Metric spaces and complex analysis

Mathematical Institute, University of Oxford
Michaelmas Term 2018

Problem Sheet 5

Throughout this sheet, for $a \in \mathbb{C}, r \in \mathbb{R}_{>0}$ we let $\gamma(a, r)$ denote the positively oriented circle centred at a of radius $r>0$.

1. Green's Theorem states, for a region D in the plane, bounded by (an) oriented closed curve(s) ${ }^{1} C$ in \mathbb{R}^{2} and for real-vaued L and M with continuous partial derivatives on D, then

$$
\int_{C}(L \mathrm{~d} x+M \mathrm{~d} y)=\iint_{D}\left(M_{x}-L_{y}\right) \mathrm{d} x \mathrm{~d} y
$$

If we assume, for a holomorphic function $f=u+i v$, that $u_{x}, u_{y}, v_{x}, v_{y}$ are continuous, show that Cauchy's Theorem follows from Green's Theorem, that is, show that for a function f which is holomorphic on the interior D of a closed curve C, we have $\int_{C} f(z) d z=0$.
[The terms "positively oriented" and "interior" should be interpreted as they were in multivariable calculus. We will discuss them more rigorously later in the course.]
2. By making the substitution $z=r e^{i \theta}$, and making clear any special cases, for each integer k determine $\int_{\gamma(0, r)} z^{k} \mathrm{~d} z$ (where as usual $\gamma(0, r)$ is the path $\gamma(0, r)(t)=r e^{i t}$ for $\left.t \in[0,2 \pi]\right)$. By writing $\sin \theta=$ $\left(e^{i \theta}-e^{-i \theta}\right) / 2 i$ rewrite the integral on the left as a path integral around $\gamma(0,1)$ and deduce that

$$
\int_{0}^{2 \pi} \sin ^{2 n} \theta \mathrm{~d} \theta=\frac{2 \pi}{4^{n}}\binom{2 n}{n} .
$$

3. Let

$$
f(z)=\frac{5 z^{2}-8}{z^{3}-2 z^{2}}
$$

Determine $\int_{\gamma(0,1)} f(z) \mathrm{d} z$. Describe different closed paths γ in \mathbb{C} such that $\int_{\gamma} f(z) \mathrm{d} z$ equals

$$
14 \pi i, \quad 18 \pi i, \quad-2 \pi i .
$$

4. Let

$$
I=\int_{\gamma(0,1)} \frac{\operatorname{Re} z}{2 z-i} \mathrm{~d} z \quad \text { and } \quad J=\int_{0}^{2 \pi} \frac{\cos ^{2} \theta}{5-4 \sin \theta} \mathrm{~d} \theta
$$

Using only Cauchy's Integral Formula, evaluate I. (Take note that $\operatorname{Re} z$ is not holomorphic, to remedy this, try to take advantage of properties of the contour you are integrating over.)

By setting $z=e^{i \theta}$ in the integral for I, determine J.
5. Use the Fundamental Theorem of Calculus to show, for $|a|>r>0$, that

$$
\int_{\gamma(0, r)} \frac{\mathrm{d} z}{z-a}=0
$$

By integrating $(R+z) /(z(R-z))$ around $\gamma(0, r)$ show, for $0 \leqslant r<R$, that

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{R^{2}-2 R r \cos \theta+r^{2}}=\frac{2 \pi}{R^{2}-r^{2}}
$$

6. Suppose that D is a domain bounded by a contour C, which we assume can be parameterized by a function $\gamma_{1}:[0,1] \rightarrow \mathbb{C}$ (that is, $C=\gamma_{1}^{*}$). Let $z_{0} \in D$ and let $r>0$ be small enough so that $\bar{B}\left(z_{0}, r\right) \subset D$. The region $D \backslash \bar{B}\left(z_{0}, r\right)$ is thus bounded by $C \cup \partial B\left(z_{0}, r\right)$. Use the result of question 1 to show that if f is holomorphic on $D \backslash\left\{z_{0}\right\}$ then

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

where $\gamma_{2}(t)=z_{0}+r e^{i t},(0 \leq t \leq 2 \pi)$.
Use this and question 2 to calculate

$$
\int_{0}^{2 \pi} \frac{d t}{a^{2} \cos ^{2}(t)+b^{2} \sin ^{2}(t)}
$$

[^0]7. Let f be holomorphic on \mathbb{C}. Write down an integral expression for $f^{(n)}(0)$.
(i) Suppose that f is holomorphic on \mathbb{C} and that there exist $M, R>0$ and k a non-negative integer such that
$$
|f(z)| \leqslant M|z|^{k} \quad \text { for }|z|>R
$$

Prove that $f(z)$ is a polynomial of degree at most k.
(ii) What holomorphic functions f satisfy $|f(z)| \leqslant|z|^{k}$ for all $z \in \mathbb{C}$?
(iii) Let $p(z)$ be a polynomial. What holomorphic functions f satisfy $|f(z)| \leqslant|p(z)|$ for all $z \in \mathbb{C}$?
8. Show that the function $f(z)=z /\left(z^{2}-4 z+1\right)^{2}$ is holomorphic except at α and β in \mathbb{C} such that $|\alpha|<1<|\beta|$. Show that the Taylor coefficient c_{n} of the function $g(z)=z /(z-\beta)^{2}$ centred at α equals

$$
\frac{\alpha+n \beta}{(\beta-\alpha)^{n+2}}
$$

With reference only to Taylor's Theorem, evaluate

$$
\int_{\gamma(0,1)} \frac{z \mathrm{~d} z}{\left(z^{2}-4 z+1\right)^{2}}
$$

and hence show that

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{(2-\cos \theta)^{2}}=\frac{4 \pi}{3 \sqrt{3}}
$$

[^0]: ${ }^{1}$ Note that the boundary of a region in the plane, for example "with holes", may be a disjoint union of closed curves.

