B4.2 Functional Analysis II Consultation Session 1

Luc Nguyen
luc.nguyen@maths

University of Oxford

TT 2022

Paper 2013-Q3

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$.
(0) Definition of adjoint operator T^{*}. Show

$$
\|T\|=\left\|T^{*}\right\|=\left\|T^{*} T\right\|^{1 / 2},\left(T^{*} T\right)^{*}=T^{*} T \text { and }
$$

Ker $T=\operatorname{Ker} T^{*} T$. Show for a projection P on H,

$$
P=P^{*} \Rightarrow \operatorname{Ker} P=(\operatorname{Im} P)^{\perp} \Rightarrow\|P\| \leq 1 .
$$

(0) Definition of T being an isometry. Show that if this is the case then $\langle T x, T w\rangle=\langle x, w\rangle$ for all $x, w \in H$.
(0) T is said to be a partial isometry if there exist closed subspaces H_{1} and K_{1} of H and K such that T maps H_{1} isometrically into K_{1} while $T=0$ on H_{1}^{\perp}. Show that if T is a partial isometry, then so is T^{*} and that both $T^{*} T$ and $T T^{*}$ are projections. Conversely, show that if $T^{*} T$ is a projection, then T is a partial isometry.

Paper 2013-Q3(a)(i)-(iii)

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Define T^{*}. Show $\|T\|=\left\|T^{*}\right\|=\left\|T^{*} T\right\|^{1 / 2},\left(T^{*} T\right)^{*}=T^{*} T$ and $\operatorname{Ker} T=\operatorname{Ker} T^{*} T$.

- I'll not go over bookwork. But l'd like to point out that the underlying identity that defines T^{*} is $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$. The reason for the existence and uniqueness of T^{*} is a consequence of the Riesz representation theorem. It also gives $\|T\|=\left\|T^{*}\right\|$. In practice, one rearranges $\langle T x, y\rangle$ as the inner product of x with something else, and read off T^{*}.
- For $x \in H$, we have

$$
\left\|T^{*} T x\right\| \leq\left\|T^{*}\right\|\|T x\| \leq\left\|T^{*}\right\|\|T\|\|x\|=\|T\|^{2}\|x\| \text { and so }
$$

$$
\left\|T^{*} T\right\| \leq\|T\|^{2}
$$

Conversely

$$
\|T x\|^{2}=\langle T x, T x\rangle=\left|\left\langle x, T^{*} T x\right\rangle\right| \leq\|x\|\left\|T^{*} T x\right\| \leq\left\|T^{*} T\right\|\|x\|^{2}
$$

$$
\text { This gives }\|T x\| \leq\left\|T^{*} T\right\|^{1 / 2}\|x\| \text { and so }\|T\| \leq\left\|T^{*} T\right\|^{1 / 2} \text {. We }
$$ thus have $\|T\|=\left\|T^{*} T\right\|^{1 / 2}$.

Paper 2013-Q3(a)(i)-(iii)

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$. Define T^{*}. Show $\|T\|=\left\|T^{*}\right\|=\left\|T^{*} T\right\|^{1 / 2},\left(T^{*} T\right)^{*}=T^{*} T$ and $\operatorname{Ker} T=\operatorname{Ker} T^{*} T$.

- The proof of $\left(T^{*} T\right)^{*}=T^{*} T$ is routine.
- Let us now show that $\operatorname{Ker} T=\operatorname{Ker} T^{*} T$.

Clearly if $T_{x}=0$ then $T^{*} T x=0$ and so $\operatorname{Ker} T \subset \operatorname{Ker} T^{*} T$.
Conversely, suppose $T^{*} T x=0$. Then

$$
0=\left\langle x, T^{*} T x\right\rangle=\langle T x, T x\rangle=\|T x\|^{2}
$$

which implies $T x=0$. This proves $\operatorname{Ker} T \supset \operatorname{Ker} T^{*} T$, whence $\operatorname{Ker} T=\operatorname{Ker} T^{*} T$.

