
METRIC SPACES AND COMPLEX ANALYSIS.

KEVIN MCGERTY.

1. Introduction

In Prelims you studied Analysis, the rigorous theory of calculus for (real-

valued) functions of a single real variable. This term we will largely focus

on the study of functions of a complex variable, but we will begin by seeing

how much of the theory developed last year can in fact can be made to work,

with relatively little extra effort, in a significantly more general context.

Recall the trajectory of the Prelims Analysis course – initially it focused

on sequences and developed the notion of the limit of a sequence which was

crucial for essentially everything which followed1. Then it moved to the

study of continuity and differentiability, and finally it developed a theory of

integration. This term’s course will follow approximately the same pattern,

but the contexts we work in will vary a bit more. To begin with we will

focus on limits and continuity, and attempt to gain a better understanding

of what is needed in order for make sense of these notions.

Example 1.1. Consider for example one of the key definitions of Prelims

analysis, that of the continuity of a function. Recall that if f : R → R is a

function, we say that f is continuous at a ∈ R if, for any ε > 0, we can find

a δ > 0 such that if |x − a| < δ then |f(x) − f(a)| < ε. Stated somewhat

more informally, this means that no matter how small an ε we are given,

Date: November 5, 2018.
1Although continuity is introduced via εs and δs, the notion can be expressed in terms
of convergent sequences. Similarly one can define the integral in terms of convergent
sequences.
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we can ensure f(x) is within distance ε of f(a) provided we demand x is

sufficiently close to – that is, within distance δ of – the point a.

Now consider what it is about real numbers that we need in order for this

definition to make sense: Really we just need, for any pair of real numbers

x1 and x2, a measure of the distance between them. (Note that we needed

this notion of distance in the above definition of continuity for both the pairs

(x, a) and (f(x), f(a)).) Thus we should be able to talk about continuous

functions f : X → X on any set X provided it is equipped with a notion

of distance. Even more generally, provided we have proscribed a notion of

distance on two sets X and Y , we should be able to say what it means for

a function f : X → Y to be continuous. In order to make this precise, we

will therefore need to give a mathematically rigorous definition of what a

“notion of distance” on a set should be.

As a first step, consider as an example the case of Rn. The dot product

on vectors in Rn gives us a notion of distance between vectors in Rn: Recall

that if v = (v1, . . . , vn), w = (w1, . . . , wn) are vectors in Rn then we set

〈v, w〉 =

n∑
i=1

viwi,

and we define the length of a vector to be2 ‖v‖ = 〈v, v〉1/2. Recall that

the Cauchy-Schwarz inequality then says that |〈v, w〉| ≤ ‖v‖‖w‖. It has the

following important consequence for the length function:

Lemma 1.2. If x, y ∈ Rn then ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. Since ‖v‖ ≥ 0 for all v ∈ Rn the desired inequality is equivalent to

‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2.

2Sometimes the notation ‖v‖2 is used for this length function – we will see later there are
other natural choices for the length of a vector in Rn.
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But since ‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, this inequality

is immediate from the Cauchy-Schwarz inequality. �

Once we have a notion of length for vectors, we also immediately have a

way of defining the distance between them – we simply take the length of

the vector v − w. Explicitly, this is:

‖v − w‖ =
( n∑
i=1

(vi − wi)2
)1/2

.

Now that we have defined the distance between any two vectors in Rn, we

can immediately make sense both of what it means for a function f : Rn → R

to be continuous3 as above and also what it means for a sequence to converge.

Definition 1.3. If (vk)k∈N is a sequence of vectors in Rn (so vk = (vk1 , . . . , v
k
n))

we say (vk)k∈N converges to w ∈ Rn if for any ε > 0 there is an N > 0 such

that for all k ≥ N we have ‖vk − w‖ < ε.

If f : Rn → R and a ∈ Rn then we say that f is continuous at a if for any

ε > 0 there is a δ > 0 such that |f(a)− f(x)| < ε whenever ‖x−a‖ < δ. (As

usual, we say that f is continuous on Rn if it is continuous at every a ∈ Rn.)

Many of the results about convergence for sequences of real or complex

numbers which were established last year readily extend to sequences in Rn,

with almost identical proofs. As an example, just as for sequences of real or

complex numbers, we have the following:

Lemma 1.4. Suppose that (vk)k≥1 is a sequence in Rn which converges to

w ∈ Rn and also to u ∈ Rn. Then w = u, that is, limits are unique.

Proof. We prove this by contradiction: suppose w 6= u. Then d = ‖w−u‖ >

0, so since (vk) converges to w we can find an N1 ∈ N such that for all k ≥ N

3More ambitiously, using the notions of distance we have for Rn and Rm you can readily
make sense of the notion of continuity for a function g : Rn → Rm.
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we have ‖w − vk‖ < d/2. Similarly, since (vk) converges to u we can find

an N2 such that for all k ≥ N2 we have ‖vk − u‖ < d/2. But then if

k ≥ max{N1, N2} we have

d = ‖w−u‖ = ‖(w−vk)+(vk−u)‖ ≤ ‖w−vk‖+‖vk−u‖ < d/2+d/2 = d,

where in the first inequality we use Lemma 1.2. Thus we have a contradiction

as required. �

2. Metric Spaces

We now come to the definition of a metric space. To motivate it, let’s

consider what a notion of distance on a set X should mean: Given any

two points in X, we should have a non-negative real number – the distance

between them. Thus a distance on a set X should therefore be a func-

tion d : X × X → R≥0, but we must also decide what properties of such a

function capture our intuition of distance. A couple of properties suggest

themselves immediately – the distance between two points x, y ∈ X should

be symmetric, that is, the distance from x to y should4 be the same as

the distance from y to x, and the distance between two points should be

0 precisely when they are equal. Note that this latter property was one of

the crucial ingredients in the proof of the uniqueness of limits as we just

saw. The last requirement we make of a distance function is known as the

“triangle inequality”, a version of which we established in Lemma 1.2 and

which was also essential in the above uniqueness proof. These requirements

yield in the following definition:

4In fact it’s possible to think of contexts where this assumption doesn’t hold – think of
swimming in a river – going upstream is harder work than going downstream, so if your
notion of distance took this into account it would fail to be symmetric.
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Definition 2.1. Let X be a set and suppose that d : X ×X → R≥0. Then

we say that d is a distance function on X if it has the following properties:

For all x, y, z ∈ X:

(1) (Positivity): d(x, y) = 0 if and only if x = y.

(2) (Symmetry): d(x, y) = d(y, x).

(3) (Triangle inequality): If x, y, z ∈ X then we have

d(x, z) ≤ d(x, y) + d(y, z).

Note that for the normal distance function in the plane R2, the third prop-

erty expresses the fact that the length of a side of a triangle is at most the

sum of the lengths of the other two sides (hence the name!). We will write a

metric space as a pair (X, d) of a set and a distance function d : X×X → R≥0

satisfying the axioms above. If the distance function is clear from context,

we may, for convenience, simply write X rather than (X, d).

Example 2.2. The vector space Rn equipped with the distance function

d2(v, w) = ‖v − w‖ = 〈v − w, v − w〉1/2 is a metric space: The first two

properties of the metric d2 are immediate from the definition, while the

triangle inequality follows from Lemma 1.2.

Remark 2.3. In Prelims Linear Algebra, you met the notion of an inner

product space (V, 〈−,−〉) (over the real or complex numbers). For any two

vectors v, w ∈ V setting d(v, w) = ‖v − w‖, where ‖v‖ = 〈v, v〉1/2, gives

V a notion of distance. Since the Cauchy-Schwarz inequality holds in any

inner product space, Lemma 1.2 holds in any inner product space (the proof

is word for word the same), it follows that d is also a metric in this more

general setting.
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Definition 2.4. If (X, dX) is a metric space and A ⊆ X then we set

diam(A) = sup{d(a1, a2) : a1, a2 ∈ X} ∈ R≥0 ∪ {∞},

(where we take diam(A) =∞ if the {d(a1, a2) : a1, a2 ∈ A} is not bounded

above. If diam(A) is finite then we say that A is a bounded subset of X.

To make good our earlier assertion, we now define the notions of continuity

and convergence in a metric space.

Definition 2.5. Let (X, dX) and (Y, dY ) be metric spaces. A function

f : X → Y is said to be continuous at a ∈ X if for any ε > 0 there is a δ > 0

such that for any x ∈ X with dX(a, x) < δ we have dY (f(x), f(a)) < ε. We

say f is continuous if it is continuous at every a ∈ X.

If (xn)n≥1 is a sequence in X, and a ∈ X, then we say (xn)n≥1 converges

to a if, for any ε > 0 there is an N ∈ N such that for all n ≥ N we have

dX(xn, a) < ε.

In fact it is clear that the notion of uniform continuity also extends to

functions between metric spaces: A function f : X → Y is said to be uni-

formly continuous if, for any ε > 0, there exists a δ > 0 such that for all

x1, x2 ∈ X with dX(x1, x2) < δ we have dY (f(x1), f(x2)) < ε.

For later use, we also note that a function f : X → Y is said to be bounded

if its image f(X) is a bounded subset of Y in the sense of Definition 2.4,

that is, if

{dY (f(x), f(y)) : x, y ∈ X} ⊆ R

is a bounded subset of R. Note that, unlike continuity or uniform continuity,

the condition that a function is bounded only requires that Y has a metric

(X need not).
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The next result is the natural generalization of the theorem you saw last

year which showed that continuity could be expressed in terms of convergent

sequences. You should note that the proof is, mutatis mutandi, the same as

the case for function from the real line to itself.

Lemma 2.6. Let f : X → Y be a function. Then f is continuous at a ∈ X if

and only if for every sequence (xn)n≥0 converging to a we have f(xn)→ f(a)

as n→∞.

Proof. Suppose that f is continuous at a. Then given ε > 0 there is a

δ > 0 such that for all x ∈ X with d(x, a) < δ we have d(f(x), f(a)) < ε.

Now if (xn)n≥0 is a sequence tending to a then there is an N > 0 such

that d(a, xk) < δ for all k ≥ N . But then for all k ≥ N we see that

d(f(a), f(xk)) < ε, so that f(xk)→ f(a) as n→∞ as required.

For the converse, we use the contrapositive, hence we suppose that f

is not continuous at a. Then there is an ε > 0 such that for all δ > 0

there is some x ∈ X with d(x, a) < δ and d(f(x), f(a)) ≥ ε. Chose for

each k ∈ Z>0 a point xn ∈ X with d(xk, a) < 1/n but d(f(xk), f(a)) ≥ ε.

Then d(xk, a) < 1/k → 0 as k → ∞ so that xk → a as k → ∞, but since

d(f(xk), f(a))) ≥ ε for all k clearly (f(xk))k≥0 does not tend to f(a). �

Definition 2.7. If X is a metric space we write C(X) = {f : X → R :

f is continuous} for the set of continuous real-valued functions on X. (Here

the real line is viewed as a metric space equipped with the metric coming

from the absolute value).

Lemma 2.8. The set C(X) is a vector space. Moreover if f, g ∈ C(X) then

so is f.g.

Proof. This is just algebra of limits: C(X) is a subset of the vector space of

all real-valued functions on X, so we just need to check it is closed under
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addition and multiplication. To see that C(X) is closed under multiplication,

suppose that f, g ∈ C(X) and a ∈ X. To see that f.g is continuous at a,

note that if ε > 0 is given, then since both f and g are continuous at a, we

may find a δ1 such that |f(x)− f(a)| < min{1, ε/2(|g(a)|+ 1)} for all x ∈ X

with d(x, a) < δ1 and a δ2 > 0 such that |g(x)− g(a)| < ε/2(|f(a)|+ 1) for

all x ∈ X with d(x, a) < δ2. Setting δ = min{δ1, δ2} it follows that for all

x ∈ X with d(x, a) < δ we have

|f(x)g(x)− f(a)g(a)| = |f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)|

≤ |f(x)||g(x)− g(a)|+ |f(x)− f(a)||g(a)|

≤ (|f(a)|+ 1)|g(x)− g(a)|+ |f(x)− f(a)||g(a)|

< ε/2 + ε/2 = ε

where in the third line we use the fact that |f(x)| < |f(a)|+ 1 for all x ∈ X

such that d(x, a) < δ1. Since a was arbitrary, this shows that f.g lies in C(X).

Since constant functions are clearly continuous this shows in particular that

C(X) is closed under multiplication by scalars. We leave it as an exercise to

check that C(X) is closed under addition and hence is a vector space. �

Remark 2.9. One can also check that if f : X → R is continuous at a and

f(a) 6= 0 then 1/f is continuous at a. Again this is proved just as in the

single-variable case.

Example 2.10. Consider the case of Rn again. The distance function d2

coming from the dot product makes Rn into a metric space, as we have

already seen. On the other hand it is not the only reasonable notion of
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distance one can take. We can define for v, w ∈ Rn

d1(v, w) =

n∑
i=1

|vi − wi|;

d2(v, w) =
( n∑
i=1

(vi − wi)2
)1/2

d∞(v, w) = max
i∈{1,2,...,n}

|vi − wi|.

Each of these functions clearly satisfies the positivity and symmetry prop-

erties of a metric. We have already checked the triangle inequality for d2,

while for d1 and d∞ it follows readily from the triangle inequality for R.

