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Problem Sheet 7'
1. Prove, for a > 0, that
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2. Let —1 < a < 1. Show that
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where T', is the square in C with vertices +(n + 1/2)(1 £ 4) show that
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(You may assume that there exists C' such that |cscmw| < C on T, for all n and all w.)

3. Show that
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. By considering the integral

5. Write down a definition of a branch of log(z + ) which is holomorphic in the cut-plane
C\{z:Rez=0,Imz < —1}.
By integrating log(z +4)/(2% + 1) around a suitable closed path, evaluate
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and, by taking real parts, show that
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6. Show that
/°° sin px sin qx 7 min(p, q)
5 de = ,
0 X 2
where p,q > 0.

7. Let a € C with —1 < Rea < 1. By considering a rectangular contour with corners at R, R + 4w,

—R +im, —R, show that
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8. (Optional) By considering the function exp(z — 2~ 1), or otherwise, show that
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and hence evaluate, for real n,

'Questions due to Richard Earl.