Paper 2013-Q3(a)(iv)

Let H be a Hilbert space. Show for a projection P on H,

$$
P=P^{*} \Rightarrow \operatorname{Ker} P=(\operatorname{Im} P)^{\perp} \Rightarrow\|P\| \leq 1 .
$$

- Recall that $P \in \mathscr{B}(H)$ is a projection if $P^{2}=P$.
- We know that for every bounded linear operator P,

$$
\operatorname{Ker} P=\left(\operatorname{Im} P^{*}\right)^{\perp} \quad \text { and } \quad \overline{\operatorname{Im} P}=\left(\operatorname{Ker} P^{*}\right)^{\perp} .
$$

(Proof?)
The first stated deduction is clear from the above.

- Suppose now that $\operatorname{Ker} P=(\operatorname{Im} P)^{\perp}$ and we would like to show that $\|P\| \leq 1$, i.e. $\|P x\| \leq\|x\|$ for all $x \in H$.

Paper 2013-Q3(a)(iv)

Let H be a Hilbert space. Show for a projection P on H,

$$
P=P^{*} \Rightarrow \operatorname{Ker} P=(\operatorname{Im} P)^{\perp} \Rightarrow\|P\| \leq 1
$$

- How may we use $\operatorname{Ker} P=(\operatorname{Im} P)^{\perp}$? By the projection theorem, this implies that every $x \in H$ is written uniquely as

$$
x=y+z \text { where } P y=0 \text { and } z \in \overline{\operatorname{Im} P}
$$

(Note the closure.)

- Claim: $\operatorname{Im} P$ is closed. To see this observe that $P^{2}=P$ implies that $\operatorname{Im} P=\operatorname{Ker}(I-P)$ which is closed.
- Hence every $x \in H$ is written uniquely as

$$
x=y+z \text { where } P y=0 \text { and } z \in \operatorname{Im} P
$$

Applying P to both side, we have $P x=P z=z$ (since $z=P w$ for some w and $P^{2}=P$).

Paper 2013-Q3(a)(iv)

Let H be a Hilbert space. Show for a projection P on H,

$$
P=P^{*} \Rightarrow \operatorname{Ker} P=(\operatorname{Im} P)^{\perp} \Rightarrow\|P\| \leq 1 .
$$

- Putting things together, we see that every x is written as

$$
x=y+z=y+P x \text { where } P y=0
$$

where $y \perp z=P x$.

- By Pythagoras' theorem, we have

$$
\|P x\|^{2} \leq\|P x\|^{2}+\|y\|^{2}=\|x\|^{2}
$$

i.e. $\|P\| \leq 1$.
(Note we have actually proved that P is the orthogonal projection onto $\operatorname{Im} P$ (which is closed).)

Paper 2013-Q3(b)

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$.
Show that if T is an isometry then $\langle T x, T w\rangle=\langle x, w\rangle$ for all $x, w \in H$.

- This uses a standard polarisation argument.
- We start with $\|T(x+w)\|^{2}=\|x+w\|^{2},\|T x\|=\|x\|$ and $\|T w\|=\|w\|$. Expanding gives

$$
\left\langle T_{x}, T_{w}\right\rangle+\left\langle T w, T_{x}\right\rangle=\langle x, w\rangle+\langle w, x\rangle,
$$

which means $\operatorname{Re}\langle T x, T w\rangle=\operatorname{Re}\langle x, w\rangle$.

- If the field is real, we are done. If the field is complex, we apply the above to ix and w to get that $\operatorname{Re}\langle T(i x), T w\rangle=\operatorname{Re}\langle i x, w\rangle$. This means $\operatorname{Im}\langle T x, T w\rangle=\operatorname{Im}\langle x, w\rangle$ and so we are done.