Example 2.11. Suppose that (X, d) is a metric space and let Y be a subset

of X. Then the restriction of d to Y ×Y gives Y a metric so that (Y, d|Y×Y )

is a metric space. We call Y equipped with this metric a subspace5 of X.

Example 2.12. The discrete metric on a set X is defined as follows:

d(x, y) =

1, if x 6= y

0, if x = y

The axioms for a distance function are easy to check.

Example 2.13. A slightly more interesting example is the Hamming dis-

tance on words: if A is a finite set which we think of as an “alphabet”,

then a word of length n in just an element of An, that is, a sequence of n

elements in the alphabet. The Hamming distance between two such words

a = (a1, . . . , an),b = (b1, . . . , bn) is

dH(a,b) = |{i ∈ {1, 2, . . . , n} : ai 6= bi}.

5This is completely standard terminology, though it’s a little unfortunate if X is a vector
space, where we use the word subspace to mean linear subspace also. Context (usually)
makes it clear which meaning is intended, and I’ll try and be as clear about this as possible!
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Problem sheet 1 asks you to check that d is indeed a distance function (where

the only axiom which requires some thought is the triangle inequality).

An important special case of this is the space of binary sequences of length

n, that is, where the alphabet A is just {0, 1}. In this case one can view set

of words of length n in this alphabet as a subset of Rn, and moreover you

can check that the Hamming distance function is the same as the subspace

metric induced by the d1 metric on Rn given above.

Example 2.14. If (X, d) is a metric space, then we can consider the space

XN of all sequences in X. That is, the elements of XN are sequences (xn)n≥1

in X. While there is no obvious metric on the whole space of sequences, if

we take XN
b to be the space of bounded sequences, that is, sequences such

that the set {d∞(xn, xm) : n,m ∈ N} ⊂ R is bounded, then the function6

d∞((xn)n≥1, (yn)n≥1) = sup
n∈N

d(xn, yn),

is a metric on XN
b . It clearly satisfies positivity and symmetry, and the

triangle inequality follows from the inequality

d(xn, zn) ≤ d(xn, yn) + d(yn, zn) ≤ d∞((xn), (yn)) + d∞((yn), (zn)),

by taking the supremum of the left-hand side over n ∈ N.

Example 2.15. If (X, dX) and (Y, dY ) are metric spaces, then it is natural

to try to make X × Y into a metric space. In fact this can be done in a

number of ways – we will return to this issue later. One method is to set

dX×Y = max{dX , dY }, that is if x1, x2 ∈ X and y1, y2 ∈ Y then we set

dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.

6The fact that the sequences are bounded ensure the right-hand side is finite.
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It is straight-forward to check that this is indeed a metric on X × Y . It is

also easy to see that if f : Z → X × Y is a function from a metric space

Z to X × Y , so that we may write f(z) = (fX(z), fY (z)) with fX(z) ∈ X

and fY (z) ∈ Y , then f is continuous if and only if fX and fY are both

continuous.

Example 2.16. If (X, dX) and (Y, dY ) are metric spaces, then we can also

consider the set B(X,Y ) of bounded functions from X to Y . This set has a

natural metric given by

d(f, g) = sup
x∈X

dY (f(x), g(x)).

Indeed one can check that d(f, g) is finite for any f, g ∈ B(X,Y ), so that

since dY is non-negatively valued, so is d. This space has a natural subspace

consisting of the continuous bounded function Cb(X,Y ).

Example 2.17. Consider the set P(Rn) of lines in Rn (that is, one-dimensional

subspace of Rn, or lines through the origin). A natural way to define a dis-

tance on this set is to take, for lines L1, L2, the distance between L1 and L2

to be

d(L1, L2) =

√
1− |〈v, w〉|

2

‖v‖2‖w‖2
,

where v and w are any non-zero vectors in L1 and L2 respectively. It is easy

to see this is independent of the choice of vectors v and w. The Cauchy-

Schwarz inequality ensures that d is well-defined, and moreover the criterion

for equality in that inequality ensures positivity. The symmetry property is

evident, while the triangle inequality is left as an exercise.

It is useful to think of the case when n = 2 here, that is, the case of lines

through the origin in the plane R2. The distance between two such lines

given by the above formula is then sin(θ) where θ is the angle between the

two lines.
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3. Normed vector spaces.

We have already seen a number of metrics on the vector space Rn:

d1(x, y) =
m∑
i=1

|xi − yi|

d2(x, y) =
( m∑
i=1

(xi − yi)2
)1/2

d∞(x, y) = max
1≤i≤m

|xi − yi|.

These metrics all interact with the vector space structure7 of Rn in a nice

way: if d is any of these metrics, then for any vectors x, y, z ∈ Rn and any

scalar λ we have

d(x+ z, y + z) = d(x, y), d(λx, λy) = |λ|d(x, y).

The first of these is known as translation invariance and the second is a kind

of homogeneity.

A vector space V with a distance function compatible with the vector

space structure is clearly determined by the function from V to the non-

negative real numbers given by v 7→ d(v, 0).

Definition 3.1. Let V be a (real or complex) vector space. A norm on V

is a function ‖.‖ : V → R≥0 which satisfies the following properties:

(1) (Positivity): ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 if and only if x = 0.

(2) (compatibility with scalar multiplication): if x ∈ V and λ is a scalar

then

‖λ.x‖ = |λ|‖x‖.

(3) (Triangle inequality): If x, y ∈ V then ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

7That is, vector addition and scalar multiplication.
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Note that in the second property |λ| denotes the absolute value of λ if V is

a real vector space, and the modulus of λ if V is a complex vector space.

Remark 3.2. If there is the potential for ambiguity, we will write the norm

on a vector space as ‖.‖V , but normally this is clear from the context, and so

just as for metric spaces we will write ‖.‖ for the norm on all vector spaces

we consider.

Lemma 3.3. If V is a vector space with a norm ‖.‖ then the function

d : V × V → R≥0 given by d(x, y) = ‖x− y‖ is a metric which is compatible

with the vector space structure in that:

(1) For all x, y ∈ V we have

d(λ.x, λ.y) = |λ|d(x, y).

(2) d(x+ z, y + z) = d(x, y).

Conversely, if d is a metric satisfying the above conditions then ‖v‖ = d(v, 0)

is a norm on V .

Proof. This follows immediately from the definitions. �

Example 3.4. As discussed above, if V = Rn then the metrics d1, d2, d∞

all come from the norms. We denote these by ‖x‖1 =
∑m

i=1 |xi| and ‖x‖2 =

(
∑m

i=1 x
2
i )

1/2 and ‖x‖∞ = max1≤i≤m |xi|.

Since the most natural maps between vector spaces are linear maps, it is

natural to ask when a linear map between normed vector spaces is continu-

ous. The following lemma gives an answer to this question:

Lemma 3.5. Let f : V →W be a linear map between normed vector spaces.

Then f is continuous if and only if {‖f(x)‖ : ‖x‖ ≤ 1} is bounded.
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Proof. If f is continuous, then it is continuous at 0 ∈ V and so there is

a δ > 0 such that for all v ∈ V with ‖v‖ < δ we have ‖f(v) − f(0)‖ =

‖f(v)‖ < ε. But then if ‖v‖ ≤ 1 we have δ
2‖f(v)‖ = ‖f( δ2 .v))‖ < ε, and

hence ‖f(v)‖ ≤ 2ε
δ .

For the converse, if we have ‖f(v)‖ < M for all v with ‖v‖ ≤ 1, then if

ε > 0 is given we may pick δ > 0 so that δ.M < ε and hence if ‖v − w‖ < δ

we have

‖f(v)− f(w)‖ = ‖f(v − w)‖ = δ‖f(δ−1(v − w))‖ ≤ δ.M < ε,

so that f is in fact uniformly continuous on V . �

Remark 3.6. The boundedness condition above can be rephrased as saying

there is a constant K > 0 such that ‖f(v)‖ ≤ K.‖v‖, since any non-zero

vector v can be rescaled to a vector of unit length, v/‖v‖.

An important source of (normed) vector spaces for us will be the space

of functions on a set X (usually a metric space). Indeed if X is any set,

the space of all real-valued functions on X is a vector space – addition and

scalar multiplication are defined “pointwise” just as for functions on the real

line. It is not obvious how to make this into a normed vector space, but if

we restrict to the subspace B(X) of bounded functions there is an reasonably

natural choice of norm.

Definition 3.7. If X is any set we define

B(X) = {f : X → R : f(X) ⊂ R bounded},

to be the space of bounded functions on X, that is f ∈ B(X) if and only if

there is some K > 0 such that |f(x)| < K for all x ∈ X. For f ∈ B(X) we

set ‖f‖∞ = supx∈X |f(x)|.
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Lemma 3.8. Let X be any set, then (B(X), ‖.‖∞) is a normed vector space.

Proof. To see that B(X) is a vector space, note that if f, g ∈ B(X) then we

may find N1, N2 ∈ R>0 such that f(X) ⊆ [−N1, N1] and g(X) ⊆ [−N2, N2].

But then clearly (f + g)(X) ⊆ [−N1 − N2, N1 + N2] and if λ ∈ R then

(λ.f)(X) ⊆ [−|λ|N1, |λ|N1], so that λ.f ∈ B(X) and f + g ∈ B(X).

Next we check that ‖f‖∞ is a norm: it is clear from the definition that

‖f‖∞ ≥ 0 with equality if and only if f is identically zero. Compatibility

with scalar multiplication is also immediate, while for the triangle inequality

note that if f, g ∈ B(X), then for all x ∈ X we have

|(f + g)(x)| = |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞.

Taking the supremum over x ∈ X then yields the result. �

We will write d∞ for the metric associated to the norm ‖.‖∞.

If X is itself a metric space, we also have the space C(X) of continuous

real-valued functions on X. While C(X) does not automatically have a

norm, the subspace Cb(X) = C(X) ∩ B(X) of bounded continuous functions

clearly inherits a norm from B(X).

Example 3.9. One can check that if X = [a, b] then if (fn)n≥1 is a sequence

in8 C([a, b]) = Cb([a, b]) then fn → f in (Cb(X), d∞) (where d∞ is the metric

given by the norm ‖.‖∞) if and only if fn tends to f uniformly.

Example 3.10. For certain spaces X, we can define other natural metrics

on the space of continuous functions: Let X = [a, b] ⊂ R be a closed interval.

Then we know that in fact all continuous functions on X are bounded, so

that ‖.‖∞ defines a norm on C([a, b]). We can also define analogues of the

8The result from Prelims Analysis showing any continuous function on a closed bounded
interval is bounded implies the equality C([a, b]) = Cb([a, b]).
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norms ‖.‖1 and ‖.‖2 on Rn using the integral in place of summation: Let

‖f‖1 =

∫ b

a
|f(t)|dt,

‖f‖2 =
( ∫ b

a
f(t)2dt

)1/2
Lemma 3.11. Suppose that a < b so that the interval [a, b] has positive

length. Then the functions ‖.‖1 and ‖.‖2 are norms on C([a, b]).

Proof. The compatibility with scalars and the triangle inequality both follow

from standard properties of the integral. The interesting point to check here

is that both ‖.‖1 and ‖.‖2 satisfy postitivity – continuity9 is crucial for this!

Indeed if f = 0 clearly ‖f‖1 = ‖f‖2 = 0. On the other hand if f 6= 0 then

there is some x0 ∈ [a, b] such that f(x0) 6= 0, and so |f(x0)| > 0. Since f is

continuous at x0, there is a δ > 0 such that |f(x) − f(x0)| < |f(x0)|/2 for

all x ∈ [a, b] with |x − x0| < δ. But the it follows that for x ∈ [a, b] with

|x− x0| < δ we have |f(x)| ≥ |f(x0)| − |f(x)− f(x0)| > |f(x0)|/2. Now set

s(x) =

|f(x0)|/2, if x ∈ [a, b] ∩ (x0 − δ, x0 + δ)

0, otherwise

Since the interval [a, b]∩(x0−δ, x0+δ) has length at least d = min{δ, (b−a)}

we see that
∫ b
a s(x)dx ≥ d.|f(x0)|/2 > 0. Since s(x) ≤ |f(x)| for all x ∈ [a, b]

it follows from the positivity of the integral that 0 < d|f(x0)|/2 ≤ ‖f‖1.

Similarly we see that ‖f‖2 ≥ f
√
d|f(x0)|/2, so that both ‖.‖1 and ‖.‖2

satisfy the positivity property. �

There are very similar metrics on certain sequence spaces:

9So in particular, ‖.‖1 and ‖.‖2 are not norms on the space of Riemann integrable functions
on [a, b].
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Example 3.12. Let

`1 = {(xn)n≥1 :
∑
n≥1

|xn| <∞}

`2 = {(xn)n≥1 :
∑
n≥1

x2
n <∞}

`∞{(xn)n≥1 : sup
n∈N
|xn| <∞}.

The sets `1, `2, `∞ are all real vector spaces, and moreover the functions

‖(xn)‖1 =
∑

n≥1 |xn|, ‖(xn)‖2 =
(∑

n≥1 x
2
n

)1/2
, ‖(xn)‖∞ = supn∈N |xn|

define norms on `1, `2 and `∞ respectively. Note that `2 is in fact an inner

product space where

〈(xn), (yn)〉 =
∑
n≥1

xnyn,

(the fact that the right-hand side converges if (xn) and (yn) are in `2 follows

from the Cauchy-Schwarz inequality).

