and −w, the distribution of |W | has pdf λe−λ|w| and so again has Exp(λ) distribution.

Example 4.4 (General formula for the sum of continuous random variables). If X and Y

are jointly continuous with density function fX,Y , what is the distribution of X+Y ? We can

change variables to U = X +Y, V = X. This transformation has Jacobian 1 (check!), and we

obtain fU,V (u, v) = fX,Y (v, u− v).

To obtain the marginal distribution of X + Y , which is U , we integrate over v:

fX+Y (u) =

∫ ∞
−∞

fX,Y (v, u− v)dv.

An important case is when X and Y are independent. Then we obtain the convolution

formula:

fX+Y (u) =

∫ ∞
−∞

fX(v)fY (u− v)dv.

4.2.1 Multivariate distributions

Everything above can be generalised to the case of the joint distribution of n > 2 random

variables. The Jacobian is now the determinant of an n× n matrix.
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4.3 Multivariate normal distribution

Let Z1, Z2, . . . , Zn be i.i.d. standard normal random variables. Their joint density function

can be written as

fZ(z) =

n∏
i=1

1√
2π

exp

(
−z

2
i

2

)
=

1

(2π)n/2
exp

(
−1

2
zT z

)
.

Define W1, . . . ,Wn by 
W1

W2

...

Wn

 = A


Z1

Z2

...

Zn

+


µ1

µ2

...

µn


where A is some n× n matrix.

Assume A is invertible. Then by change of variables (the Jacobian is constant) we get

fW(w) =
1

(2π)n/2|detA|
exp

(
−1

2
(w − µ)T

(
AAT

)−1
(w − µ)

)
.

The matrix Σ := AAT is the covariance matrix in the sense that Cov(Wi,Wj) = (AAT )ij

(check, e.g. for n = 2 if you want an easy case). W1, . . . ,Wn are said to have the multivariate

normal distribution with mean vector µ and covariance matrix Σ.

For the case n = 2, one can manipulate to obtain (with X = W1, Y = W2)

fX,Y (x, y)

=
1

2πσXσY
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

[
(x− µX)2

σ2
X

− 2ρ(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2
Y

])
where σ2

X and σ2
Y are the variances of X and Y , µX and µY are the means, and ρ is the

correlation coefficient between X and Y which is defined by

ρ =
Cov(X,Y )

σXσY

and lies in (−1, 1).

Note that

(1) The density depends only on µX , µY , σX , σY and ρ.

(2) X and Y are independent⇔ ρ = 0. (⇒ is true for any joint distribution; ⇐ is a special

property of joint normal.)

A special case is the standard bivariate normal where σX = σY = 1 and µX = µY = 0.

Then

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
.

In this case Σ =

(
1 ρ

ρ 1

)
.
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4.4 Conditional densities

The basic definition of conditional probability: for two events A and B with P(A) > 0, the

conditional probability of B given A is

P(B|A) :=
P(A ∩B)

P(A)
. (4.2)

Applying this to the distribution of a random variable, we have for example

P(X ≤ x|A) =
P({X ≤ x} ∩A)

P(A)
.

The left-hand side is a cumulative distribution function. It gives the conditional distribu-

tion of X, given A. We might denote it by FX|A(x).

In the case where X is discrete, we can write the conditional probability mass function:

pX|A(x) = P(X = x|A).

If X is continuous, we can differentiate the conditional distribution function to get a condi-

tional density function fX|A(x), and then for a set C,

P(X ∈ C|A) =

∫
x∈C

fX|A(x)dx.

The conditional expectation ofX given A is the expectation of the conditional distribution,

which is given by

E (X|A) =
∑
x

xpX|A(x)

in the discrete case, and by

E (X|A) =

∫
xfX|A(x)dx

in the continuous case.

Example 4.5. Suppose X and Y are independent random variables which both have uniform

distribution on [0, 1]. Find the conditional distribution and conditional expectation of Y given

X + Y > 1.

Solution:

P(Y < y|X + Y > 1) =
P(Y < y,X + Y > 1)

P(X + Y > 1)
.

Since X,Y are uniform on the square [0, 1]2, the probability of a set is equal to its area.

The set {x+ y > 1} has area 1/2, while for fixed y, the set {(x, v) : v < y, x+ v > 1} has

area y2/2.

So the distribution function of Y given X + Y > 1 is F (y) = (y2/2)/(1/2) = y2, and the

conditional density is 2y on [0, 1], and 0 elsewhere.

The conditional expectation E (Y |X + Y > 1) is
∫ 1

0
y × 2y dy = 2/3.
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A common way in which conditional distributions arise is when we have two random

variables X and Y with some joint distribution; we observe the value of X and want to know

what this tells us about the value of Y . That is, what is the conditional distribution of Y

given X = x?

When X is a discrete random variable, everything works fine; since P(X = x) will be

positive, we can use the approach above.

However, if X is continuous, then P(X = x) will be 0 for every x. Now we have a problem,

since if the event A in (4.2) has probability 0, then the definition makes no sense.

To resolve this problem, rather than conditioning directly on {X = x}, we look at the

distribution of Y conditioned on {x ≤ X ≤ x + ε}. If the joint distribution is well-behaved

(as it will be in all the cases that we wish to consider), we can obtain a limit as ε ↓ 0, which

we define as the distribution of Y given X = x.