Paper 2013-Q3(b)(i)

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$.
Show that if T is a partial isometry, then so is T^{*} and that both $T^{*} T$ and $T T^{*}$ are projections.

- By definition, there exist closed subspaces $H_{1} \subset H$ and $K_{1} \subset K$ such that $\left.T\right|_{H_{1}}: H_{1} \rightarrow K_{1}$ is a surjective isometry and $\left.T\right|_{H_{1}^{\perp}}=0$.
- Claim $\left.T^{*}\right|_{K_{1}}: K_{1} \rightarrow H_{1}$ is a surjective isometry and $\left.T^{*}\right|_{K_{1}^{\perp}}=0$. This gives that T^{*} is a partial isometry.
- Indeed, we have $\operatorname{Ker} T^{*}=(\operatorname{Im} T)^{\perp} \stackrel{\text { why? }}{=} K_{1}^{\perp}$. This implies that $\left.T^{*}\right|_{K_{1}^{\perp}}=0$.
- We also have $\overline{\operatorname{Im} T^{*}}=(\operatorname{Ker} T)^{\perp} \stackrel{\text { why? }}{=}\left(H_{1}^{\perp}\right)^{\perp}=H_{1}$ (as H_{1} is closed). In particular $\operatorname{Im}\left(\left.T^{*}\right|_{K_{1}}\right)=\operatorname{Im} T^{*}$ is a dense subset of H_{1}.

Paper 2013-Q3(b)(i)

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$.
Show that if T is a partial isometry, then so is T^{*} and that both $T^{*} T$ and $T T^{*}$ are projections.

- Now suppose $k \in K_{1}$, we have $k=T h$ for some $h \in H_{1}$ and

$$
\left\|T^{*} k\right\|^{2}=\left\langle T^{*} k, T^{*} k\right\rangle=\left\langle T T^{*} k, k\right\rangle=\left\langle T T^{*} k, T h\right\rangle
$$

using that T is isometric, we can continue this identity:

$$
=\left\langle T^{*} k, h\right\rangle=\langle k, T h\rangle=\langle k, k\rangle=\|k\|^{2} .
$$

So $\left.T^{*}\right|_{K_{1}}: K_{1} \rightarrow H_{1}$ is isometric.

- To see that $\operatorname{Im}\left(\left.T^{*}\right|_{K_{1}}\right)=H_{1}$, we take $h \in H_{1}$ and aim to show that $h=T^{*} k$ for some $k \in K_{1}$. Let $\left(h_{n}\right) \subset \operatorname{Im}\left(\left.T^{*}\right|_{K_{1}}\right)$ be such that $h_{n} \rightarrow h$ (note $\operatorname{Im}\left(\left.T^{*}\right|_{K_{1}}\right)$ is dense in $\left.H_{1}\right)$. Write $h_{n}=T^{*} k_{n}$ with $k_{n} \in K_{1}$, then $\left\|k_{n}-k_{m}\right\|=\left\|h_{n}-h_{m}\right\| \rightarrow 0$ and so $\left(k_{n}\right)$ is Cauchy, hence convergent to some $k \in K_{1}$ (since K_{1} is closed). By continuity $h=T^{*} k$.

Paper 2013-Q3(b)(i)

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$.
Show that if T is a partial isometry, then so is T^{*} and that both $T^{*} T$ and $T T^{*}$ are projections.

- For the last statement, it suffices to show $T^{*} T$ is a projection. The other part is obtained by swapping the role of T and T^{*}.
- Take $x, y \in H$. We have $\left\langle T^{*} T T^{*} T x, y\right\rangle=\left\langle T T^{*} T x, T y\right\rangle$. Write $y=a+b$ where $a \in H_{1}$ and $b \in H_{1}^{\perp}$ so that $T y=T a$. Then

$$
\begin{aligned}
\left\langle T^{*} T T^{*} T x, y\right\rangle & =\langle T \underbrace{T^{*} T_{x}}_{\in H_{1}}, T \underbrace{a}_{\in H_{1}}\rangle=\left\langle T^{*} T x, a\right\rangle \\
& =\langle\underbrace{T^{*} T x}_{\in H_{1}}, a+\underbrace{b}_{\in H_{1}^{\prime}}\rangle=\left\langle T^{*} T x, y\right\rangle .
\end{aligned}
$$

Since x, y are arbitrary, this means $\left(T^{*} T\right)^{2}=T^{*} T$ and so $T^{*} T$ is a projection.