4. Metrics and convergence

Recall that if (X, d) is a metric space, then a sequence (xn) in X converges

to a point a ∈ X if for any ε > 0 there is an N ∈ N such that for all n ≥ N

we have d(xn, a) < ε. In the case of Rm, although d1, d2, d∞ are all different

distance functions, they in fact give the same notion of convergence. To see

this we need the following:

Lemma 4.1. Let x, y ∈ Rm. Then we have

d2(x, y) ≤ d1(x, y) ≤
√
md2(x, y); d∞(x, y) ≤ d2(x, y) ≤

√
md∞(x, y).

Proof. It is enough to check the corresponding inequalities for the norms

‖x‖i (where i ∈ {1, 2,∞}) that is, we may assume y = 0. For the first
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inequality, note that

‖x‖21 = (

m∑
i=1

|xi|)2 =

m∑
i=1

x2
i +

∑
1≤i<j≤m

2|xixj | ≥
m∑
i=1

x2
i = ‖x‖22,

so that ‖x‖2 ≤ ‖x‖1. On the other hand, if x = (x1, . . . , xm), set a =

(|x1|, |x2|, . . . , |xm|) and 1 = (1, 1, . . . , 1). Then by the Cauchy-Schwarz

inequality we have

‖x‖1 = 〈1, a〉 ≤
√
m.‖a‖2 =

√
m.‖x‖2

The second pair of inequalities is simpler. Note that clearly

max
1≤i≤m

|xi| = max
1≤i≤m

(x2
i )

1/2 ≤ (
m∑
i=1

x2
i )

1/2,

yielding one inequality. On the other hand, since for each i we have |xi| ≤

‖x‖∞ by definition, clearly

‖x‖22 =
m∑
i=1

|xi|2 ≤ m‖x‖2∞,

giving ‖x‖2/
√
m ≤ ‖x‖∞ as required. �

Lemma 4.2. If (xn) ⊂ Rm is a sequence then (xn) converges to a ∈ Rm

with respect to the metric d2, if and only if it does with respect to the metric

d1, if and only if it does so with respect to the metric d∞. Thus the three

metrics all yield the same notion of convergence.

Proof. Suppose (xn) converges to a with respect to the metric d2. Then for

any ε > 0 there is an N ∈ N such that d2(xn, a) < ε/
√
m for all n ≥ N . It

follows from the previous Lemma that for n ≥ N we have

d1(xn, a) ≤
√
m.d2(xn, a) <

√
m.(ε/

√
m) = ε,
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and so (xn) converges to a with respect to d1 also. Similarly we see that

convergence with respect to d1 implies convergence with respect to d2 using

‖x‖2 ≤ ‖x‖1. In the same fashion, the inequalities d∞(x, y) ≤ d2(x, y) ≤
√
md∞(x, y) yield the equivalence of the notions of convergence for d2 and

d∞. �

Remark 4.3. (Non-examinable): If X is any set and d1, d2 are two metrics

on X, we say they are equivalent if there are positive constants K,L such

that

d1(x, y) ≤ Kd2(x, y); d2(x, y) ≤ Ld1(x, y).

The proof of the previous Lemma extends to show that if two metrics are

equivalent, then a sequence converges with respect to one metric if and only

if it does with respect to the other.

In the problem sets you are asked to investigate which (if any) of the

metrics d1, d2, d∞ for C[a, b] the space of continuous real-valued functions on

the closed interval [a, b] define the same notion of convergence.

5. Open and closed sets

In this section we will define two special classes of subsets of a metric

space – the open and closed subsets. To motivate their definition, recall that

we have two ways of characterizing continuity in a metric space: the “ε-δ”

definition, and the description in terms of convergent sequences. Examining

the former will lead us to the notion of an open set, while examining the

latter will lead us to the notion of a limit point and hence that of a closed

set.

The definitions of continuity and convergence can be made somewhat

more geometric if we introduce the notion of a ball in a metric space:
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Definition 5.1. Let (X, d) is a metric space. If x0 ∈ X and ε > 0 then we

define the open ball of radius ε to be the set

B(x0, ε) = {x ∈ X : d(x, x0) < ε}.

Similarly we defined the closed ball of radius ε about x0 to be the set

B̄(x0, ε) = {x ∈ X : d(x, x0) ≤ ε}.

The term “ball” comes from the case where X = R3 equipped with the usual

Euclidean notion of distance. When X = R an open/closed ball is just an

open/closed interval.

Recall that if f : X → Y is a function between any two sets, then given

any subset Z ⊆ Y we let10 f−1(Z) = {x ∈ X : f(x) ∈ Z}. The set f−1(Z)

is called the pre-image of Z under the function f .

Lemma 5.2. Let (X, d) and (Y, d) be metric spaces. Then f : X → Y is

continuous at a ∈ X if and only if, for any open ball B(f(a), ε) centred

at f(a) there is an open ball B(a, δ) centred at a such that f(B(a, δ)) ⊆

B(f(a), ε), or equivalently B(a, δ) ⊆ f−1(B(f(a), ε)).

Proof. This follows directly from the definitions. (Check this! ) �

We have seen in the last section that different metrics on a set X can give

the same notions of continuity. The next definition is motivated by this –

it turns out that we can attach to a metric a certain class of subsets of X

known as open sets and knowing these open sets suffices to determine which

functions on X are continuous. Informally, a subset U ⊆ X is open if, for

any point y ∈ U , every point sufficiently close to y in X is also in U . Thus,

10The notion is not meant to suggest that f is invertible, though when it is, the preimage
of any point in Y is a single point in X, so the notation is in this sense consistent. Note
that formally, f−1 as defined here is a function from the power set of Y to the power set
of X.
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if y ∈ U , it has some “wiggle room” – we may move slightly away from y

while still remaining in U . The rigorous definition is as follows:

Definition 5.3. If (X, d) is a metric space then we say a subset U ⊂ X

is open (or open in X) if for each y ∈ U there is some δ > 0 such that

B(y, δ) ⊆ U . More generally, if Z ⊆ X and z ∈ Z then we say Z is a

neighbourhood of z if there is a δ > 0 such that B(z, δ) ⊆ Z. Thus a subset

U ⊆ X is open exactly when it is a neighbourhood of all of its elements.

The collection T = {U ⊂ X : U open in X} of open sets in a metric space

(X, d) is called the topology of X.

We first note an easy lemma, which can be viewed as a consistency check

on our terminology!

Lemma 5.4. Let (X, d) be a metric space. If a ∈ X and ε > 0 then B(a, ε)

is an open set.

Proof. We need to show that B(a, ε) is a neighbourhood of each of its points.

If x ∈ B(a, ε) then by definition r = ε−d(a, x) > 0. We claim that B(x, r) ⊆

B(a, ε). Indeed by the triangle inequality we have for z ∈ B(x, r)

d(z, a) ≤ d(z, x) + d(x, a) < r + d(x, a) = ε,

as required. �

Remark 5.5. While reading the above proof, please draw a picture of the

case where X = R2 with the standard metric d2!

Next let us observe some basic properties of open sets.

Lemma 5.6. Let (X, d) be metric space and let T be the associated topology

on X. Then we have
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(1) If {Ui; i ∈ I} is any collection of open sets, then
⋃
i∈I Ui is an open

set. In particular the empty set ∅ is open in X11

(2) If I is finite and {Ui : i ∈ I} are open sets then
⋂
i∈I Ui is open in

X. In particular X is an open set.

Proof. For the first claim, if x ∈
⋃
i∈ Ui then there is some i ∈ I with x ∈ Ui.

Since Ui is open, there is an ε > 0 such that

B(x, ε) ⊂ Ui ⊆
⋃
i∈I

Ui,

so that
⋃
i∈I Ui is a neighbourhood of each of its points as required. Applying

this to the case I = ∅ shows that ∅ ⊆ X is open (or simply note that the

empty set satisfies the condition to be an open set vacuously).

For the second claim, if I is finite and x ∈
⋂
i∈I Ui, then for each i

there is an εi > 0 such that B(x, εi) ⊆ Ui. But then since I is finite,

ε = min({εi : i ∈ I} ∪ {1}) > 0, and

B(x, ε) ⊆
⋂
i∈I

B(x, εi) ⊆
⋂
i∈I

Ui,

so that
⋂
i∈I Ui is an open subset as required. Applying this to the case

I = ∅ shows that X is open (or simply note that if U = X and x ∈ X then

B(x, ε) ⊆ X for any positive ε so that X is open). �

Remark 5.7. If you look in many textbooks for the definition of a topology

on a set X, then you will often see the axioms insisting separately that ∅ and

X are open, alongside the conditions that finite intersections and arbitrary

unions of open sets are open. The phrasing of the above Lemma is designed

11Note that if I is an indexing set, then a collection {Ui : i ∈ I} of subsets of X is just
a function u : I → P(X) where P(X) denotes the power set of X, where we normally
write Ui ⊆ X for u(i). The union of the collection of subsets {Ui : i ∈ I} is then
{x ∈ X : ∃i ∈ I, x ∈ Ui}, while the intersection of the collection {Ui : i ∈ I} is just
{x ∈ X : ∀i ∈ I, x ∈ Ui}. Using this, one readily sees that if I = ∅ then the intersection
of the collection is X and the union is the empty set ∅.



METRIC SPACES AND COMPLEX ANALYSIS. 23

to emphasize that this is redundant. In practice of course it is normally

immediate from the definition of the topology that both ∅ and X are open,

so unfortunately this is not an observation that saves one much work (and

is presumably why the extraneous stipulation is so common-place in the

literature).

Exercise 5.8. Using Lemma 4.1, show that the topologies Ti on Rn given

by the norms di (i = 1, 2,∞) coincide.

Example 5.9. A subset U of R is open if for any x ∈ U there is an open

interval centred at x contained in U . Thus we can readily see that the

finiteness condition for intersections is necessary: if Ui = (−1/i, 1) for i ∈ N

then each Ui is open but
⋂
i∈N Ui = [0, 1) and [0, 1) is not open because it is

not a neighbourhood of 0.

One important consequence of the fact that arbitrary unions of open sets

are open is the following:

Definition 5.10. Let (X, d) be a metric space and let S ⊆ X. The interior

of S is defined to be

int(S) =
⋃
U⊆S
Uopen

U.

Since the union of open subsets is always open int(S) is an open subset of

X and it is the largest open subset of X which is contained in S in the

sense that any open subset of X which is contained in S is in fact contained

in int(S). If x ∈ int(S) we say that x is an interior point of S. One can

also phrase this in terms of neighborhoods: the interior of S is the set of all

points in S for which S is a neighbourhood.

Example 5.11. If S = [a, b] is a closed interval in R then its interior is just

the open interval (a, b). If we take S = Q ⊂ R then int(Q) = ∅.
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We now show that the topology given by a metric is sufficient to charac-

terize continuity.

Proposition 5.12. Let X and Y be metric spaces and let f : X → Y be

a function. If a ∈ X then f is continuous at a if and only if for every

neighbourhood N ⊆ Y of f(a), the preimage f−1(N) is a neighbourhood of

a ∈ X. Moreover, f is continuous on all of X if and only if for each open

subset U of Y , its preimage f−1(U) is open in X.

Proof. First suppose that f is continuous at a, and let N be a neighhourhood

of f(a). Then we may find an ε > 0 such that B(f(a), ε) ⊆ N . Since f is

continuous at a, there is a δ > 0 such that B(x, δ) ⊆ f−1(B(f(a), ε)) ⊆

f−1(U). It follows f−1(N) is a neighbourhood of a as required. Conversely,

if ε > 0 is given, then certainly B(f(a), ε) is a neighbourhood of f(a), so

that f−1(B(f(a), ε)) is a neighbourhood of a, hence there is a δ > 0 such

that B(a, δ) ⊆ f−1(B(f(a), ε)), and thus f is continuous at a as required.

Now if f is continuous on all of X, since a set is open if and only if it is a

neighbourhood of each of its points, it follows from the above that f−1(U)

is an open subset of X for any open subset U of Y . For the converse, note

that if a ∈ X is any point of X and ε > 0 is given then the open ball

B(f(a), ε) is an open subset of Y , hence f−1(B(f(a), ε)) is open in X, and

in particular is a neighbourhood of a ∈ X. But then there is a δ > 0 such

that B(a, δ) ⊆ f−1(B(f(a), ε)), hence f is continuous at a as required.

�

Example 5.13. Notice that this Proposition gives us a way of producing

many examples of open sets: if f : Rn → R is any continuous function

and a, b ∈ R are real numbers with a < b then {v ∈ Rn : a < f(x) < b} =

f−1((a, b)) is open in Rn. Thus for example {(x, y) ∈ R2 : 1 < 2x2+3xy < 2}

is an open subset of the plane.
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Exercise 5.14. Use the characterization of continuity in terms of open sets

to show that the composition of continuous functions is continuous12.

