Metric spaces and complex analysis

Mathematical Institute, University of Oxford
Michaelmas Term 2018

Problem Sheet 3

1. Determine which of the following subsets of \mathbb{R}^{2} are homeomorphic, giving either a homeomorphism in the case where one exists and a proof that one does not exist.

$$
[0,1] \times\{0\} ; \quad \mathbb{R}^{2} ; \quad D(0,1) ; \quad \bar{D}(0,1) ; \quad[0,1] \times[0,1] ; \quad S^{1} ; \quad \mathbb{R} \times\{0\}
$$

2. Show that a subset $C \subseteq \mathbb{R}^{n}$ is compact if and only if every continuous function $f: C \rightarrow \mathbb{R}$ is bounded and attains its bounds.
3. Let M be a metric space and X_{1}, X_{2}, \ldots an infinite collection of subsets of M. For each of the following statements, give a proof or counterexample.
i) If $X_{1}, X_{2}, \ldots, X_{k}$ are compact then $X_{1} \cup X_{2} \cup \ldots \cup X_{k}$ is compact.
ii) If $X_{1}, X_{2}, \ldots, X_{k}$ are connected then $X_{1} \cap X_{2} \cap \ldots \cap X_{k}$ is connected.
iii) If X_{1}, X_{2}, \ldots are compact then $\bigcup_{k \geq 1} X_{k}$ is compact.
iv) If X_{1}, X_{2}, \ldots are connected and $X_{j}^{-} \cap X_{j+1} \neq \emptyset$ then $\bigcup_{k \geq 1} X_{k}$ is connected.
4. i) Sketch the following subsets of the complex plane:

$$
\{z:|z-i|<|z-1|\} ; \quad\left\{z: \operatorname{Im}\left(\frac{z+i}{2 i}\right)<0\right\} ; \quad\{z: \operatorname{Re}(z+1)=|z-1|\} ; \quad\left\{e^{z}: z \in \mathbb{C}\right\}
$$

ii) Describe geometrically each of the following maps of the complex plane:

$$
z \mapsto \bar{z} ; \quad z \mapsto e^{i \pi / 3} . z ; \quad z \mapsto \bar{z}+2 i ; \quad z \mapsto i z+1
$$

The third map is a reflection, say what its invariant line is. The fourth is a rotation, give the angle and centre of rotation.
iii) Which of the following complex sequences converge?

$$
\left(i^{n} / n\right) ; \quad\left((-1)^{n} n /(n+i)\right) ; \quad\left(\frac{n^{2}+i n}{n^{2}+i}\right) ; \quad\left(e^{n i}\right)
$$

5. For each region A and function f, sketch the domain A and its image $f(A)$ of A under the given function f.
i)

$$
A=\{z=x+i y \in \mathbb{C}: 0<x<1,0<y<1\} ; \quad f(z)=z^{2}
$$

ii)

$$
A=\{z=x+i y \in \mathbb{C}: 0<x<1,0<y<1\} ; \quad f(z)=e^{z}
$$

iii)

$$
A=\{z \in \mathbb{C}:-1<\operatorname{Im}((1+i) z)<1\} ; \quad f(z)=1 / z
$$

iv)

$$
A=\{z \in \mathbb{C}:|z|<1\} ; \quad f(z)=(z-1)^{-1}
$$

6. $\quad i$) Show from first principles using the algebra of limits that the function $f(z)=|z|^{2}$ is differentiable only at zero.
ii) Show that a real-valued function on \mathbb{C} is holomorphic if and only if it is constant.
iii) Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function on an open subset U. Show that if $V=$ $\{\bar{z}: z \in U\}$ then $z \mapsto \overline{f(\bar{z})}$ is a holomorphic function on V. Show also that $z \mapsto f(\bar{z})$ is a holomorphic function on V if and only if f is constant.
7. Let $u: U \rightarrow \mathbb{R}$ be a harmonic function on an open set $U \subseteq \mathbb{C}$. A harmonic conjugate for u is a function $v: U \rightarrow \mathbb{C}$ such that $u+i v$ is holomorphic.
i) Show that if v is a harmonic conjugate of u then u is a harmonic conjugate of $-v$.
ii) Assume now that U is connected. Show that, if it exists, a harmonic conjugate of u is unique up to a constant.
iii) Find a harmonic conjugate for:

$$
x^{3}-3 x y^{2} \text { on } \mathbb{C} ; \quad e^{x} \sin (y) \text { on } \mathbb{C} ; \quad \log \left(x^{2}+y^{2}\right) \text { on }\{z: \operatorname{Re}(z)>0\} .
$$

8. (Optional.) Let (X, d) be a complete metric space, and suppose that $h: X \rightarrow X$ is a map compatible with the distance function, that is $d(x, y)=d(f(x), f(y))$. Prove the following:
i) h is injective;
ii) $h(X)$ is a closed subset of X;
iii) if $a \in X$ and $r=\inf \{d(a, h(x)): x \in X\}$, and the sequence $\left(x_{n}\right)$ of points of X is defined inductively by $x_{0}=a$ and $x_{n+1}=h\left(x_{n}\right)$ for $n \geq 0$, then $d\left(x_{n}, x_{m}\right) \geq r$ for all $n, m \geq 0$ with $n \neq m$.
$i v)$ if (X, d) is compact then h is bijective.
Give an example of a complete metric space (X, d) and an isometry $h: X \rightarrow X$ which is not a bijection.
