Metric spaces and complex analysis

Mathematical Institute, University of Oxford
Michaelmas Term 2018

Problem Sheet 6

1. $\quad i$ Suppose that f is holomorphic on \mathbb{C} and that $\operatorname{Re} f(z) \geqslant 0$ for all z. Show that f is constant. [Hint: consider $\exp (-f(z))$.]
ii) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a doubly-periodic holomorphic function: that is there exist non-zero complex numbers w_{1} and w_{2} such that w_{1} / w_{2} is not real and such that

$$
f\left(z+w_{1}\right)=f\left(z+w_{2}\right)=f(z) \quad \text { for all } z
$$

Show that f is constant.
2. $\quad i)$ Suppose that a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges on all of \mathbb{C} so that $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is an entire function. Show that the power series $f(z)$ converges uniformly on all of \mathbb{C} if and only if f is a polynomial.
ii) Show that

$$
\sum_{r=1}^{\infty} \frac{1}{(r-z)^{2}}
$$

is holomorphic on $\mathbb{C} \backslash \mathbb{N}$. [Hint: the series' convergence is not uniform on all of $\mathbb{C} \backslash \mathbb{N}$ but, for any $z \in \mathbb{C} \backslash \mathbb{N}$, is uniform on some neighbourhood of z.]
3. State the Identity Theorem.
i) Let $\left(\alpha_{n}\right)$ be a sequence of complex numbers such that

$$
\sum_{n=1}^{\infty} \frac{\alpha_{n}}{k^{n}}=0
$$

for all $k=1,2,3 \ldots$ Prove that $\alpha_{n}=0$ for all n.
ii) Let z_{n} be a sequence of distinct points in $D(0,1)$ such that $z_{n} \rightarrow 0$ and let $f: D(0,1) \rightarrow \mathbb{C}$ be holomorphic. Show that if $f\left(z_{n}\right)=\sin z_{n}$ for all n, then $f(z)=\sin z$ for all $z \in D(0,1)$.
iii) Let $z_{n}=1-\frac{1}{n}$. Find a function $f: D(0,1) \rightarrow \mathbb{C}$ which is holomorphic on $D(0,1)$ such that $f\left(z_{n}\right)=\sin z_{n}$ but such that f is not equal to $\sin (z)$.
4. Identify the singularities of the following functions. Classify any singularities which are isolated.

$$
\frac{1}{e^{z}-1}, \quad \frac{\sin 2 \pi z}{z^{3}(2 z-1)}, \quad \sin \left(\frac{1}{z}\right), \quad \bar{z}, \quad \frac{1}{\exp \left(\frac{1}{z}\right)+2}
$$

5. Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function, and for each $z_{0} \in \mathbb{C}$ the power series expansion $f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ has at least one c_{n} equals zero. Prove that $f(z)$ is a polynomial.
[Hint: Note that $n!c_{n}=f^{(n)}\left(z_{0}\right)$ and that \mathbb{C} is uncountable.]
6. Let the function f be defined and holomorphic in the punctured disc $D^{\prime}(a ; r)$ and let $\left\{c_{n}\right\}$ be the Laurent coefficients of f at a. Assume that f is bounded on $D^{\prime}(a ; r)$.
i) Use the Estimation Theorem to show that $c_{n}=0$ for $n<0$.

Deduce that it is possible to define $f(a)$ so that f, thus extended, is holomorphic at a.
ii) Let g be a holomorphic function on \mathbb{C} and assume there exists a finite constant M such that

$$
|g(z)| \leqslant M|\sin z| \quad(z \in \mathbb{C})
$$

Prove that $g(z)=K \sin z$ on \mathbb{C}, for some constant K.
7. Classify the singularities of the following functions

$$
\text { (i) } \frac{\pi}{\tan \pi z} \quad \text { (ii) } \frac{z^{2}-z}{1-\sin z} \quad \text { (iii) } \frac{(\cos z-1)}{\left(e^{z}-1\right)^{2}} \text {. }
$$

Calculate the residue at each of their singularities.
8. Let

$$
F(z)=\frac{1}{(z-1)^{2}(z+2)}
$$

Find Laurent expansions for F in

$$
A_{1}=D(0,1), \quad A_{2}=\{z: 1<|z|<2\} ; \quad A_{3}=\{z: \sqrt{2}<|z-i|<\sqrt{5}\} .
$$