Remark 5.15. The previous Proposition 5.12 shows, perhaps surprisingly,

that we actually need somewhat less than a metric on a set X to understand

what continuity means: we only need the topology induced by the metric

on the set X. In particular any two metrics which give the same topology

give the same notion of continuity. This motivates the following, perhaps

rather abstract-seeming, definition.

Definition 5.16. If X is a set, a topology on X is a collection of subsets T

of X, known as the open subsets which satisfy the conclusion of Lemma 5.6.

That is,

(1) If {Ui : i ∈ I} are in T then
⋃
i∈I Ui is in T . In particular ∅ is an

open subset.

(2) If I is finite and {Ui : i ∈ I} are in T , then
⋂
i∈I Ui is in T . In

particular X is an open subset of X.

A topological space is a pair (X, TX) consisting of a set X and a choice of

topology TX on X.

Motivated by Proposition 5.12, if f : X → Y is a function between two

topological spaces (X, TX) and (Y, TY ) we say that f is continuous if for

every open subset U ∈ TY we have f−1(U) ∈ TX , that is, f−1(U) is an open

subset of X.

The properties of a metric space which we can express in terms of open sets

can equally be expressed in terms of their complements, which are known

as closed sets. It is useful to have both formulations (as we will show, the

formulation of continuity in terms of closed sets is closer to that given by

convergence of sequences rather than the ε-δ definition).

12This is easy, the point is just to check you see how easy it is!
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Definition 5.17. If (X, d) is a metric space, then a subset F ⊆ X is said

to be a closed subset of X if its complement F c = X\F is an open subset.

Remark 5.18. It is important to note that the property of being closed is not

the property of not being open! In a metric space, it is possible for a subset

to be open, closed, both or neither: In R the set R is open and closed, the

set (0, 1) is open and not closed, the set [0, 1] is closed and not open while

the set (0, 1] is neither.

The following lemma follows easily from Lemma 5.6 by using DeMorgan’s

Laws.

Lemma 5.19. Let (X, d) be a metric space and let {Fi : i ∈ I} be a collection

of closed subsets.

(1) The intersection
⋂
i∈I Fi is a closed subset. In particular X is a

closed subset of X.

(2) If I is finite then
⋃
i∈I Fi is closed. In particular the empty set ∅ is

a closed subset of X.

Moreover, if f : X → Y is a function between two metric spaces X and Y

then f is continuous if and only if f−1(G) is closed for every closed subset

G ⊆ Y .

Proof. The properties of closed sets follow immediately from DeMorgan’s

law, while the characteriszation of continuity follows from the fact that

if G ⊂ Y is any subset of Y we have f−1(Gc) = (f−1(G))c, that is,

X\f−1(G) = f−1(Y \G). �

Lemma 5.20. If (X, d) is a metric space then any closed ball B̄(a, r) for

r ≥ 0 is a closed set. In particular, singleton sets are closed.
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Proof. We must show that X\B̄(a, r) is open. If y ∈ X\B̄(a, r) then

d(a, y) > r, so that ε = d(a, y)− r > 0. But then if z ∈ B(y, ε) we have

d(a, z) ≥ d(a, y)− d(z, y) > d(a, y)− ε = r,

so that z /∈ B̄(a, r). It follows that B(y, ε) ⊆ X\B̄(a, r) and so X\B̄(a, r) is

open as required. �

The relation between closed sets and convergent sequences mentioned at

the beginning of this section arises through the notion of a limit point which

we now define.

Definition 5.21. If (X, d) is a metric space and Z ⊆ X is any subset, then

we say a point a ∈ X is a limit point if for any ε > 0 we have
(
B(a, ε)\{a}

)
∩

Z 6= ∅. If a ∈ Z and a is not a limit point of Z we say that a is an isolated

point of Z. The set of limit points of Z is denoted Z ′. Notice that if

Z1 ⊆ Z2 are subsets of X then it follows immediately from the definition

that Z ′1 ⊆ Z ′2.

Example 5.22. If Z = (0, 1] ∪ {2} ⊂ R then 0 is a limit point of Z which

does not lie in Z, while 2 is an isolated point of Z because B(2, 1/2) ∩ Z =

(1.5, 2.5) ∩ Z = {2}.

If (xn) is a sequence in (X, d) which converges to ` ∈ X then {xn : n ∈ N}

is either empty or equal to {`}. (See the problem set.)

The term “limit point” is motivated by the following easy result:

Lemma 5.23. If S is a subset of a metric space (X, d) then x ∈ S′ if and

only if there is a sequence in S\{x} converging to x.

Proof. If x is a limit point then for each n ∈ N we may pick zn ∈ B(x, 1/n)∩

(S\{x}). Then clearly zn → x as n → ∞ as required. Conversely if (zn) is
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a sequence in S\{x} converging to x and δ > 0 is given, there is an N ∈ N

such that zn ∈ B(x, δ) for all n ≥ N . It follows that B(x, δ) ∩ (S\{x}) is

nonempty as required. �

The fact that a subset of a metric space is closed can be characterized in

terms of limit points (and hence in terms of convergent seqeunces):

Lemma 5.24. If (X, d) is a metric space and S ⊆ X then S is closed if

and only if S′ ⊆ S.

Proof. If S is closed then Sc is open and so for all y /∈ S there is a δ > 0

such that B(y, δ) ⊆ Sc. Thus S ∩ B(y, δ) = ∅ and so y is not a limit point

of S. Hence S′ ⊆ S as required. On the other hand if S′ ⊆ S then if y /∈ S

it follows y is not a limit point of S so that there is a δ > 0 such that(
B(y, δ)\{y}

)
∩ S = ∅, and since y /∈ S it follows B(y, δ) ⊆ Sc. It follows

that Sc is open and hence S is closed. �

Remark 5.25. It follows from Lemma 5.24 and Lemma 5.23 that if S ⊆ X

then a ∈ S̄ if and only if there is a sequence (xn) in S with xn → a. Indeed

if (xn) is a sequence in Z and xn → y as n → ∞ then y must be a limit

point of Z unless xn = y for all but finitely many n, in which case y ∈ Z.

Conversely, if a ∈ S′ then we are done by Lemma 5.23, while if a ∈ S we

may take xn = a for all n.

The fact that any intersection of closed subsets is closed has an important

consequence – given any subset S of a metric space (X, d) there is a unique

smallest closed set which contains S.

Definition 5.26. Let (X, d) be a metric space and let S ⊆ X. Then the

set

S̄ =
⋂
G⊇S

G closed

G,
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is the closure of S. It is closed because it is the intersection of closed subsets

of X and is the smallest closed set containing S in the sense that if G is any

closed set containing S then G contains S̄. If S ⊆ Y ⊆ X we say that S is

dense in Y if Y ⊆ S̄. (Thus every point of Y lies in S or is a limit point of

S.)

Example 5.27. The rationals Q are a dense subset of R, as is the set

{ a2n : a ∈ Z, n ∈ N}.

Definition 5.28. The notions of closure and interior also allow us to define

the boundary ∂S of a subset S of a metric space to be S̄\int(S).

Proposition 5.29. Let (X, d) be a metric space and let S ⊆ X. Then

S ∪ S′ = S̄.

Proof. Let Y = S ∪S′. Since S ⊆ S̄, certainly S′ ⊆ (S̄)′, and as S̄ is closed,

by Lemma 5.24, (S̄)′ ⊆ S̄. Hence Y ⊆ S̄. To see the opposite inclusion,

suppose that a /∈ Y . Then there is a δ > 0 such that B(a, δ) ∩ S = ∅. It

follows that S ⊆ B(a, δ)c and thus since B(a, δ)c is closed, S̄ ⊆ B(a, δ)c,

and so certainly a /∈ S̄. It follows S̄ ⊆ Y and hence S̄ = Y are required.

�

Remark 5.30. If Z ⊆ X is an arbitrary subset you can check that (Z ′)′ ⊆ Z ′,

that is, the limit points of Z ′ are limit points of Z. It then follows from

Lemma 5.24 that Z ′ is closed, since it contains its limit points.

Example 5.31. In general, it need not be the case that B̄(a, r) is the closure

of B(a, r). Since we have seen that B̄(a, r) is closed, it is always true that

B(a, r) ⊆ B̄(a, r) but the containment can be proper. As a (perhaps silly-

seeming) example take any set X with at least two elements equipped with

the discrete metric. Then if x ∈ X we have {x} = B(x, 1) is an open set
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consisting of the single point {x}. Since singletons are always closed we see

that B(x, 1) = B(x, 1) = {x}. On the other hand B̄(x, 1) = X the entire

set, which is strictly larger than {x} by assumption.

Remark 5.32. Combining the above characterization of closed sets in terms

of limit points and the characterization of continuity in terms of closed sets

we can give yet another description of continuity for a function f : X → Y

between metric spaces: If Z ⊂ Y is a subset of Y which contains all its limit

points then so does f−1(Z). The problem set asks you to establish a slightly

different characterization using the notion of the closure of a set, namely

that a function f : X → Y is continuous if and only if for any subset Z ⊆ X

we have f(Z) ⊆ f(Z). It is easy to relate this to the definition of continuity

in terms of convergent sequences.

6. Subspaces of metric spaces

If (X, d) is a metric space, then as we noted before, any subset Y ⊆ X is

automatically also a metric space since the distance function d : X ×X →

R≥0 restricts to a distance function on Y . The set Y thus has a topology

given by this metric. In this section we show that this topology is easy to

describe in terms of the topology on X. The key to this description is the

simple observation that the open balls in Y are just the intersection of the

open balls in X with Y . For clarity, for y ∈ Y ⊆ X we will write

BY (y, r) = {z ∈ Y : d(z, y) < r}

for the open ball about y of radius r in Y and

BX(y, r) = {x ∈ X : d(x, y) < r}

for the open ball of radius r about y in X. Thus BY (y, r) = Y ∩BX(y, r).



METRIC SPACES AND COMPLEX ANALYSIS. 31

Lemma 6.1. If (X, d) is a metric space and Y ⊆ X then a subset U ⊆ Y

is an open subset of Y if and only if there is an open subset V of X such

that U = V ∩ Y . Similarly a subset Z ⊆ Y is a closed subset of Y if and

only if there is a closed subset F of X such that Z = F ∩ Y .

Proof. If U = Y ∩ V where V is open in X and y ∈ U then there is a δ > 0

such that BX(y, δ) ⊆ V . But then BY (y, δ) = BX(y, δ) ∩ Y ⊆ V ∩ Y = U

and so U is a neighhourbood of each of its points as required. On the other

hand, if U is an open subset of Y then for each y ∈ U we may pick an open

ball BY (y, δy) ⊆ U . It follows that U =
⋃
y∈U BY (y, δy). But then if we set

V =
⋃
y∈U BX(y, δy) it is immediate that V is open in X and V ∩ Y = U as

required.

The corresponding result for closed sets follows readily: F is closed in Y

if and only if Y \F is open in Y which by the above happens if and only if it

equals Y ∩ V for some open set in X. But this is equivalent to T = Y ∩ V c,

the intersection of Y with the closed set V c. �

Remark 6.2. The lemma shows that the topology on X determines the topol-

ogy on the subspace Y ⊆ X directly. It is easy to see that if (X, T ) is an

abstract topological space and Y ⊆ X then the collection TY = {U ∩ Y :

U ∈ T } is a topology on Y which is called the subspace topology.

Remark 6.3. It is important here to note that the property of being open or

closed is a relative one – it depends on which metric space you are working

in. Thus for example if (X, d) is a metric space and Y ⊆ X then Y is always

open viewed as a subset of itself (since the whole space is always an open

subset) but it of course need not be an open subset of X! For example, [0, 1]

is not open in R but it is an open subset of itself.

Example 6.4. Let’s consider a more interesting example: Let X = R and

let Y = [0, 1]∪ [2, 3]. As a subset of Y the set [0, 1] is both open and closed.
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To see that it is open, note that if x ∈ [0, 1] then

BY (x, 1/2) = BR(x, 1/2) ∩ Y = (x− 1

2
, x+

1

2
) ∩ ([0, 1] ∪ [2, 3])

= (x− 1

2
, x+

1

2
) ∩ [0, 1] ⊂ [0, 1],

Similarly we see that BY (x, 1/2) ⊆ [2, 3] if x ∈ [2, 3] so that [2, 3] is also

open in Y . It follows [0, 1] is both open and closed in Y (as is [2, 3]).

7. Homeomorphisms and isometries

If (X, d) and (Y, d) are metric spaces it is natural to ask when we wish to

consider X and Y equivalent. There is more than one way to answer this

question – the first, perhaps most obvious one, is the following:

Definition 7.1. A function f : X → Y between metric spaces (X, dX) and

(Y, dY ) is said to be an isometry if

dY (f(x), f(y)) = dX(x, y) ∀x, y ∈ X

An isometry is automatically injective. If there is a surjective (and hence

bijective) isometry between two metric spaces X and Y we say that X and

Y are isometric.

Example 7.2. Let X = R2 (equipped with the Euclidean metric13 d2).

The collection of all bijective isometries from X to itself forms a group,

the isometry group of the plane. Clearly the translations tv : R2 → R2 are

isometries, where v ∈ R2 and tv(x) = x + v. Similarly, if A ∈ Mat2(R) is

an orthogonal matrix, so that AtA = I, then x 7→ Ax is an isometry: since

d2(Ax,Ay) = ‖A(x)−A(y)‖ = ‖A(x−y)‖ it is enough to check that ‖Ax‖ =

‖x‖, but this is clear since ‖Ax‖2 = (Ax).(Ax) = xAtAx = xtIx = ‖x‖.

