Metric spaces and complex analysis Mathematical Institute, University of Oxford Michaelmas Term 2018

Problem Sheet 2

1. Let (M.d) be a metric space and let A and B be subsets of M. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ but that in general $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

2. Let $f: M \to N$ be a map between metric spaces. Show that f is continuous if and only if for every $A \subseteq M$ we have $f(\overline{A}) \subseteq \overline{f(A)}$.

3. A topological space is a set X equipped with a collection of subsets \mathcal{T} which is closed under taking finite intersections and arbitrary unions. Show that if $X = \{0, 1\}$ and $\mathcal{T} = \{\emptyset, \{0\}, \{0, 1\}\}$ then (X, \mathcal{T}) is a topological space. Is there a metric on X whose open sets are equal to \mathcal{T} ?

4. Let (X, d_X) and (Y, d_Y) be metric spaces and let $\mathcal{C}(X, Y)$ be the space of continuous bounded functions from X to Y. Define $\delta \colon \mathcal{C}(X, Y)^2 \to \mathbb{R}$ by

$$\delta(f,g) = \sup_{x \in Y} d_Y(f(x),g(x))$$

- i) Show that δ is a metric.
- *ii*) Show that if Y is complete then $(\mathcal{C}(X, Y), \delta)$ is complete.
- *iii*) Consider now the map $R: \mathcal{C}([0,1],\mathbb{R}) \to \mathcal{C}((0,1),\mathbb{R})$ which takes a continuous function on [0,1] to its restriction to (0,1). Is the image of R closed?

5. Let M be the set of sequences $(x_n)_{n=0}^{\infty}$ where $x_n \in \{0,1\}$. Define $d: M^2 \to \mathbb{R}$ by

$$d((x_n), (y_n)) = \sum_{n \ge 0} \frac{|x_n - y_n|}{2^n}$$

- i) Show that d is a metric on M.
- ii) Let U_0 be the set of sequences (x_n) such that $x_0 = 0$. Show that U_0 is open. Deduce that M is disconnected.
- iii) Is M complete?

8.

iv) Let $f: M \to \mathbb{R}$ be the function given by $f((x_n)) = \sum_{n=0}^{\infty} \frac{x_n}{2^n}$. Is f continuous?

6. Let *M* be the space of real $n \times n$ matrices and let $||A|| = \sup_{v:||v||=1} ||A(v)||$, where $v \in \mathbb{R}^n$ runs over the vectors of norm 1.

- i) Show that $\|.\|$ is a norm on M.
- ii) Suppose that $A \in M$ has ||A|| < 1. Show that the map $B \mapsto AB$ is a contraction. Deduce that I A is invertible.
 - *Hint:* Show that for any vector $v \in \mathbb{R}^n$ we have $||A(v)|| \le ||A|| . ||v||$.
- 7. *i*) Show directly from the definition that a metric space M is connected if and only if every integer-valued continuous function on M is constant.
 - *ii*) Show that $H = \{(x, y) \in \mathbb{R}^2 : x > 0\}$ is connected. By considering the function f(x, y)/x show that there are precisely two continuous functions $f: H \to \mathbb{R}$ satisfying $f(x, y)^2 = x^2$ for all $(x, y) \in H$.
 - *iii*) How many continuous functions $g \colon \mathbb{R}^2 \to \mathbb{R}$ are there satisfying $g(x, y)^2 = x^2$ for all $(x, y) \in \mathbb{R}^2$?
 - i) Prove that if U is an open subset of \mathbb{R} and $c \in U$ then $U \setminus \{c\}$ is disconnected.
 - *ii*) Show that if $a \in \mathbb{R}^2$ then the set $\mathbb{R}^2 \setminus \{a\}$ is connected.
 - *iii*) By considering the restriction of f to (0,1), or otherwise, show that there is no invertible continuous function $f: [0,1) \to (0,1)$.
 - There are bijections between [0,1) and (0,1) however can you construct one?
 - iv) Show that there are no continuous one-to-one maps from \mathbb{R}^2 to \mathbb{R} .
- 9. (Optional.) Let A be a connected subset of a metric space X.
 - i) If C is a closed and open subset of X show that $A \subseteq C$ or $A \cap C = \emptyset$. Hence or otherwise prove that \overline{A} is a connected subset of X.
 - ii) Define a relation on X by setting $x \sim y$ if and only if there is a connected subset A of X containing $\{x, y\}$. Show that this is an equivalence relation. The equivalence classes are known as the connected components of X. Show that they are closed subsets of X.