Metric spaces and complex analysis

Mathematical Institute, University of Oxford Michaelmas Term 2018

Problem Sheet 4

1. Find all the solutions of $\sin z = 2$ and $\exp(z) = 1 + \sqrt{3}i$.

2. Determine the power series and radius of convergence for each of the following functions f(z) centred at $a \in \mathbb{C}$.

- (i) $f(z) = (3+2z)^{-1}$, a = 0; (ii) $f(z) = (1-z)^{-2}$, a = 3; (iii) $f(z) = \sin z$, a = 1.
- 3. *i*) Use the Binomial Theorem for a general exponent to show that

$$(1-z)^{-1/2} = \sum_{k=0}^{\infty} {\binom{2k}{k}} \frac{z^k}{2^{2k}}.$$

Hence evaluate the sums

$$\sum_{k=0}^{\infty} \frac{1}{2^{3k}} \binom{2k}{k}, \qquad \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{6k}} \binom{4k}{2k}$$

ii) . Put the following power series into closed form. What is the radius of convergence in each case?

$$\sum_{n=0}^{\infty} n^2 z^n; \qquad \sum_{n=0}^{\infty} \frac{z^n}{(n+2)n!}$$

4. If $\mathbb{N} = \{1, 2, 3, ...\}$ and $S \subset \mathbb{N}$, we say that *S* is an arithmetic progression if there are integers *a*, *d* such that $S = \{a + nd : n \in \mathbb{Z}_{\geq 0}\}$. We call *d* the *step* of the arithmetic progression. Show that \mathbb{N} cannot be partitioned into finitely many arithmetic progressions with distinct steps (excluding the trivial case of one progression with a = d = 1). [*Hint: Consider the power series* $\sum_{n=0}^{\infty} z^n$.]

5. Suppose that $f(z) = \sum_{n \ge 0} a_n z^n$ is a power series with radius of convergence *R*. Show that *f* has a power series expansion about any $z_0 \in B(0, R)$. [*Hint:* Let $z = (z_0 + (z - z_0))$ and use the binomial theorem.]

- 6. *i*) Suppose that l(z) is holomorphic on $\mathbb{C} \setminus (-\infty, 0]$ and satisfies $\exp l(z) = z$. Show that

$$l(z) = L(z) + 2n\pi i$$

for some $n \in \mathbb{Z}$ where L(z) is the holomorphic branch of log defined in lectures.

ii) Show that there is no holomorphic function $\lambda(z)$ on $\mathbb{C}\setminus\{0\}$ such that $\exp \lambda(z) = z$.

si

iii) There are unique holomorphic branches of $\log z$, \sqrt{z} and $\sqrt[3]{z}$ on the cut plane $\mathbb{C} \setminus \{\text{negative imaginary axis}\}$ such that $\log 1 = 0$; $\sqrt{1} = 1$; $\sqrt[3]{1} = 1$. For these branches determine

 $\log(1+i), \quad \sqrt{-1-i}, \quad \sqrt[3]{-2}, \quad \sqrt{1-i}.$

iv) Let *C* denote the logarithmic spiral given in polar coordinates by $r = 2e^{\theta}$. There is a unique holomorphic branch of log on $\mathbb{C} \setminus C$ such that $\log 1 = 0$. For this branch determine

 $\log i$, $\log 3$, $\log(-1)$, $\log 1000$, $\log(-1000)$, $\log 2000$.

7. *i*) Show that

$$\ln z = \frac{\exp(iz) - \exp(-iz)}{2i}$$

is 1-1 on $U = \{z \in \mathbb{C} : -\pi/2 < \operatorname{Re} z < \pi/2\}$.

ii) Fix $k \in (-\pi/2, \pi/2)$. Show that the image under sin of the line segment $\{z \in \mathbb{C} : \operatorname{Re} z = k\}$ is a branch of a hyperbola.

Deduce that the image of *U* under sin is $\mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty))$.

8 (*Optional*). *i*) Suppose that $(a_n)_{n=1}^N$ and $(b_n)_{n=1}^N$ are two finite sequences of complex numbers. Write $B_N = \sum_{n=1}^N b_n$ (taking by convention $B_0 = 0$). Show that for any $1 \le M \le N$

$$\sum_{n=M}^{N} a_n b_n = (a_N B_N - a_M B_{M-1}) - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n$$

- *ii*) Now consider the power series $s(z) = \sum_{n=0}^{\infty} \frac{z^n}{n}$. Show that *s* has radius of convergence 1 and converges on $\{z \in \mathbb{C} : |z| = 1|\} \setminus \{1\}$.
- *iii*) Show that, given any finite subset T of the unit circle $S^1 = \{z \in \mathbb{C} : |z| = 1\}$, there is a power series with radius of convergence 1 which converges on all of $S^1 \setminus T$.