13Unless it is explicitly stated otherwise, we will always take Rn to be a metric space
equipped with the d2 metric.
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In fact these two kinds of isometries generate the full group of isometries.

If T : R2 → R2 is any isometry, let v = T (0). Then T1 = t−v ◦ T is an

isometry which fixes the origin. Thus it remains to show that any isometry

which fixes the origin is in fact linear. But you showed in Prelims Geometry

that any such isometry of Rn must preserve the inner product (because

it preserves the norm and you can express the inner product in terms of

the norm). It follows such an isometry takes an orthonormal basis to an

orthonormal basis, from which linearity readily follows. (Note that this

argument works just as well in Rn.)

Example 7.3. Let Sn = {x ∈ Rn+1 : ‖x‖2 = 1} be the n-sphere (so S1

is a circle and S2 is the usual sphere). Clearly On+1(R) acts by isometries

on Sn. In fact you can show that Isom(Sn) = On+1(R). To prove this one

needs to show that any isometry of Sn extends to an isometry of Rn+1 which

fixes the origin.

We have already seen that on Rn the metrics d1, d2, d∞, although different,

induce the same notion of convergence and continuity14 . The notion of

isometry is thus in some sense too rigid a notion of equivalence if these are

the notions we are primarily interested in. A weaker, but often more useful,

notion of equivalence is the following:

Definition 7.4. Let f : X → Y be a continuous function between metric

spaces X and Y . We say that f is a homeomorphism if there is a continuous

function g : Y → X such that f ◦ g = idY and g ◦ f = idX . If there is

a homeomorphism between two metric spaces X and Y we say they are

homeomorphic.

14There is actually a slightly subtle point here – to know that (Rn, d1) and (Rn, d2) are
not isometric we would need to show that there is no bijective map α : Rn → Rn such that
d2(α(x), α(y)) = d1(x, y) for all x, y ∈ Rn.
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Remark 7.5. Note that the definition implies that f is bijective as a map of

sets but it is not true in general15 that a continuous bijection is necessarily

a homeomorphism. To see this, consider the spaces X = [0, 1) ∪ [2, 3] and

Y = [0, 2]. Then the function f : X → Y given by

f(x) =

 x, if x ∈ [0, 1)

x− 1, if x ∈ [2, 3]

is a bijection and is clearly continuous. Its inverse g : Y → X is however not

continuous at 1 – the one-sided limits of g as x tends to 1 from above and

below are 1 and 2 respectively.

Example 7.6. The closed disk B̄(0, 1) of radius 1 in R2 is homoemorphic

to the square [−1, 1] × [−1, 1]. The easiest way to see this is inscribe the

disk in the square and stretch the disk radially out to the square. One can

write explicit formulas for this in the four quarters of the disk given by the

lines x± y = 0 to check this does indeed give a homeomorphism.

The open interval (0, 1) is homeomorphic to R: a homeomorphism be-

tween them is given by the function x 7→ tan(π.(x−1/2)), which has inverse

y 7→ 1
π arctan(y) + 1

2 .

8. Completeness

One of the important notions in Prelims analysis was that of a Cauchy

sequence. This is a notion, like convergence, which makes sense in any metric

space.

Definition 8.1. Let (X, d) be a metric space. A sequence (xn) in X is said

to be a Cauchy sequence if, for any ε > 0, there is an N ∈ N such that

d(xn, xm) < ε for all n,m ≥ N .

15This is unlike the examples you have seen in algebra – the inverse of a bijective linear map
is automatically linear, and the inverse of a bijective group homomorphism is automatically
a homomorphism. Similarly, the inverse of a bijective isometry is also an isometry.
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The following lemma establishes basic properties of Cauchy sequences in

an arbitrary metric space which you saw before for real sequences.

Lemma 8.2. Let (X, d) be a metric space.

(1) If (xn) is a convergent sequence then it is Cauchy.

(2) Any Cauchy sequence is bounded.

Proof. Suppose that xn → ` as n→∞ and ε > 0 is given. Then there is an

N ∈ N such that d(xn, `) < ε/2 for all n ≥ N . It follows that if n,m ≥ N

we have

d(xn, xm) ≤ d(xn, `) + d(`, xm) < ε/2 + ε/2 = ε,

so that (xn) is a Cauchy sequence as required.

If (xn) is a Cauchy sequence, then taking ε = 1 in the definition, we see

that there is an N ∈ N such that d(xn, xm) < 1 for all n,m ≥ N . It follows

that if we set

M = max{1, d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN )}

then for all n ∈ N we have xn ∈ B(xN ,M) so that (xn) is bounded as

required. �

Part (1) of the lemma motivates the following definition:

Definition 8.3. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges.

Example 8.4. One of the main results in Analysis I was that R is complete,

and it is easy to deduce from this that Rn is complete also (since a sequence

in Rn converges if and only if each of its coordinates converge).

On the other hand, consider the metric space (0, 1]: The sequence (1/n)

converges in R (to 0) so the sequence is Cauchy in R and hence also in (0, 1],

however it does not converge in (0, 1].
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The previous example suggests a connection between completeness and

closed sets. One precise statement of this form is the following:

Lemma 8.5. Let (X, d) be a complete metric space and let Y ⊆ X. Then

Y is complete if and only if Y is a closed subset of X.

Proof. Note that if (xn) is a Cauchy sequence in Y then it is certainly a

Cauchy sequence in X. Since X is complete, (xn) converges in X, say

xn → a as n → ∞. Thus (xn) converges in Y precisely when a ∈ Y . It

follows that Y is complete if and only if it contains the limits of all sequences

(xn) in Y which converge in X. But Lemma 5.25 shows that the set of limits

of all sequences in Y is exactly Ȳ , hence Y is complete if and only if Ȳ ⊆ Y ,

that is, if and only if Y is closed.

�

Another useful consequence of completeness is that it guarantees certain

intersections of closed sets are non-empty:

Lemma 8.6. Let (X, d) be a complete metric space and suppose that D1 ⊇

D2 ⊇ . . . form a nested sequence of non-empty closed sets in X with the

property that diam(Dk)→ 0 as k →∞. Then there is a unique point w ∈ X

such that w ∈ Dk for all k ≥ 1.

Proof. For each k pick zk ∈ Dk. Then since the Dk are nested, zk ∈ Dl for

all k ≥ l, and hence the assumption on the diameters ensures that (zk) is a

Cauchy sequence. Let w ∈ X be its limit. Since Dk is closed and contains

the subsequence (zn+k)n≥0 it follows w ∈ Dk for each k ≥ 1. To see that w

is unique, suppose that w′ ∈ Dk for all k. Then d(w,w′) ≤ diam(Dk) and

since diam(Dk)→ 0 as k →∞ it follows d(w,w′) = 0 and hence w = w′. �
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Remark 8.7. Notice that the property of a metric space being complete is

not preserved by homeomorphism – we have seen that (0, 1) is homeomor-

phic to R but the former is not complete, while the latter is. This is because

a homeomorphism does not have to take Cauchy sequences to Cauchy se-

quences.

Example 8.8. Let Y = {z ∈ C : |z| = 1}\{1}. Then Y is homeomorphic

to (0, 1) via the map t 7→ e2πit, but their respective closures Ȳ and [0, 1]

however are not homeomorphic. (We will seem a rigorous proof of this later

using the notion of connectedness.) The metric spaces Y and (0, 1) contain

information about their closures in R2 which is lost when we only consider

the topologies the metrics give: the space Y has Cauchy sequences which

don’t converge in Y , but these all converge to 1 ∈ C, whereas in (0, 1) there

are two kinds of Cauchy sequences which do not converge in (0, 1) – the

ones converging to 0 and the ones converging to 1. The point here is that

given two Cauchy sequences we can detect if they converge to the same limit

without knowing what that the limit actually is: (xn) and (yn) converge to

the same limit if for all ε > 0 there is an N ∈ N such that d(xn, yn) < ε

for all n ≥ N . Using this idea one can define what is called the completion

of a metric space (X, d): this is a complete metric space (Y, d) such which

X embeds isometrically into as a dense16 subset. For example, the real

numbers R are the completion of Q.

Many naturally arising metric spaces are complete. We now give a impor-

tant family of such: recall that if X is any set, the space B(X) of bounded

real-valued functions on X is normed vector space where if f ∈ B(X) we

define its norm to be ‖f‖∞ = supx∈X |f(x)|.

16that is, Y is the closure of X.
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Theorem 8.9. Let X be a set. The normed vector space (B(X), ‖.‖∞) is

complete.

Proof. Let (fn)n≥1 be a Cauchy sequence in B(X). Then we have for each

x ∈ X

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ → 0,

as n,m→∞. It follows that the sequence (fn(x)) is a Cauchy sequence of

real numbers and hence since R is complete it converges to a real number.

Thus we may define a function f : X → R by setting f(x) = limn→∞ fn(x).

We claim fn → f in B(X). Note that this requires us to show both that

f ∈ B(X) and fn → f with respect to the norm ‖.‖∞. To check these both

hold, fix ε > 0. Since (fn) is Cauchy, we may find an N ∈ N such that

‖fn−fm‖∞ < ε for all n,m ≥ N . Thus we have for all x ∈ X and n,m ≥ N

|fn(x)− fm(x)| ≤ ‖fn − fm‖ < ε.

But now letting n→∞ we see that for any m ≥ N we have |f(x)−fm(x)| ≤

ε for all x ∈ X. But then for any such m we certainly have f − fm ∈ B(X)

so that17 f = fm+(f−fm) ∈ B(X), and since ‖f−fm‖∞ ≤ ε for all m ≥ N

it follows fm → f as m→∞ as required.

�

As we already observed, if X is also a metric space then we can also

consider the space of bounded continuous functions Cb(X) on X. This is

a normed subspace of B(X), and the following theorem is a generalization

of the result you saw last year showing that a uniform limit of continuous

functions is continuous (the proof is essentially the same also).

Theorem 8.10. Let (X, d) be a metric space. The space Cb(X) is a complete

normed vector space.

17Recall from Lemma 3.8 that B(X) is a vector space!
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Proof. Since we have shown in Theorem 8.9 that B(X) is complete, by

Lemma 8.5 we must show that Cb(X) is a closed subset of B(X). Let (fn) be

a Cauchy sequence of bounded continuous functions on X. By Theorem 8.9

this sequence converges to a bounded function f : X → R. We must show

that f is continuous. Suppose that a ∈ X and let ε > 0. Then since fn → f

there is an N ∈ N such that ‖f − fn‖∞ < ε/3 for all n ≥ N . Moreover,

if we fix n ≥ N then since fn is continuous, there is a δ > 0 such that

|fn(x)− fn(a)| < ε/3 for all x ∈ B(a, δ). But then for x ∈ B(a, δ) we have

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|

< ε/3 + ε/3 + ε/3 = ε.

It follows that f is continuous at a, and since a was arbitrary, f is a contin-

uous function as required.

�

Remark 8.11. If X and Y are metric spaces, as we saw in Example 2.16, one

can also consider the space B(X,Y ) of bounded functions from X to Y , that

is, functions f : X → Y such that f(X) is a bounded subset of Y , along with

its subspace Cb(X,Y ) of bounded continuous functions. These are no longer

normed vector spaces, but they are both complete metric spaces provided

Y is, as you are asked to show in the second problem sheet.

Lemma 8.12. (“Weierstrass M -test”): Let X be a metric space. Suppose

that (fn) is a sequence in Cb(X) and (Mn)n≥0 is a sequence of non-negative

real numbers such that ‖fn‖∞ ≤ Mn for all n ∈ Z≥0 and
∑

n≥0Mn exists.

Then the series
∑

n≥0 fn converges in Cb(X).

Proof. Let Sn =
∑N

k=0 fk be the sequence of partial sums. Since we know

Cb(X) is complete, it suffices to prove that the sequence (Sn)m≥0 is Cauchy.
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But if n ≤ m then we have

‖Sm − Sn‖ ≤
m∑

k=n+1

‖fk‖ ≤
m∑

k=n+1

Mk,

and since
∑

k≥0Mk converges, the sum
∑m

k=n+1Mk tends to zero as m,n→

∞ as required. �

Finally, we conclude this section with a theorem which is extremely useful,

and is a natural generalization of a result you saw last year in constructive

mathematics. We first need some terminology:

Definition 8.13. Let (X, d) and (Y, d) be metric spaces and suppose that

f : X → Y . We say that f is a Lipschitz map (or is Lipschitz continuous) if

there is a constant K ≥ 0 such that

d(f(x), f(y)) ≤ Kd(x, y).

If Y = X and K ∈ [0, 1) then we say that f is a contraction mapping

(or simply a contraction). Any Lipschitz map is continuous, and in fact

uniformly continuous, as is easy to check.

The reason for the restriction of the term contraction to maps from a space

to itself is the following theorem. The result is a broad generalization of a

result you saw before in the Constructive Mathematics course in Prelims,

which you will also see put to good use in the Differential Equations course

this term.