Paper 2013-Q3(b)(ii)

Let H and K be Hilbert spaces, $T \in \mathscr{B}(H, K)$.
Conversely, show that if $T^{*} T$ is a projection then T is a partial isometry.

- We know that $T^{*} T$ is self-adjoint. By (a), $\operatorname{Ker} T=\operatorname{Ker} T^{*} T$ and Ker $T^{*} T=\left(\operatorname{Im} T^{*} T\right)^{\perp}$. In fact, we also know that $\operatorname{Im} T^{*} T$ is closed and $T^{*} T$ is the orthogonal projection on to $\operatorname{Im} T^{*} T$.
- Let $H_{1}=\operatorname{Im} T^{*} T$ so that $H_{1}^{\perp}=\operatorname{Ker} T$ (hence $\left.T\right|_{H_{1}^{\perp}}=0$).
- Claim: $\left.T\right|_{H_{1}}$ is isometric. Let $h \in H_{1}$. Since $T^{*} T$ is the orthogonal projection onto $H_{1}, h=T^{*} T h$. Hence

$$
\langle T h, T h\rangle=\left\langle T^{*} T h, h\right\rangle=\langle h, h\rangle=\|h\|^{2}
$$

i.e. T is isometric.

- Finally, let $K_{1}=\overline{\left.\operatorname{Im} T\right|_{H_{1}}}$. Claim: $\operatorname{Im}\left(\left.T\right|_{H_{1}}\right)$ is actually K_{1}. This can be done as in the proof of $\operatorname{Im}\left(\left.T^{*}\right|_{K_{1}}\right)=H_{1}$ which we did earlier on in (i).

Paper 2014 - Q3

(a) Bookwork.
(b) Let D denote the open unit disc $\{z \in \mathbb{C}:|z|<1\}$ in \mathbb{C} and consider $L^{2}(D)$ with area measure. Let $A^{2}(D)$ be the set of functions $f: D \rightarrow \mathbb{C}$ such that f is holomorphic and $|f|^{2}$ is integrable. We identify with a subspace of $L^{2}(D)$. You are given that $A^{2}(D)$ is closed in $L^{2}(D)$.
Let $e_{n}=\left(\frac{n+1}{\pi}\right)^{1 / 2} z^{n}, n=0,1, \ldots$
(1) Prove that $\left(e_{n}\right)_{n \geq 0}$ is a complete orthonormal sequence in $A^{2}(D)$.
(1) Prove that if $\sum\left|a_{k}\right|^{2}$ converges then the function $\sum_{k=0}^{\infty}(k+1)^{1 / 2} a_{k} z^{k}$ is holomorphic in D. Is the converse true?

Paper 2014 - Q3(b)(i)

Prove that $e_{n}=\left(\frac{n+1}{\pi}\right)^{1 / 2} z^{n}, n=0,1, \ldots$ form a complete orthonormal sequence in $A^{2}(D)$.

- It's straightforward to check that $\left(e_{n}\right)$ is an orthonormal sequence in $A^{2}(D)$.
- To show that it's complete, suppose that $f \in A^{2}(D)$ with $\left\langle f, e_{n}\right\rangle=0$ for all e_{n}, and we need to show that $f \equiv 0$.
- We know that f has a Taylor series

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

which converges uniformly on any disk $D(0, R) \subset D$ with $R<1$ and $f \equiv 0$ if and only if $a_{k}=0$ for all k.

