Metric spaces and complex analysis

Mathematical Institute, University of Oxford
Michaelmas Term 2018

Problem Sheet 7^{1}

1. Prove, for $a>0$, that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{4}+a^{4}}=\frac{\pi}{a^{3} \sqrt{2}}
$$

2 . Let $-1<a<1$. Show that

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{1-a \cos \theta}=\frac{2 \pi}{\sqrt{1-a^{2}}}
$$

3. Show that

$$
\int_{-\infty}^{\infty} \frac{\cos \pi x}{2 x-1} \mathrm{~d} x=-\frac{\pi}{2}
$$

4. By considering the integral

$$
\int_{\Gamma_{n}} \frac{\pi \mathrm{~d} w}{w^{2} \sin \pi w}
$$

where Γ_{n} is the square in \mathbb{C} with vertices $\pm(n+1 / 2)(1 \pm i)$ show that

$$
\frac{\pi^{2}}{12}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\cdots
$$

(You may assume that there exists C such that $|\csc \pi w| \leqslant C$ on Γ_{n} for all n and all w.)
5. Write down a definition of a branch of $\log (z+i)$ which is holomorphic in the cut-plane

$$
\mathbb{C} \backslash\{z: \operatorname{Re} z=0, \operatorname{Im} z \leqslant-1\}
$$

By integrating $\log (z+i) /\left(z^{2}+1\right)$ around a suitable closed path, evaluate

$$
\int_{-\infty}^{\infty} \frac{\log (x+i)}{x^{2}+1} \mathrm{~d} x
$$

and, by taking real parts, show that

$$
\int_{-\infty}^{\infty} \frac{\log \left(x^{2}+1\right)}{x^{2}+1} \mathrm{~d} x=2 \pi \log 2 .
$$

6. Show that

$$
\int_{0}^{\infty} \frac{\sin p x \sin q x}{x^{2}} \mathrm{~d} x=\frac{\pi \min (p, q)}{2}
$$

where $p, q>0$.
7. Let $a \in \mathbb{C}$ with $-1<\operatorname{Re} a<1$. By considering a rectangular contour with corners at $R, R+i \pi$, $-R+i \pi,-R$, show that

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{\cosh x} \mathrm{~d} x=\pi \sec \left(\frac{\pi a}{2}\right)
$$

and hence evaluate, for real n,

$$
\int_{-\infty}^{\infty} \frac{\cos n x}{\cosh x} \mathrm{~d} x
$$

8. (Optional) By considering the function $\exp \left(z-z^{-1}\right)$, or otherwise, show that

$$
\int_{0}^{2 \pi} \cos (n \theta-2 \sin \theta) \mathrm{d} \theta=2 \pi \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!(n+r)!}
$$

[^0]
[^0]: ${ }^{1}$ Questions due to Richard Earl.