Theorem 8.14. Let (X, d) be a nonempty complete metric space and sup-

pose that f : X → X is a contraction. Then f has a unique fixed point, that

is, there is a unique z ∈ X such that f(z) = z.

Proof. If y1, y2 ∈ X are such that f(y1) = y1 and f(y2) = y2 we have

d(y1, y2) = d(f(y1), f(y2)) ≤ Kd(y1, y2) so that (1−K)d(y1, y2) ≤ 0. Since
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K ∈ [0, 1) and the function d is nonnegative this is possible only if d(y1, y2) =

0 and hence y1 = y2. It follows that f has at most one fixed point.

To see that f has a fixed point, fix a ∈ X and consider the sequence

defined by x0 = a and xn = f(xn−1) for n ≥ 1. We claim that (xn)

converges and that its limit z is the unique fixed point of f . Indeed if

xn → z as n→∞ then since f is continuous we have

f(z) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = z.

Thus z is indeed a fixed point. Thus it remains to show that (xn) is conver-

gent. Since (X, d) is complete, we need only show that (xn) is Cauchy. To

see this this note first that for n ≥ 1 we have d(xn, xn−1) ≤ Kn−1d(f(a), a)

(by induction). But then if n ≥ m by the triangle inequality we have

d(xn, xm) ≤
n−m∑
k=1

d(xm+k, xm+k−1) ≤ d(a, f(a))Km
n−m∑
k=1

Kk−1 ≤ d(a, f(a))

1−K
Km,

which clearly tends to 0 as n,m→∞. It follows (xn) is a Cauchy sequence

as required. �

Remark 8.15. This theorem is important not just for the statement, but

because the proof shows us how to find the fixed point! (Or rather, at least

how to approximate it). The sequence (xn) in the proof converges to the

fixed point, and in fact does so quickly – if we start with an initial guess a,

and z is the actual fixed point, then d(xn, z) ≤ Kn.d(a, z).

Remark 8.16. It is worth checking to what extent the hypotheses of the

theorem are necessary. One might think of a weaker notion of contraction,

for example: if f : X → X has the property that d(f(x), f(y)) < d(x, y) for

all x, y ∈ X then it is easy to see that f has at most one fixed point, but the

example f : [1,∞) → [1,∞) where f(x) = x + 1/x shows that such a map

need not have any fixed points.
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The requirement thatX is complete is also clearly necessary: if f : (0, 1)→

(0, 1) is given by f(x) = x/2 clearly f is a contraction, but f has no fixed

points in (0, 1).

9. Connected sets

In this section we try to understand what makes a space “connected”.

There are in fact more than one approaches one can take to this question.

We will consider two, and show that for reasonably nice spaces the two

notions in fact coincide18.

The first definition we make tries to capture the fact that the space should

not “fall apart” into separate pieces. Since we can always write a space with

more than one element as a disjoint union of two subsets, we must take

into account the metric, or at least the topology, of our space in making a

definition.

Example 9.1. Let X = [0, 1] and let A = [0, 1/2) and B = [1/2, 1]. Then

clearly X = A ∪ B so that X can be divided into two disjoint subsets.

However, the point 1/2 ∈ B has points in A arbitrarily close to it, which,

intuitively speaking, is why it is “glued” to A.

This suggests that we might say that a decomposition of metric space X

into two subsets A and B might legitimately show X to be disconnected if

no point of A was a limit point of B and vice versa. This is precisely the

content of our definition.

Definition 9.2. Suppose that (X, d) is a metric space. We say that X is

disconnected if we can write X = U ∪ V where U and V are nonempty

18In particular, for the open subsets of the complex plane which are the sets we will be
most interested in for second part of the course, the two notions will coincide, but both
characterizations of connectedness will be useful.
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open subsets of X and U ∩ V = ∅. We say that X is connected if it is not

disconnected.

Note that if X = U ∪ V and U and V are both open and disjoint, then

U = V c is also closed, as is V . Thus U and V also contain all of their limit

points, so that no limit point of A lies in B and vice versa.

Remark 9.3. Note that if (X, d) is a metric space and A ⊆ X, then the

condition that A is connected can be rewritten as follows: if U, V are open

in X and U ∩V ∩A = ∅ then whenever A ⊆ U ∪V , either A ⊆ U or A ⊆ V .

As the previous remark shows, there are a few ways of expressing the

above definition which are all readily seen to be equivalent. We record the

most common in the following lemma.

Lemma 9.4. Let (X, d) be a metric space. The following are equivalent.

(1) X is connected.

(2) If f : X → {0, 1} is a continuous function then f is constant.

(3) The only subsets of X which are both open and closed are X and ∅.

(Here the set {0, 1} is viewed as a metric space via its embedding in R, or

equivalently with the discrete metric.)

Proof. (1) ⇐⇒ (2): Let f : X → {0, 1} be a continuous function. Then

since the singleton sets {0} and {1} are both open in {0, 1} each of f−1(0)

and f−1(1) are open subsets of X which are clearly disjoint. It follows if X

is connected then one must be the empty set, and hence f is constant as

required. Conversely, if X is not connected then we may write X = A ∪ B

where A and B are nonempty disjoint open sets. But then the function

f : X → {0, 1} which is 1 on A and 0 on B is non-constant and by the

characterization of continuity in terms of open sets, f is clearly continuous.
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(1) ⇐⇒ (3): If X is disconnected then we may write X = A ∪B where

A and B are disjoint nonempty open sets. But then Ac = B so that A is

closed (as is B = Ac) so that A and B proper sets of X which are both

open and closed. Conversely, if A is a proper subset of X which is closed

and open then Ac is also a proper subset which is both closed and open so

that the decomposition X = A ∪Ac shows that X is disconnected. �

Example 9.5. If X = [0, 1] ∪ [2, 3] ⊂ R then we have seen that both [0, 1]

and [2, 3] are open in X, hence since X is their disjoint union, X is not

connected.

Lemma 9.6. Let (X, d) be a metric space.

i) Let {Ai : i ∈ I} be a collection of connected subsets of X such that⋂
i∈I Ai 6= ∅. Then

⋃
i∈I Ai is connected.

ii) If A ⊆ X is connected then if B is such that A ⊆ B ⊆ Ā, the set B

is also connected.

iii) If f : X → Y is continuous and A ⊆ X is connected then f(A) ⊆ Y

is connected.

Proof. For the first part, suppose that f :
⋃
i∈I Ai → {0, 1} is continuous.

We must show that f is constant. Pick x0 ∈
⋂
i∈I Ai. Then if x ∈

⋃
i∈I Ai

there is some i for which x ∈ Ai. But then the restriction of f to Ai is

constant since Ai is connected, so that f(x) = f(x0) as x, x0 ∈ Ai. But

since x was arbitrary, it follows that f is constant as required.

See the second problem sheet for hints for the second part.

For the final part, note that since f is continuous, if f(A) ⊆ U ∪ V for

U and V open in Y with U ∩ V ∩ f(A) = ∅, then A ⊂ f−1(U) ∪ f−1(V ),

f−1(U) ∩ f−1(V ) ∩ A = ∅ and f−1(U), f−1(V ) are open in X. Since A is

connected it must lie entirely in one of f−1(U) or f−1(V ) and hence f(A)

must lie entirely in U or V as required. �
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Remark 9.7. Notice that iii) in the previous Lemma implies that if X and

Y are homeomorphic, they if X is connected so is Y , and vice versa. Note

also that iii) allows us to generalize the characterization of connectedness

in terms of functions to the set {0, 1}. We say that a metric (or topological)

space is discrete if every point is an open set. It is easy to see that the

connected subsets of a discrete metric space are precisely the singleton sets,

thus any continuous function from a connected set to a discrete set must be

constant. This applies for example to sets such as N and Z, which will be

very useful for us later in the course.

Definition 9.8. Part i) of Lemma 9.6 has an important consequence: if

(X, d) is a metric space and x0 ∈ X, then the set of connected subsets

of X which contain x0 is closed under unions, that is, if {Ci : i ∈ I} is

any collection of connected subsets containing x0 then
⋃
i∈I Ci is again a

connected subset containing x0. This means that

Cx0 =
⋃

C⊆X connected,
x0∈C

C,

is the largest19 connected subset of X which contains x0, in the sense that

any connected subset of X which contains x0 lies in Cx0 . It is called the

connected component of X containing x0. The space X is the disjoint union

of its connected components.

9.1. Connected sets in R.

Proposition 9.9. The real line R is connected.

Proof. Let U and V be open subsets of R such that R = U∪V and U∩V = ∅.

Suppose for the sake of a contradiction that both U and V are non-empty

19This is the analogous to the definition of the interior of a subset S of X, which is the
largest open subset of X contained in S.
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so that we may pick x ∈ U and y ∈ V . By symmetry we may assume that

x < y (since U ∩ V = ∅ we cannot have x = y). Since [x, y] is bounded

and x ∈ U , if we let S = {z ∈ [x, y] : z ∈ U}, then c = sup(S) exists, and

certainly c ∈ [x, y]. If c ∈ U then c 6= y and as U is open there is some

ε1 > 0 such that B(c, ε1) ⊆ U . Thus if we set δ = min{ε1/2, (y − c)/2} > 0

we have c + δ ∈ U ∩ [x, y] contradicting the fact that c is an upper bound

for S. Similarly if c ∈ V then there is an ε2 > 0 such that B(c, ε2) ⊆ V . But

then ∅ = (c − ε2, c] ∩ U ⊇ (c − ε2, c] ∩ S, so that c − ε2 is an upper bound

for S, contradiction the fact that c is the least upper bound of S. It follows

that one of U or V is the empty set as required. �

Corollary 9.10. The real line R, every half-line (a,∞), (−∞, a), [a,∞) or

(−∞, a] and any interval are all connected subsets of R.

Proof. We have already seen that R is connected, and since every open

interval (a, b) or open half-line (a,∞), (−∞, a) is homeomorphic to R they

are also connected. The remaining cases the follow from part ii) of Lemma

9.6. �

Exercise 9.11. Show that any interval or half-line is homeomorphic to one

of [0, 1], [0, 1) or (0, 1).

Lemma 9.12. Suppose that A ⊂ R is a connected set. Then A is either R,

an interval, or a half-line.

Proof. Suppose that x, y ∈ A and x < y. We claim that [x, y] ⊆ A. Indeed

if this is not the case then there is some c with x < c < y and c /∈ A. But

then A =
(
A ∩ (−∞, c)

)
∪ ((A ∩ (c,∞)

)
so that A is not connected.
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If we let sup(A) = +∞ if A is not bounded above and inf(A) = −∞ if A

is not bounded below, then by the approximation property it follows that

(inf(A), sup(A)) =
⋃

x,y∈A
x≤y

[x, y] ⊆ A,

so that A is an interval or half-line as required. (The inf(A) and sup(A)

may or may not lie in A, leading to open, closed, or half-open intervals and

open or closed half-lines.) �

Proposition 9.13. (Intermediate Value Theorem.) Let f : [a, b] → R be a

continuous function. Then the image of f is an interval in R. In particular,

f takes every value between f(a) and f(b).

Proof. Since [a, b] is connected, its image must be connected, and hence by

the above it is an interval. The in particular claim follows. �

Remark 9.14. Note that for the Intermediate Value Theorem we only needed

to know that [a, b] was connected and that a connected subset A of R has

the property that if x ≤ y lie in A then [x, y] ⊆ A.

9.2. Path connectedness. A quite different approach to connectedness

might start assuming that, whatever a connected set should be, the closed

interval should be one20.

Definition 9.15. Let (X, d) be a metric space. A path in X is a continuous

function γ : [a, b] → X where [a, b] is any non-empty closed interval. If

x, y ∈ X then we say there is a path between x and y if there is a path

γ : [a, b] → X such that γ(a) = x and γ(b) = y. We say that the metric

space X is path-connected if there is a path between any two points in X.

20Since we’ve seen that the closed interval is connected according to our previous defini-
tion, it shouldn’t be too surprising that we will readily be able to see our second notion
of connectedness implies the first. The subtle point will be that it is actually in general a
strictly stronger condition.
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Note that since every closed interval [a, b] is homeomorphic to [0, 1] one can

equivalently require that paths are continuous functions γ : [0, 1] → X. In

the subsequent discussion we will, for convenience, impose this condition.

There are a number of useful operations on paths: Given two paths γ1, γ2

in X such that γ1(1) = γ2(0) we can form the concatenation γ1 ? γ2 of the

two paths to be the path

γ1 ? γ2(t) =

 γ1(2t), 0 ≤ t ≤ 1/2

γ2(2t− 1), 1/2 ≤ t ≤ 1

Finally, if γ : [0, 1] → X is a path, then the opposite path γ− is defined by

γ−(t) = γ(1− t).

Definition 9.16. There is a notion of path-component for a metric space:

Let us define a relation on points in X as follows: Say x ∼ y if there is a

path from x to y in X. The constant path γ(t) = x (for all t ∈ [0, 1]) shows

that this relation is reflexive. If γ is a path from x to y then γ− is a path

from y to x, so the relation is symmetric. Finally if γ1 is a path from x to y

and γ2 is a path from y to z then γ1 ?γ2 is a path from x to z, so the relation

is transitive. It follows that ∼ is an equivalence relation and its equivalence

classes, which partition X, are known as the path components of X.

