Metric spaces and complex analysis

Mathematical Institute, University of Oxford Michaelmas Term 2018

Problem Sheet 6

- 1. *i*) Suppose that f is holomorphic on \mathbb{C} and that $\operatorname{Re} f(z) \ge 0$ for all z. Show that f is constant. [Hint: consider $\exp(-f(z))$.]
 - *ii*) Let $f : \mathbb{C} \to \mathbb{C}$ be a doubly-periodic holomorphic function: that is there exist non-zero complex numbers w_1 and w_2 such that w_1/w_2 is not real and such that

$$f(z+w_1) = f(z+w_2) = f(z)$$
 for all z.

Show that f is constant.

- 2. *i*) Suppose that a power series $\sum_{n=0}^{\infty} a_n z^n$ converges on all of \mathbb{C} so that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is an entire function. Show that the power series f(z) converges *uniformly* on all of \mathbb{C} if and only if f is a polynomial.
 - *ii*) Show that

$$\sum_{r=1}^{\infty} \frac{1}{\left(r-z\right)^2}$$

is holomorphic on $\mathbb{C}\setminus\mathbb{N}$. [Hint: the series' convergence is not uniform on all of $\mathbb{C}\setminus\mathbb{N}$ but, for any $z \in \mathbb{C}\setminus\mathbb{N}$, is uniform on some neighbourhood of z.]

- 3. State the Identity Theorem.
 - i) Let (α_n) be a sequence of complex numbers such that

$$\sum_{n=1}^{\infty} \frac{\alpha_n}{k^n} = 0$$

for all k = 1, 2, 3... Prove that $\alpha_n = 0$ for all n.

- *ii*) Let z_n be a sequence of distinct points in D(0,1) such that $z_n \to 0$ and let $f: D(0,1) \to \mathbb{C}$ be holomorphic. Show that if $f(z_n) = \sin z_n$ for all n, then $f(z) = \sin z$ for all $z \in D(0,1)$.
- *iii*) Let $z_n = 1 \frac{1}{n}$. Find a function $f : D(0,1) \to \mathbb{C}$ which is holomorphic on D(0,1) such that $f(z_n) = \sin z_n$ but such that f is not equal to $\sin(z)$.
- 4. Identify the singularities of the following functions. Classify any singularities which are isolated.

$$\frac{1}{e^z - 1}$$
, $\frac{\sin 2\pi z}{z^3(2z - 1)}$, $\sin\left(\frac{1}{z}\right)$, \overline{z} , $\frac{1}{\exp\left(\frac{1}{z}\right) + 2}$

5. Suppose that $f: \mathbb{C} \to \mathbb{C}$ is an entire function, and for each $z_0 \in \mathbb{C}$ the power series expansion $f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$ has at least one c_n equals zero. Prove that f(z) is a polynomial. [*Hint: Note that* $n!c_n = f^{(n)}(z_0)$ and that \mathbb{C} is uncountable.]

6. Let the function f be defined and holomorphic in the punctured disc D'(a; r) and let $\{c_n\}$ be the Laurent coefficients of f at a. Assume that f is bounded on D'(a; r).

i) Use the Estimation Theorem to show that $c_n = 0$ for n < 0.

Deduce that it is possible to define f(a) so that f, thus extended, is holomorphic at a.

ii) Let g be a holomorphic function on \mathbb{C} and assume there exists a finite constant M such that

 $|g(z)| \leq M |\sin z| \quad (z \in \mathbb{C}).$

Prove that $g(z) = K \sin z$ on \mathbb{C} , for some constant K.

7. Classify the singularities of the following functions

(i)
$$\frac{\pi}{\tan \pi z}$$
 (ii) $\frac{z^2 - z}{1 - \sin z}$ (iii) $\frac{(\cos z - 1)}{(e^z - 1)^2}$.

Calculate the residue at each of their singularities.

8. Let

$$F(z) = \frac{1}{(z-1)^2(z+2)}.$$

Find Laurent expansions for F in

$$A_1 = D(0,1), \qquad A_2 = \{z : 1 < |z| < 2\}; \qquad A_3 = \{z : \sqrt{2} < |z-i| < \sqrt{5}\}.$$