Paper 2014 - Q3(b)(i)

- Let us compute $\left\langle f, e_{n}\right\rangle$.
- Since $f \in L^{2}(D)$, we have by the dominated convergence theorem that $f-\left.f\right|_{D(0, R)} \rightarrow 0$ as $R \rightarrow 1$. It follows that

$$
\left\langle f, e_{n}\right\rangle=\left(\frac{n+1}{\pi}\right)^{1 / 2} \lim _{R \rightarrow 1} \int_{D(0, R)} f(z) \bar{z}^{n} d A
$$

Using the uniform convergence of the Taylor series we then have

$$
\begin{aligned}
\left\langle f, e_{n}\right\rangle & =\left(\frac{n+1}{\pi}\right)^{1 / 2} \lim _{R \rightarrow 1} \sum_{k=0}^{\infty} \int_{D(0, R)} a_{k} z^{k} \bar{z}^{n} d A \\
& =\left(\frac{n+1}{\pi}\right)^{1 / 2} \lim _{R \rightarrow 1} \sum_{k=0}^{\infty} \int_{0}^{R} \int_{0}^{2 \pi} a_{k} r^{k+n+1} e^{i(k-n) \theta} d \theta d r \\
& =\left(\frac{n+1}{\pi}\right)^{1 / 2} \lim _{R \rightarrow 1} \frac{\pi}{n+1} a_{n} R^{2 n+2}=\left(\frac{\pi}{n+1}\right)^{1 / 2} a_{n}
\end{aligned}
$$

- We deduce that $a_{n}=0$ for all n and so $f \equiv 0$.

Paper 2014 - Q3(b)(i)

Prove that if $\sum\left|a_{k}\right|^{2}$ converges then the function $\sum_{k=0}^{\infty}(k+1)^{1 / 2} a_{k} z^{k}$ is holomorphic in D. Is the converse true?

- We have $\sum_{k=0}^{\infty}(k+1)^{1 / 2} a_{k} z^{k}=\frac{1}{\sqrt{\pi}} \sum a_{k} e_{k}$. Now if $\sum\left|a_{k}\right|^{2}$ converges, then $\sum a_{k} e_{k}$ belongs to the closed linear span of $\left(e_{n}\right)$, i.e. $A^{2}(D)$, and hence is holomorphic.
- The converse doesn't hold: If f is holomorphic in D, it is not necessary that f can be written in the form $f=\sum_{k=0}^{\infty}(k+1)^{1 / 2} a_{k} z^{k}$ with $\sum\left|a_{k}\right|^{2}<\infty$, as this latter means that $f \in A^{2}(D)$.
To confirm this, we only need to exhibit a function f which is holomorphic in D but is not square integrable in D. We can take for example $f(z)=(1-z)^{-1}$. (This corresponds to $a_{k}=(k+1)^{-1 / 2}$ which is clearly not square summable.)

Paper 2013-Q2

(a) Projection theorem + Pythagoras' theorem.
(D) Let H be a Hilbert space, $C \subset K \subset H$ be non-empty closed convex subsets and P_{C} and P_{K} be the projections to those convex sets. Show that, if K is a subspace, then $P_{C}=P_{C} \circ P_{K}$, but this need not hold otherwise.
(c) Let $H=L^{2}(\mathbb{R})$ and

$$
\begin{aligned}
& K=\{g \in H: g(t)=0 \text { for almost all } t \in(-\infty, 0)\} \\
& C=\{g \in K: g(t) \geq 0 \text { for almost all } t \in \mathbb{R}\}
\end{aligned}
$$

Let f be a real-valued function in H. Find $P_{K}(f)$ and $P_{C}(f)$.