We now relate the two notions of connectedness.

Proposition 9.17. Let (X, d) be a metric space. If X is path-connected

then it is connected. If X is an open subset of V where V is a normed

vector space, then X is path-connected if it is connected.

Proof. Suppose that X is path-connected. To see X is connected we use the

characterization of connectedness in terms of functions to {0, 1}. Consider

such a function f : X → {0, 1}. We wish to show that f is constant, that is,

we need to show that if x, y ∈ X then f(x) = f(y). But Z is path-connected,
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so there is a path γ : [0, 1]→ X such that γ(0) = x and γ(1) = y. But then

f ◦ γ is a continuous function from the connected set [0, 1] to {0, 1} so that

f ◦ γ must be constant. But then f(x) = f ◦ γ(0) = f ◦ γ(1) = f(y) as

required.

Now suppose that X is open in V where V is a normed vector space.

Let x0 be a point in X and let P be its path component. Then if v ∈ P ,

since X is open, there is an open ball B(v, r) ⊆ Z. Given any point w in

B(v, r) we have the path γw(t) = tw + (1 − t)v from v to w, and hence

concatenating a path from x0 to v with γv we see that w lies in P . It follows

that B(v, r) ⊆ P so that P is open in V . But since X is the disjoint union of

its path components, it follows that if Z is connected it must have at most

one path-component and so is path-connected as required. �

Remark 9.18. Note that it is easy to see that if (X, d) is path-connected and

f : X → Y is continuous, then the image of X under f is a path-connected

subset of Y : if y1 = f(x1) and y2 = f(x2) are in the image of f , then if we

pick a path γ : [0, 1]→ X from x1 to x2 in X, clearly f ◦ γ is a path from y1

to y2 in f(X).

Example 9.19. In general it is not true that a connected set need be path-

connected. One reason the two notions differ is because, as well as being

connected, the closed interval is what is known as compact, a notion we will

examine shortly. One consequence of this is that if (X, d) is a metric space

and A ⊂ X is a path-connected subspace then Ā, the closure of A need not

be path-connected, despite the fact that we have already seen that it must

be connected.

Consider the subset A ⊆ R2 given by

A = {(t, sin(1/t) : t ∈ (0, 1]}.
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Since A is clearly the image of (0, 1] under a continuous map, it is a connected

subset of R2, and hence its closure Ā = A∪ ({0}× [−1, 1]) is also connected.

We claim however that Ā is not path-connected. To see informally why

this is the case, suppose γ : [0, 1]→ R2 has a path from (1, sin(1)) to (0, 1).

Then the first and second coordinates x(t) and y(t) of γ are continuous

functions on a closed interval, so they are uniformly continuous. By the

intermediate value theorem x(t) must take every value between 1 and 0, but

then y(t) must oscillate between −1 and 1 infinitely often which violates

uniform continuity.

10. Compactness

One of the most fundamental theorems in Prelims Analysis was the Bolzano-

Weierstrass theorem on bounded sequences of real numbers. It is the key

technical ingredient in a number of the main theorems in the whole se-

quence – the completeness of the reals, the fact that a continuous function

on a closed interval is bounded and attains its bounds, the equivalence of

continuity and uniform continuity for functions on a closed interval all rely

on it.

In this section we study metric spaces in which the conclusion of the

Bolzano-Weierstrass theorem holds, and show that not only do many of

the results from Prelims which relied on the Bolanzo-Weierstrass theorem

extend to these metric spaces (which is perhaps unsurprising) but also that

the class of such spaces is quite rich – it includes for example all closed

bounded subsets of Rn for any n.
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Definition 10.1. Let (X, d) be a metric space. We say that X is (se-

quentially21) compact if any sequence (xn)n≥1 in X contains a subsequence

(xnk)k≥1 for which there exists an ` ∈ X with xnk → ` as k →∞.

Example 10.2. You saw last year that any bounded sequence of real num-

bers contains a convergent subsequence. This readily implies that any closed

interval [a, b] ⊂ R is compact: Indeed if (xn) is a sequence in [a, b] then

clearly it is bounded, so it contains a convergent subsequence (xnk), say

xnk → ` as k → ∞. But since limits preserve weak inequalities (or in the

language we have now developed, [a, b] is a closed subset of R and so contains

its limit points) we must have ` ∈ [a, b] and hence [a, b] is compact.

It is also easy to see that (a, b], [a, b) and (a, b) are not compact when

b > a: Take (a, b] for example: a tail of the sequence (a+ 1/n)n≥1 will lie in

(a, b] and any subsequence of it will converge to a /∈ (a, b] since (a+ 1/n)n≥1

does, thus (a+ 1/n)n≥1 has no subsequence which converges in (a, b].

We now establish some basic properties of compact metric spaces:

Lemma 10.3. Let (X, d) be a metric space and suppose Z ⊆ X is a sub-

space.

(1) If Z is compact then Z is closed and bounded.

(2) If X is compact and Z is closed in X then Z is compact.

Proof. Suppose that Z is compact in X. If a ∈ X is a limit point of X then

there is a sequence (zn) in Z which converges to a. Since Z is compact,

the sequence (zn) has a subsequence (znk) which converges in Z. But since

the limit of a subsequence of a convergent sequence is just the limit of the

21The word “compact” is in general used for a notion which is discussed in Section 11.
For metric spaces the two notions are equivalent. [Aside: the two notions make sense for
arbitrary topological spaces, where they turn out not to be equivalent.]
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original sequence we have

a = lim
n→∞

zn = lim
k→∞

znk ∈ Z.

Thus Z contains all its limit points and hence Z is closed. Next suppose

that Z is unbounded in X. Then picking z0 ∈ Z we may find zn ∈ Z with

d(z0, zn) ≥ n for each n ∈ N. But then if (zn) had a convergent subsequence

(znk) say znk → b ∈ Z then we would have d(znk , z0) ≥ nk ≥ k and also

d(znk , z0) → d(b, z0), which is a contradiction, since a convergent sequence

of real numbers must be bounded.

Now suppose that X is compact and Z is closed in X. Then if (zn) is

a sequence in Z, since X is compact it has a convergent subsequence (znk)

tending to c ∈ X say. But then c is a limit point of Z and since Z is closed

c ∈ Z, so that (zn) has a convergent subsequence in Z as required.

�

The next Lemma essentially shows that compactness, like connectedness,

is a topological property:

Lemma 10.4. Let (X, d) and (Y, d) be metric spaces and suppose that

f : X → Y is continuous. Then if X is compact, f(X) is a compact subspace

of Y . In particular, if X is compact and f : X → R is continuous, then f

is bounded and attains its bounds.

Proof. Suppose that (yn) is a sequence in f(X) ⊆ Y . Then for each n we

may pick an xn ∈ X such that f(xn) = yn. Since X is compact the sequence

(xn) contains a convergent subsequence (xnk) say, with xnk → a as k →∞

for some a ∈ X. But then since f is continuous we have ynk = f(xnk) →

f(a) ∈ f(X) ⊆ Y , so that (yn) has a convergent subsequence whose limit

lies in f(X) as required.
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For the final sentence, note that f(X) is a compact subset of R and hence

by Lemma 10.3 it is closed and bounded. But this precisely means that the

image of f is bounded and attains its bounds as required. �

Remark 10.5. The previous Lemma also shows that compactness is a prop-

erty which is preserved by homoeomorphisms: If f : X → Y is a continu-

ous bijection with g : Y → X its continuous inverse, then if X is compact

f(X) = Y must be compact, while conversely if Y is compact then X = g(Y )

must be compact.

Theorem 10.6. Let f : X → Y be a continuous function and suppose that

X is a compact metric space. Then f is uniformly continuous.

Proof. Suppose for the sake of a contradiction that f is not uniformly con-

tinuous. Then there exists some ε > 0 such that for each n ∈ N we may

find an, bn ∈ X such that d(an, bn) < 1/n but d(f(an), f(bn)) ≥ ε. Now

since X is compact, (an) contains a convergent subsequence, (ank) say, and

since d(ank , bnk) ≤ 1/nk ≤ 1/k it follows limk→∞ ank = limk→∞ bnk = c say.

But since f is continuous at c there is a δ > 0 such that for all x ∈ X with

d(c, x) < δ, we have d(f(c), f(x)) < ε/2. As both (ank) and (bnk) tend to c,

for all sufficiently large k we will have d(c, ank), d(c, bnk) < δ and hence

ε ≤ d(f(ank), f(bnk)) ≤ d(f(ank), f(c)) + d(f(c), f(bnk)) < ε/2 + ε/2 < ε,

which is a contradiction. Thus f must be uniformly continuous as required.

�

10.1. Compactness and products: a generalization of the Bolzano-

Weierstrass theorem. If (X, dX) and (Y, dY ) are metric spaces there are

various ways of making their Cartesian product into a metric space. A

convenient one for our purposes is the following:
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Definition 10.7. Let (X, dX) and (Y, dY ) be metric spaces. Define a func-

tion d on (X × Y )2 by setting

d((x1, y1), (x2, y2)) = max{d(x1, x2), d(y1, y2)}.

It is immediate that this function satisfies the positivity and symmetry re-

quirements of a metric, and the triangle inequality is also readily checked,

so that d gives X × Y the structure of a metric space.

Example 10.8. Writing Rn = Rn−1×R this gives us an inductive definition

of a metric on Rn. Check that the metric one obtains is the metric d∞.

Since we know this metric is equivalent to the metrics d1 and d2 if we can

characterize the compact subsets of Rn equipped with the metric d = d∞

then we also characterize the compact subsets of Rn with respect to either

d1 and d2.

Using the above definition of a metric on products of metric spaces makes

the following result easy to check:

Lemma 10.9. Let X and Y be metric spaces. A sequence ((xn, yn))n≥1 in

X × Y converges if and only if (xn) converges in X and (yn) converges in

Y .

Proof. It is clear from the definitions that the projection maps pX : X×Y →

X and pY : X×Y → Y are continuous (in fact they are Lipschitz continuous

with Lipschitz constant 1). It follows that if (xn, yn) converges in X × Y

then (xn) and (yn) must converge.

Conversely, if xn → a ∈ X and yn → b ∈ Y then

d((xn, yn), (a, b)) = max{d(xn, a), d(yn, b)} → 0

as n→∞ so that (xn, yn)→ (a, b) as n→∞ as required. �
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Proposition 10.10. Let X and Y be compact metric spaces. Then X × Y

is compact.

Proof. Let (xn, yn) be a sequence in X × Y . As X is compact, the sequence

(xn) in X has a convergent subsequence (xnk), say xnk → a ∈ X as k →∞.

But then consider the sequence (ynk) in Y . Since Y is compact this in turn

has a convergent subsequence (ynkr )r≥1, say ynkr → b ∈ Y . But since (xnkr )

is a subsequence of xnk is also converges to a and hence by the previous

Lemma (xnkr , ynkr ) → (a, b) and (xn, yn) has a convergent subsequence as

required. �

It is now easy to give a generalisation of the Bolzano-Weierstrass theorem

to Rn.

Theorem 10.11. (Bolzano-Weierstrass in Rn). A subset X ⊆ Rn is com-

pact if and only if it is closed and bounded.

Proof. We have already seen in Lemma 10.3 that if X is compact in Rn

then it must be closed and bounded, thus it remains to show that any such

set is compact. But if X is bounded then there is an R > 0 such that22

X ⊆ B(0, R) = [−R,R]n. Now by the Bolzano-Weierstrass theorem for R,

any closed interval such as [−R,R] is compact. But then using Proposition

10.10 and induction it follows readily that [−R,R]n is compact, but then

again by Lemma 10.3 it follows that X, being a closed subset of a compact

metric space, is compact as required. �

Remark 10.12. Note that in a general metric space X, a closed bounded

subset of X need not be compact. An example of this is given by taking

Cb(R) the normed space of continuous bounded functions on the real line

22Recall that the “open balls” in the d∞ metric are hypercubes.
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equipped with ‖.‖∞ the supremum metric. If we let

f(t) =

 2t, 0 ≤ t ≤ 1/2;

2(1− t), 1/2 ≤ t ≤ 1

and set fn(t) = f(t+ n) the each fn is bounded and in fact has ‖fn‖∞ = 1,

so that they all lie in B̄(0, 1). However, if n 6= m it is easy to see that

‖fn − fm‖∞ = 1, so that (fn) has no convergent subsequence and thus

B̄(0, 1) is not compact, despite clearly being closed and bounded in Cb(R).

In a general metric space the property of being bounded is much weaker

than one’s instincts initially imagine. One can show for example that any

metric space is homeomorphic to a metric space which is bounded. There is

however a property stronger than boundedness which is often more useful:

Definition 10.13. A metric space X is said to be totally bounded if, given

any ε > 0 there is a finite set {x1, x2, . . . , xn} inX such thatX =
⋃n
i=1B(xi, ε).

Lemma 10.14. Let X be a compact metric space. Then X is totally

bounded.

Proof. Suppose that r > 0 is given and that, for the sake of a contradiction,

no such set S exists. We claim there exists a sequence (ai) in X such that

d(ai, aj) ≥ r for every i 6= j. Indeed suppose we have {a1, . . . , an} such that

d(ai, aj) ≥ r whenever 1 ≤ i 6= j ≤ n (one can begin with the empty set).

