Metric spaces and complex analysis

Mathematical Institute, University of Oxford

Michaelmas Term 2018

Problem Sheet 4

1. Find all the solutions of $\sin z=2$ and $\exp (z)=1+\sqrt{3} i$.
2. Determine the power series and radius of convergence for each of the following functions $f(z)$ centred at $a \in \mathbb{C}$.
(i) $\quad f(z)=(3+2 z)^{-1}, \quad a=0$;
(ii) $\quad f(z)=(1-z)^{-2}, \quad a=3$;
(iii) $\quad f(z)=\sin z, \quad a=1$.
3. i) Use the Binomial Theorem for a general exponent to show that

$$
(1-z)^{-1 / 2}=\sum_{k=0}^{\infty}\binom{2 k}{k} \frac{z^{k}}{2^{2 k}}
$$

Hence evaluate the sums

$$
\sum_{k=0}^{\infty} \frac{1}{2^{3 k}}\binom{2 k}{k}, \quad \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{6 k}}\binom{4 k}{2 k}
$$

ii). Put the following power series into closed form. What is the radius of convergence in each case?

$$
\sum_{n=0}^{\infty} n^{2} z^{n} ; \quad \sum_{n=0}^{\infty} \frac{z^{n}}{(n+2) n!}
$$

4. If $\mathbb{N}=\{1,2,3, \ldots\}$ and $S \subset \mathbb{N}$, we say that S is an arithmetic progression if there are integers a, d such that $S=\left\{a+n d: n \in \mathbb{Z}_{\geq 0}\right\}$. We call d the step of the arithmetic progression. Show that \mathbb{N} cannot be partitioned into finitely many arithmetic progressions with distinct steps (excluding the trivial case of one progression with $a=d=1$).
[Hint: Consider the power series $\sum_{n=0}^{\infty} z^{n}$.]
5. Suppose that $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ is a power series with radius of convergence R. Show that f has a power series expansion about any $z_{0} \in B(0, R)$.
[Hint: Let $z=\left(z_{0}+\left(z-z_{0}\right)\right)$ and use the binomial theorem.]
6. i) Suppose that $l(z)$ is holomorphic on $\mathbb{C} \backslash(-\infty, 0]$ and satisfies $\exp l(z)=z$. Show that

$$
l(z)=L(z)+2 n \pi i
$$

for some $n \in \mathbb{Z}$ where $L(z)$ is the holomorphic branch of \log defined in lectures.
ii) Show that there is no holomorphic function $\lambda(z)$ on $\mathbb{C} \backslash\{0\}$ such that $\exp \lambda(z)=z$.
iii) There are unique holomorphic branches of $\log z, \sqrt{z}$ and $\sqrt[3]{z}$ on the cut plane $\mathbb{C} \backslash$ \{negative imaginary axis\} such that $\log 1=0 ; \sqrt{1}=1 ; \sqrt[3]{1}=1$. For these branches determine

$$
\log (1+i), \quad \sqrt{-1-i}, \quad \sqrt[3]{-2}, \quad \sqrt{1-i}
$$

$i v$) Let C denote the logarithmic spiral given in polar coordinates by $r=2 e^{\theta}$. There is a unique holomorphic branch of \log on $\mathbb{C} \backslash C$ such that $\log 1=0$. For this branch determine

$$
\log i, \quad \log 3, \quad \log (-1), \quad \log 1000, \quad \log (-1000), \quad \log 2000
$$

7. i) Show that

$$
\sin z=\frac{\exp (i z)-\exp (-i z)}{2 i}
$$

is $1-1$ on $U=\{z \in \mathbb{C}:-\pi / 2<\operatorname{Re} z<\pi / 2\}$.
ii) Fix $k \in(-\pi / 2, \pi / 2)$. Show that the image under \sin of the line segment $\{z \in \mathbb{C}: \operatorname{Re} z=k\}$ is a branch of a hyperbola.

Deduce that the image of U under \sin is $\mathbb{C} \backslash((-\infty,-1] \cup[1, \infty))$.
8 (Optional). $\quad i)$ Suppose that $\left(a_{n}\right)_{n=1}^{N}$ and $\left(b_{n}\right)_{n=1}^{N}$ are two finite sequences of complex numbers.
Write $B_{N}=\sum_{n=1}^{N} b_{n}$ (taking by convention $B_{0}=0$). Show that for any $1 \leq M \leq N$

$$
\sum_{n=M}^{N} a_{n} b_{n}=\left(a_{N} B_{N}-a_{M} B_{M-1}\right)-\sum_{n=M}^{N-1}\left(a_{n+1}-a_{n}\right) B_{n}
$$

ii) Now consider the power series $s(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n}$. Show that s has radius of convergence 1 and converges on $\{z \in \mathbb{C}:|z|=1 \mid\} \backslash\{1\}$.
iii) Show that, given any finite subset T of the unit circle $S^{1}=\{z \in \mathbb{C}:|z|=1\}$, there is a power series with radius of convergence 1 which converges on all of $S^{1} \backslash T$.

