Metric spaces and complex analysis

Mathematical Institute, University of Oxford Michaelmas Term 2018

Problem Sheet 7¹

1. Prove, for a > 0, that

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^4 + a^4} = \frac{\pi}{a^3 \sqrt{2}}.$$

2. Let -1 < a < 1. Show that

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{1 - a\cos\theta} = \frac{2\pi}{\sqrt{1 - a^2}}.$$

3. Show that

$$\int_{-\infty}^{\infty} \frac{\cos \pi x}{2x - 1} \, \mathrm{d}x = -\frac{\pi}{2}.$$

4. By considering the integral

$$\int_{\Gamma_n} \frac{\pi \mathrm{d} w}{w^2 \sin \pi w}$$

where Γ_n is the square in $\mathbb C$ with vertices $\pm (n+1/2)(1\pm i)$ show that

$$\frac{\pi^2}{12} = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots$$

(You may assume that there exists C such that $|\csc \pi w| \leq C$ on Γ_n for all n and all w.)

5. Write down a definition of a branch of $\log(z+i)$ which is holomorphic in the cut-plane

$$\mathbb{C}\setminus\{z: \operatorname{Re} z=0, \operatorname{Im} z\leqslant -1\}.$$

By integrating $\log(z+i)/(z^2+1)$ around a suitable closed path, evaluate

$$\int_{-\infty}^{\infty} \frac{\log(x+i)}{x^2+1} \, \mathrm{d}x$$

and, by taking real parts, show that

$$\int_{-\infty}^{\infty} \frac{\log(x^2 + 1)}{x^2 + 1} \, \mathrm{d}x = 2\pi \log 2.$$

6. Show that

$$\int_0^\infty \frac{\sin px \sin qx}{x^2} \, \mathrm{d}x = \frac{\pi \min(p, q)}{2},$$

where p, q > 0.

7. Let $a \in \mathbb{C}$ with $-1 < \operatorname{Re} a < 1$. By considering a rectangular contour with corners at $R, R + i\pi$, $-R + i\pi$, -R, show that

$$\int_{-\infty}^{\infty} \frac{e^{ax}}{\cosh x} \, \mathrm{d}x = \pi \sec\left(\frac{\pi a}{2}\right)$$

and hence evaluate, for real n,

$$\int_{-\infty}^{\infty} \frac{\cos nx}{\cosh x} \, \mathrm{d}x.$$

8. (Optional) By considering the function $\exp(z-z^{-1})$, or otherwise, show that

$$\int_0^{2\pi} \cos(n\theta - 2\sin\theta) d\theta = 2\pi \sum_{r=0}^{\infty} \frac{(-1)^r}{r!(n+r)!}.$$

1

¹Questions due to Richard Earl.