Paper 2013-Q2(b)

K is a closed subspace.

$$
\begin{align*}
& \text { Fix } x \in H \text {. We need to show } \\
& \text { that } P_{C}\left(P_{K}(x)\right)=P_{C}(x) \text {, i.e. } \\
& \|x-z\| \geq\left\|x-P_{C}\left(P_{K}(x)\right)\right\| \tag{1}\\
& \text { for all } z \in C
\end{align*}
$$

- Let $y=P_{K}(x)$. By Pythagoras' theorem,

$$
\|x-z\|^{2}=\|x-y\|^{2}+\|y-z\|^{2}
$$

- By definition of $P_{C},\|y-z\| \geq\|y-\| P_{C}(y) \|$.
- So, $\|x-z\|^{2}=\|x-y\|^{2}+\|y-z\|^{2} \geq$
$\|x-y\|^{2}+\left\|y-P_{C}(y)\right\|^{2}=\left\|x-P_{C}(y)\right\|^{2}$, where we have used Pythagoras' theorem once more time. This gives (1).

Paper 2013-Q2(b)

Example of K (not a subspace) and C for which $P_{C} \neq P_{C} \circ P_{K}$. Many such examples e.g.

$$
K=[0,1]^{2} \subset \mathbb{R}^{2}, \quad C=\{(a, b): a+b=1,0 \leq a, b \leq 1\} .
$$

Paper 2013-Q2(c)

Let $H=L^{2}(\mathbb{R})$ and

$$
\begin{aligned}
& K=\{g \in H: g(t)=0 \text { for almost all } t \in(-\infty, 0)\} \\
& C=\{g \in K: g(t) \geq 0 \text { for almost all } t \in \mathbb{R}\}
\end{aligned}
$$

Let f be a real-valued function in H. Find $P_{K}(f)$ and $P_{C}(f)$.

- H and K are clearly closed and convex. Hence P_{C} and P_{K} are well-defined.
- Let $g \in K$, then

$$
\|f-g\|^{2}=\int_{-\infty}^{0}|f(t)|^{2} d t+\int_{0}^{\infty}|f(t)-g(t)|^{2} d t
$$

In order for this to be smallest, we need $g(t)=f(t)$ for all most all $t \geq 0$. This means

$$
P_{K}(f)=f \chi_{[0, \infty)}
$$

Paper 2013-Q2(c)

$$
C=\{g \in K: g(t) \geq 0 \text { for almost all } t \in \mathbb{R}\}
$$

\ldots Find ... $P_{C}(f)$.

- Let $g \in C$, then

$$
\|f-g\|^{2}=\int_{-\infty}^{0}|f(t)|^{2} d t+\int_{0}^{\infty}|f(t)-g(t)|^{2} d t
$$

- If we minimize $|f(t)-g(t)|^{2}$ for each t under the constraint that $g(t) \geq 0$, we get $g(t)=f^{+}(t)$. This gives

$$
\|f-g\|^{2} \geq \int_{-\infty}^{0}|f(t)|^{2} d t+\int_{0}^{\infty}\left|f(t)-f^{+}(t)\right|^{2} d t
$$

From here we see that

$$
P_{C}(f)=f^{+} \chi_{[0, \infty)}
$$

Paper 2014-Q1(c)(d)

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$.
(c) Prove that if there exists $\delta>0$ such that $\|T x\| \geq \delta\|x\|$ for all $x \in X$, then T is injective and $\operatorname{Im} T$ is closed. Prove further that if T is self-adjoint, then T is invertible in $\mathscr{B}(X)$.
(0) Suppose that T is self-adjoint. Prove that i $I+T$ has an inverse and that $(\mathrm{i} I+T)^{-1}(\mathrm{i} I-T)$ is unitary.

Paper 2014-Q1(c)

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$.
Prove that if there exists $\delta>0$ such that $\|T x\| \geq \delta\|x\|$ for all $x \in X$, then T is injective and $\operatorname{Im} T$ is closed. Prove further that if T is self-adjoint, then T is invertible in $\mathscr{B}(X)$.

