Metric spaces and complex analysis

Mathematical Institute, University of Oxford

Michaelmas Term 2018

Problem Sheet 2

1. Let (M.d) be a metric space and let A and B be subsets of M. Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$ but that in general $\overline{A \cap B} \neq \bar{A} \cap \bar{B}$.
2. Let $f: M \rightarrow N$ be a map between metric spaces. Show that f is continuous if and only if for every $A \subseteq M$ we have $f(\bar{A}) \subseteq \overline{f(A)}$.
3. A topological space is a set X equipped with a collection of subsets \mathcal{T} which is closed under taking finite intersections and arbitrary unions. Show that if $X=\{0,1\}$ and $\mathcal{T}=\{\emptyset,\{0\},\{0,1\}\}$ then (X, \mathcal{T}) is a topological space. Is there a metric on X whose open sets are equal to \mathcal{T} ?
4. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and let $\mathcal{C}(X, Y)$ be the space of continuous bounded functions from X to Y. Define $\delta: \mathcal{C}(X, Y)^{2} \rightarrow \mathbb{R}$ by

$$
\delta(f, g)=\sup _{x \in X} d_{Y}(f(x), g(x))
$$

i) Show that δ is a metric.
ii) Show that if Y is complete then $(\mathcal{C}(X, Y), \delta)$ is complete.
iii) Consider now the map $R: \mathcal{C}([0,1], \mathbb{R}) \rightarrow \mathcal{C}((0,1), \mathbb{R})$ which takes a continuous function on $[0,1]$ to its restriction to $(0,1)$. Is the image of R closed?
5. Let M be the set of sequences $\left(x_{n}\right)_{n=0}^{\infty}$ where $x_{n} \in\{0,1\}$. Define $d: M^{2} \rightarrow \mathbb{R}$ by

$$
d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sum_{n \geq 0} \frac{\left|x_{n}-y_{n}\right|}{2^{n}} .
$$

i) Show that d is a metric on M.
ii) Let U_{0} be the set of sequences $\left(x_{n}\right)$ such that $x_{0}=0$. Show that U_{0} is open. Deduce that M is disconnected.
iii) Is M complete?
iv) Let $f: M \rightarrow \mathbb{R}$ be the function given by $f\left(\left(x_{n}\right)\right)=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n}}$. Is f continuous?

6 . Let M be the space of real $n \times n$ matrices and let $\|A\|=\sup _{v:\|v\|=1}\|A(v)\|$, where $v \in \mathbb{R}^{n}$ runs over the vectors of norm 1 .
i) Show that $\|$.$\| is a norm on M$.
ii) Suppose that $A \in M$ has $\|A\|<1$. Show that the map $B \mapsto A B$ is a contraction. Deduce that $I-A$ is invertible. Hint: Show that for any vector $v \in \mathbb{R}^{n}$ we have $\|A(v)\| \leq\|A\| .\|v\|$.
7. i) Show directly from the definition that a metric space M is connected if and only if every integer-valued continuous function on M is constant.
ii) Show that $H=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\}$ is connected. By considering the function $f(x, y) / x$ show that there are precisely two continuous functions $f: H \rightarrow \mathbb{R}$ satisfying $f(x, y)^{2}=x^{2}$ for all $(x, y) \in H$.
iii) How many continuous functions $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are there satisfying $g(x, y)^{2}=x^{2}$ for all $(x, y) \in \mathbb{R}^{2}$?
8. i) Prove that if U is an open subset of \mathbb{R} and $c \in U$ then $U \backslash\{c\}$ is disconnected.
ii) Show that if $a \in \mathbb{R}^{2}$ then the set $\mathbb{R}^{2} \backslash\{a\}$ is connected.
iii) By considering the restriction of f to $(0,1)$, or otherwise, show that there is no invertible continuous function $f:[0,1) \rightarrow(0,1)$.

There are bijections between $[0,1)$ and $(0,1)$ however - can you construct one?
$i v)$ Show that there are no continuous one-to-one maps from \mathbb{R}^{2} to \mathbb{R}.
9. (Optional.) Let A be a connected subset of a metric space X.
i) If C is a closed and open subset of X show that $A \subseteq C$ or $A \cap C=\emptyset$. Hence or otherwise prove that \bar{A} is a connected subset of X.
ii) Define a relation on X by setting $x \sim y$ if and only if there is a connected subset A of X containing $\{x, y\}$. Show that this is an equivalence relation. The equivalence classes are known as the connected components of X. Show that they are closed subsets of X.