As ε→ 0, we have

P
(
Y ≤ y

∣∣x ≤ X ≤ x+ ε
)

=

∫ y

v=−∞

∫ x+ε

u=x

fX,Y (u, v)du dv∫ x+ε

u=x

fX(u)du

∼
ε

∫ y

v=−∞
fX,Y (x, v)dv

εfX(x)

=

∫ y

v=−∞

fX,Y (x, v)

fX(x)
dv. (4.3)

So we define FY |X=x(y), the conditional distribution function of Y given X = x, as

the right-hand side of (4.3).

Differentiating with respect to y, we obtain the conditional density function of Y

given X = x, written as fY |X=x(y):

fY |X=x(y) =
fX,Y (x, y)

fX(x)
.

These definitions make sense whenever fX(x) > 0. In that case, note that fY |X=x is

indeed a density function, because we have defined fX(x) =
∫∞
−∞ fX,Y (x, y)dy. (Notice that

the denominator fX(x) does not involve y at all; it is just a normalising constant).

The idea is that the following two procedures are equivalent:

(1) generate (X,Y ) according to the joint density function fX,Y ;

(2) first generate X according to the density function fX , and then having observed X = x,

generate Y according to the density function fY |X=x.

Example 4.6 (Simple example). Let (X,Y ) be uniform on the triangle {0 < y < x < 1}.
Then

fX,Y (x, y) =

2 0 < y < x < 1

0 otherwise
.
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For the conditional density of Y given X = x,

fY |X=x(y) =
fX,Y (x, y)

fX(x)

=

2/fX(x) 0 < y < x

0 otherwise
,

provided x ∈ (0, 1). We do not need to calculate fX(x), since it is just a normalising constant.

Since the conditional density function of Y is constant in y, we see that Y is uniform on [0, x],

with distribution function given by

FY |X=x(y) =


0 y < 0

y
x 0 ≤ y ≤ x

1 y > x

.

The conditional mean of Y given X = x is x/2.

Example 4.7 (Bivariate normal). Let X and Y be jointly normal with means µ1 and µ2

respectively, variances σ2
1 and σ2

2 respectively, and correlation coefficient ρ. What is the

conditional distribution of Y given X = x?

Rather than working directly from the joint density function, we can proceed by writing

Y as the sum of two terms, one which is a function of X and one which is independent of X.

First let us write X and Y as functions of independent standard normals Z1 and Z2. If

we put

X = σ1Z1 + µ1

Y = ρσ2Z1 +
√

1− ρ2σ2Z2 + µ2

then indeed X and Y have the desired means, variances and covariance (check!).

Then we can write

Y = ρ
σ2
σ1

(X − µ1) +
√

1− ρ2σ2Z2 + µ2.

The first term is a function of X and the second term, involving only Z2, is independent of

X.

So conditional on X = x, the distribution of Y is the distribution of

ρ
σ2
σ1

(x− µ1) +
√

1− ρ2σ2Z2 + µ2,

which is normal with mean ρσ2

σ1
(x− µ1) + µ2 and variance (1− ρ2)σ2

2 .

Note the way the variance of this conditional distribution depends on ρ. We say that ρ2

is the “amount of the variance of Y explained by X”. Consider the extreme cases. If ρ = ±1,

then the conditional variance is 0. That is, Y is a function of X and once we observe X, there

is no longer any uncertainty about the value of Y . If ρ = 0, the conditional variance and the

unconditional variance are the same; observing X tells us nothing about Y .
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4.5 Cautionary tale

The definition above of conditional distribution given the value of a continuous random vari-

able makes sense in context, but keep in mind that conditioning directly on events on prob-

ability zero is not valid, and as a result the objects involved are not robust to seemingly

innocent manipulation! Consider the following example:

Example 4.8 (Borel’s paradox). Consider the uniform distribution on the half-disc C =

{(x, y) : y ≥ 0, x2 + y2 ≤ 1}. The joint density of X and Y is given by

f(x, y) =

 2
π (x, y) ∈ C

0 otherwise
.

What is the conditional distribution of Y given X = 0? Its density is given by

fY |X=0(y) =
2/π

fX(0)

for y ∈ [0, 1], and 0 elsewhere. So the distribution is uniform on [0, 1] (we do not need to

calculate fX(0) to see this, since it is only a normalising constant).

We could change variables and represent the same distribution in polar coordinates. Then

R and Θ are independent; R has density 2r on [0,1] and Θ is uniform on [0, π). (See first

question on problem sheet 2 for the transformation to polar coordinates. But in this case

where the density of X,Y is uniform on a set, one can also easily derive the joint distribution

of R and Θ directly by considering areas of subsets of the set C).

Note that the events {X = 0} and {Θ = π/2} are the same.

What is the conditional distribution of R given Θ = π/2? Since R and Θ are independent,

it still has density 2r on [0, 1]. This is not uniform on [0, 1].

But when X = 0, i.e. when Θ = π/2, R and Y are the same thing. So the distribution of

R given Θ = π/2 ought to be the same as the distribution of Y given X = 0, should it not?

What is happening is that, although the events {X = 0} and {Θ = π/2} are the same,

it is not the case that the events {|X| < ε} and {|Θ − π/2| < ε} are the same. When we

condition X to be within ε of 0, we restrict to a set which is approximately a rectangle (the

left-hand picture below). However, when we condition Θ to be near π/2, we restrict to a thin

sector of the circle, which is approximately a triangle (the right-hand picture below). In the

second case, we bias the point chosen to lie higher up. As ε → 0, this bias persists; the two

limits are not the same!

What this “paradox” illustrates is that conditioning for continuous random variables in-

volves a limit, and that it can be important exactly how the limit is taken. The procedure
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whereby we generate X from fX and then Y from fY |X makes sense in terms of a particular

set of variables; but the conditional densities involved are not robust to a change of variables.