Our assumption that the union of any finite collection of open r-balls cannot

cover X, implies that there must exist an an+1 such that d(an+1, ai) ≥ r for

all i, (1 ≤ i ≤ n), and hence we may construct the sequence (ai) inductively

as required. But any such sequence clearly cannot contain a convergent

subsequence, and hence we have a contradiction.

�
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10.2. Compactness and completeness.

Proposition 10.15. Let X be a compact metric space. Then X is complete.

Proof. Suppose that (xn) is a Cauchy sequence in X. Since X is compact,

(xn) has a convergent subsequence (xnk) say, so that xnk → a ∈ X as

k → ∞. We claim that xn → a as n → ∞. Indeed given ε > 0 there is

some N ∈ N such that for all n,m ≥ N we have d(xn, xm) < ε/2. Now since

xnk → a as k →∞ we may find a K such that d(xnk , a) < ε/2 for all k ≥ K

and nK > N . But then if n ≥ N we have

d(xn, a) ≤ d(xn, xnK ) + d(xnK , a) < ε/2 + ε/2 = ε,

as required. �

Remark 10.16. We have shown that if X is a compact metric space then it

is complete and totally bounded. In fact any complete and totally bounded

metric space is compact as we will now show.

Lemma 10.17. Let X be a totally bounded metric space and suppose that

(xn) is a sequence in X. Then (xn) has a subsequence which is a Cauchy

sequence.

Proof. Since X is totally bounded, for every n ∈ Z≥0 there is a finite col-

lection of open balls {Bn
i : i ∈ Mn} each with radius 2−n whose union is

all of X (thus the indexing set Mn is finite). Since M0 is finite, there is

some i0 ∈ M0 such that S0 = {n ∈ N : xn ∈ B0
i0
} is infinite. Now suppose

inductively that S0 ⊇ S1 ⊇ . . . ⊇ Sk−1 have been chosen, each an infinite

subset of N with the property that for each j = 0, 1, . . . , k − 1 there is an

ij ∈Mj with xn ∈ Bj
ij

for all n ∈ Sj . Thus all the xns with n ∈ Sj lie in an

open ball of radius 2−j . Then since Sk−1 is infinite and Mk is finite there is
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an ik ∈ Nk such that

Sk = {n ∈ Sk−1 : xn ∈ Bk
ik
}.

is infinite. Proceeding in this way23 we get an infinite nested collection of

sequences of integers Sk = {nk1 < nk2 < . . .} such that for each k, (xnki
)i≥1

is a subsequence of (xn) which lies in Bk
ik

, and hence the terms of this

subsequence are at distance at most 2−n+1 from each other. But then the

subsequence (yk) where yk = xnkk
must be a Cauchy subsequence of (xn):

If m ≥ k then by construction all the terms ym = xnmm are such that nmm ∈

Sm ⊆ Sk and hence they are at distance at most 2−k+1 apart from each

other and hence since 2−k+1 → 0 as k → ∞ it follows that (yk) is Cauchy

as required. �

Remark 10.18. The same “divide and conquer” proof strategy can be used

to prove that [−R,R]n is sequentially compact in Rn, as you can find in

many textbooks. The additional subtlety of this proof is that we need an

infinite nested sequence of subsequences, and hence have to use a version of

Cantor’s diagonal argument to finish the proof.

Corollary 10.19. A complete and totally bounded metric space X is com-

pact.

Proof. By Lemma 10.17, any sequence (xn) in X has a Cauchy subsequence.

Since X is complete, this subsequence converges, and hence X is compact

as required. �

23This part of the proof is similar to the argument we used to prove that a product
of compact metric spaces X × Y is compact. We need a new trick here however – the
diagonal argument – to deal with the fact that now we obtain an infinite number of nested
subsequences.
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11. Compactness and open sets

We have already noted that compactness is a “topological property” of

metric spaces, in the sense that two metric spaces which are homeomorphic

have to either both be compact or both be non-compact. This might lead one

to consider if the notion of compactness can be expressed in terms of open

sets. In fact this is possible, though we wont quite prove the equivalence

of the definition we give in terms of open sets to the one we began with

in terms of convergence of subsequences24. For clarity in this section we

will refer to the notion of compactness given by the existence of convergent

subsequences as sequential compactness. The key definition is the following:

Definition 11.1. Let X be a metric space and U = {Ui : i ∈ I} a collection

of open subsets of X. We say that U is an open cover of X if X =
⋃
i∈I Ui. If

J ⊆ I is a subset such that X =
⋃
i∈J Ui = X then we say that {Ui : i ∈ J}

is a subcover of U and if |J | < ∞ then we say that it is a finite subcover.

Recall that if Z is a subspace of a metric space X, then the open sets of Z are

of the form Z∩U where U is an open subset of X. In this situation it is often

convenient to think of an open cover of Z as a collection U = {Ui : i ∈ I}

of open subsets of X whose union contains (but need not be equal to) the

subspace Z.

We can now give the definition of compactness in terms of open covers:

Definition 11.2. A metric space (X, d) is compact if every open cover

U = {Ui : i ∈ I} has a finite subcover.

For example, any finite subset of a metric space is compact. To have some

more non-trivial examples, we prove the following:

24One should be a little careful here – the two notions are equivalent for metric spaces,
but for general topological spaces they are distinct.
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Proposition 11.3. (Heine-Borel.) The interval [a, b] is compact.

Proof. Let U = {Ui : i ∈ I} be an open cover of [a, b] (where we view the Ui

as open subsets of R). Then set S = {x ∈ [a, b] : [a, x] lies in a finite union of Uis}.

Then S is a non-empty subset of [a, b] (because a ∈ S). Let c = sup(S).

We may find a Ui0 ∈ U such that c ∈ Ui0 and hence a δ > 0 with

(c−δ, c+δ) ⊆ Ui0 . Now by the approximation property there is a d ∈ S with

c − δ < d ≤ c, and so there is a finite subset of I, say i1, . . . , in, such that

[a, d] ⊆ Ui1 ∪ . . . ∪ Uin . But then clearly [a, c + δ) ⊆ (Ui1 ∪ . . . ∪ Uin) ∪ Ui0
so that [a, b] ∩ [a, c + δ) ⊆ S, which contradicts the definition of c unless

c = b ∈ S. But then U has a finite subcover as required.

�

It is easy to prove that a closed subset of a compact metric space is com-

pact, which combined with the previous proposition shows that any closed

bounded subset of R is compact (note we have already see this for sequen-

tially compact subsets of R). The next Proposition shows compactness im-

plies sequential compactness, hence all the results we have shown for such

metric spaces also apply to compact metric space. We first need a technical

lemma.

Lemma 11.4. Let (xn) be a sequence in a metric space X, and let An =

{xk : k ≥ n}. Then (xn) has a convergent subsequence if and only if⋂
n≥1 Ān 6= ∅.

Proof. Suppose (xn) has a convergent subsequence (xnk), so that xnk →

` ∈ X as k → ∞. Then since for any m ∈ N all terms of the subsequence

(xnk+m)k≥1 lie in Am, it follows that ` ∈ Ām for all m, so that the intersection⋂
n≥1 Ān is non-empty.

Conversely, suppose that ` ∈
⋂
n≥1 Ān. Then we claim there is a subse-

quence of (xn) tending to `: Certainly since ` ∈ Ā1, we may find an xn1 such
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that d(xn1 , a) < 1. Now suppose that n1 < n2 < . . . < nk have been found

such that d(xnj , `) < 1/j for each j with 1 ≤ j ≤ k. Then since ` ∈ Ānk+1

we may find an nk+1 > nk with d(xnk+1
, `) < 1/(k + 1). This subsequence

(xnk) clearly converges to ` so we are done. �

Proposition 11.5. Let (X, d) be a compact metric spaces. Then every

sequence in X has a convergent subsequence, that is, X is sequentially com-

pact.

Proof. Suppose that (xn) is a sequence in X. For each n ∈ N let An =

{xk : k ≥ n}. Then Ā1 ⊇ Ā2 ⊇ . . . form a nested sequence of non-empty

closed subsets ofX. Now by Lemma 11.4 we know that (xn) has a convergent

subsequence if and only if
⋂
n≥1 Ān is non-empty. Thus if we suppose for the

sake of contradiction that the sequence (xn) has no convergent subsequence

it follows that
⋂
n≥1 Ān = ∅. But then if we let Un = X\Ān we have

X =
⋃
n≥1 Un, so that {Un : n ≥ 1} is an open cover of X. However

U1 ⊆ U2 ⊆ . . . and each is a proper subset of X, thus this cover clearly has

no finite subcover, contradicting the assumption that X is compact. �

We end this section with a simple Lemma on compact sets which are

contained in an open subset of a metric space, which will be useful later in

the course:

Lemma 11.6. Let (X, d) be a metric space and suppose K ⊆ U ⊆ X where

K is compact and U is open. Then there is an ε > 0 such that for any z ∈ K

we have B(z, ε) ⊆ U .

Proof. Suppose for the sake of contradiction that no such ε exists. Then for

each n ∈ N we may find sequences xn ∈ K and yn ∈ U c with |xn−yn| < 1/n.

But since K is sequentially compact we can find a convergent subsequence

of (xn), say (xnk) which converges to p ∈ K. But then it follows (ynk) also
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converges to p, which is impossible since p ∈ K ⊆ U while (ynk) is a sequence

in the U c and as U c is closed it must contain all its limit points. �

Exercise 11.7. Use the technique of the proof of the previous Lemma to

show that if Ω is an open subset of Rn then it can be written as a countable

union of compact subsets, Ω =
⋃∞
n=1Kn.

11.1. Compactness and function spaces.

Definition 11.8. If X is a metric spaces and F is collection of real-valued

function on X, we say that F is equicontinuous if, for any ε > 0 there

is a δ (which only depends on ε) such that whenever d(x, y) < δ we have

|f(x) − f(y)| < ε for every f ∈ F . A collection of continuous functions F

on X is uniformly bounded if it is bounded as a subset of the normed vector

space (Cb(X), ‖.‖∞).

Theorem 11.9. (Arzela-Ascoli): Let X be a compact metric space and let

F ⊆ C(X) be a collection of continuous functions on X which are equicon-

tinuous and uniformly bounded. Then any sequence (fn) in F contains a

subsequence (fnk) which converges uniformly on X.

Proof. To prove the theorem it suffices to check that F is totally bounded

in C(X), since then the completeness of C(X) implies that F̄ is complete

and totally bounded25 and hence compact.

Thus we must show that F is totally bounded. Suppose that ε > 0

is given. Then since F is equicontinuous we know that there is a δ > 0

such that if x, y ∈ X are such that d(x, y) < δ then |f(x) − f(y)| < ε/6.

Now X is compact and hence totally bounded, so that we may find a finite

set {x1, x2, . . . , xn} ⊆ X such that X =
⋃n
i=1B(xi, δ). Now since F is

25It is a straight-forward exercise to check that if A is a totally bounded subspace of a
metric space X then Ā is also totally bounded.
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uniformly bounded, there is some N > 0 such that f(X) ⊆ [−N,N ] for

each f ∈ F . Pick an integer M > 0 so that 2N/M < ε/6 and divide

[−N,N ] into M equal parts Ij , 1 ≤ j ≤ M . Let A denote the set of nM

functions α : {1, . . . , n} → {1, . . . ,M} and for each such α, pick a function

fα ∈ F (if it exists) such that f(xi) ∈ Iα(i). We claim that the open balls

B(fα, ε) cover F as α runs over those functions α for which fα exists.26

Indeed suppose that f ∈ F . Then for each i ∈ {1, 2, . . . , n} we must have

f(xi) ∈ Iα(i) for some α : A. Consider d(f, fα) (which exists by assumption).

For each x ∈ X then there is some i ∈ {1, 2, . . . , n} such that x ∈ B(xi, δ).

Thus

d(f(x), fα(x)) ≤ d(f(x), f(xi)) + d(f(xi), fα(xi)) + d(fα(xi), fα(x)

≤ ε/6 + |Iα(i)|+ ε/6 < ε/2.

Since this holds for all x ∈ X it follows that ‖f −fα‖∞ ≤ ε/2 < ε and hence

f ∈ B(fα, ε). Thus F is totally bounded as required.

�

Remark 11.10. The previous theorem implies closed bounded equicontinuous

subsets of C(X) are compact. In fact the converse is also true. Since a com-

pact subspace F of any metric space is automatically closed and bounded,

one only needs to show that F is equicontinuous. To prove this one uses the

that if F is compact subset then it is totally bounded, combined with the

fact that since X is compact any f ∈ C(X) is uniformly continuous.

Remark 11.11. The are various ways to generalise the above theorem to

spaces X which are not compact. For example, if Ω is an open subset of

Rn, one can show that Ω can be written as a countable union Ω =
⋃∞
n=1Kn

where each Kn is a closed bounded subset of Ω and then deduce that if (fn)

26It may be helpful to draw a picture in the case X = [a, b].
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is a sequence in an equicontinuous uniformly bounded family of functions

F ⊆ Cn(Ω), there is a subsequence (fnk) which converges uniformly on any

compact subset of Ω.