- The injectivity is clear. We have seen the part about the closedness of $\operatorname{Im} T$ when T is isometric. The proof now is the same.
- Suppose $\left(y_{n}=T x_{n}\right) \subset \operatorname{Im} T$ and $y_{n} \rightarrow y$ in X.
- Then $\left\|x_{n}-x_{m}\right\| \leq \delta^{-1}\left\|y_{n}-y_{m}\right\|$. So $\left(x_{n}\right)$ is Cauchy, hence converges to some $x \in X$. Continuity gives $y=T x$. This proves $\operatorname{Im} T$ is closed.

Paper 2014-Q1(c)

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$.
Prove that if there exists $\delta>0$ such that $\|T x\| \geq \delta\|x\|$ for all $x \in X$, then T is injective and $\operatorname{Im} T$ is closed. Prove further that if T is self-adjoint, then T is invertible in $\mathscr{B}(X)$.

- Suppose now T is self-adjoint. Then $0=\operatorname{Ker} T=\operatorname{Ker} T^{*}=(\operatorname{Im} T)^{\perp}$ and so $\operatorname{Im} T$ is dense in X. Since $\operatorname{Im} T$ is closed, we have that $\operatorname{Im} T=X$, i.e. T is surjective.
- It follows that T is a bijection and has an inverse T^{-1}. It is clear that T^{-1} is linear. One also has
$\left\|T^{-1} y\right\| \leq \delta^{-1}\left\|T T^{-1} y\right\|=\delta^{-1}\|y\|$ and so T^{-1} is bounded.
Comment: There is no need to use inverse mapping theorem.

Paper 2014-Q1(d)

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$.
Suppose that T is self-adjoint. Prove that i $I+T$ has an inverse and that $(\mathrm{i} I+T)^{-1}(\mathrm{i} I-T)$ is unitary.

- We attempt to use (c). We compute

$$
\|(\mathrm{i} I+T) x\|^{2}=\|x\|^{2}+\|T x\|^{2}-2 \mathrm{i} \operatorname{Im}\langle x, T x\rangle .
$$

- Since T is self-adjoint, $\left\langle x, T_{x}\right\rangle=\left\langle T_{x}, x\right\rangle=\overline{\left\langle x, T_{x}\right\rangle}$ and so $\langle x, T x\rangle$ is real. Thus

$$
\|(\mathrm{i} I+T) x\|^{2}=\|x\|^{2}+\|T x\|^{2} \geq\|x\|^{2}
$$

- By (c), i I $+T$ is invertible. (Note that, a brief argument is needed as i $I+T$ is not self-adjoint.)

Paper 2014-Q1(d)

Let X be a complex Hilbert space, $T \in \mathscr{B}(X)$. Suppose that T is self-adjoint. Prove that i $I+T$ has an inverse and that $(\mathrm{i} I+T)^{-1}(\mathrm{i} I-T)$ is unitary.

- Let $U=(\mathrm{i} I+T)^{-1}(\mathrm{i} I-T)$. Applying what we just proved to $-T$, we have also that i $I-T$ is invertible and hence U is invertible.
- To conclude, we show that U is isometric by showing $U^{*} U=I$. First,

$$
U^{*}=\left(-\mathrm{i} I-T^{*}\right)\left(-\mathrm{i} I+T^{*}\right)^{-1}=(\mathrm{i} I+T)(\mathrm{i} I-T)^{-1} .
$$

- Next, since i $I+T$ and il $-T$ commute, so do their inverses. It follows that

$$
\begin{aligned}
U^{*} U & =(\mathrm{i} I+T)(\mathrm{i} I-T)^{-1}(\mathrm{i} I+T)^{-1}(\mathrm{i} I-T) \\
& =(\mathrm{i} I+T)(\mathrm{i} I+T)^{-1}(\mathrm{i} I-T)^{-1}(\mathrm{i} I-T)=I .
\end{aligned}
$$

