Metric spaces and complex analysis

Mathematical Institute, University of Oxford Michaelmas Term 2018

Problem Sheet 8

1. Evaluate, using a keyhole contour cut along the positive real axis, or otherwise,

$$\int_0^\infty \frac{x^{1/2} \log x}{(1+x)^2} \mathrm{d}x$$

2. Let $n \ge 2$. By using the contour comprising [0, R], the circular arc from R to $Re^{2\pi i/n}$, and $[0, Re^{2\pi i/n}]$, show that

$$\int_0^\infty \frac{\mathrm{d}x}{1+x^n} = \frac{\pi}{n} \csc\left(\frac{\pi}{n}\right).$$

3. Suppose that $f: U \to \mathbb{C}$ is a holomorphic function on an open set $U \subseteq \mathbb{C}$, and suppose $f'(a) \neq 0$ for some $a \in U$. Show that there is an r > 0 such that f is injective on B(a, r) and that its inverse g is given on such a disk by

$$g(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - w} dz.$$

where $\gamma(t) = a + re^{it}, t \in [0, 2\pi].$

4. In each of the following cases find a conformal mapping from the given region G onto the open unit disc D(0,1).

$$i) \ G = \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \},\$$

ii) $G = \{ z \in \mathbb{C} : z \neq 0 \text{ and } -\pi/4 < \arg z < \pi/4 \},\$

iii)
$$G = \{z \in \mathbb{C} : |z - i| < \sqrt{2} \text{ and } |z + i| > \sqrt{2} \}.$$

5. Let

$$A = \{ z \in \mathbb{C} : |z - 2| < 2 \text{ and } |z - 1| > 1 \}; \qquad B = \{ z \in \mathbb{C} : 0 < \operatorname{Re} z < \pi \}.$$

Find the image of A under the map $z \mapsto 1/z$ and the image of B under the map $z \mapsto \exp(iz)$.

Let $H = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Given $a, b \in H$ find a conformal bijection $H \to H$ of the form $z \mapsto \lambda z + \mu$ which maps a to b.

Deduce that for any two points $a, b \in A$ there is a conformal bijection $f : A \to A$ such that f(a) = b.

- 6. Let $\mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\} \subset \mathbb{C}_{\infty}$.
 - (1) Show that group Γ of Mobius transformations T for which $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ are exactly those of the form T(z) = (az + b)/(cz + d) where a, b, c, d can be chosen to be real.
 - (2) Calculate the group Γ_1 of Mobius transformations which preserve $\mathbb{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$ [*Hint: Why must* Γ_1 be a subgroup of Γ ?]

7. Suppose that f(z) = (az + b)/(cz + d) is a Mobius transformation. We have seen any Mobius transformation is conformal. Find the subgroup I of Mob, the group of all Mobius transformations, which consists of those Mobius transformations which are isometries with respect to the standard metric on the Riemann sphere (*i.e.* the one induced from the Euclidean metric on \mathbb{R}^3).

[*Hint:* In the lecture notes it is shown that the distance on the Riemann sphere corresponds to the distance function on \mathbb{P}^1 given by

$$d(L_1, L_2) = 2\sqrt{1 - \frac{|\langle v, w \rangle|^2}{\|v\|^2 \|w\|^2|}},$$

where $v \in L_1 \setminus \{0\}$ and $w \in L_2 \setminus \{0\}$. A Mobius map corresponds to the action of a matrix $A \in GL_2(\mathbb{C})$ on lines in \mathbb{C}^2 . Which 2×2 matrices automatically preserve the above expression for d? 8. Write down the solution u(x, y) to the Dirichlet problem for the following region and boundary conditions:

$$U = \{x + iy : 0 \le y \le 1\}, \qquad u(x, 0) = 0, \qquad u(x, 1) = 1.$$

Hence, using appropriate conformal maps, solve the Dirichlet problem for the following regions and boundary conditions.

i) $U = \{z : r_1 \leq |z| \leq r_2\},\$ u(z) = 0 when $|z| = r_1$, u(z) = 1 when $|z| = r_2$. $ii) \ U = \{z : \operatorname{Im} z \ge 0\},\$ u(x,0) = 0 when x > 0, u(x,0) = 1 when x < 0. *iii*) $U = \{z : |z| \leq 1\},\$ u(z) = 0 when |z| = 1 and $\operatorname{Im} z < 0$, u(z) = 1 when |z| = 1 and $\operatorname{Im} z > 0$. $iv) \ U = \{z : \operatorname{Im} z \ge 0\},\$ u(x,0) = 0 when |x| > 1, u(x,0) = 1 when |x| < 1. $v) U = \{z : \operatorname{Im} z \ge 0, -1 \le \operatorname{Re} z \le 1\},\$ u(1,y) = u(-1,y) = 0 when y > 0, u(x,0) = 1 when |x| < 1.

- 9. (*Optional.*) Let $f \colon \mathbb{P}^1 \to \mathbb{P}^1$ be a meromorphic function on the extended complex plane.
 - i) Show that either f is constant or $f^{-1}(a)$ is finite for each $a \in \mathbb{P}^1$.
 - ii) In particular it follows that f has finitely many poles, say $S = \{s_1, s_2, \ldots, s_k\}$. Let P_i be the principal part of f at s_i (so that P_i for $s_i \neq \infty$ is a rational function which has a pole at s_i , takes the value 0 at ∞ , and is finite on \mathbb{C} , while the "principal part" at ∞ is a polynomial in z, the coordinate in the chart U_0 , which vanishes at 0). Show that $f \sum_{i=1}^k P_i(f)$ is constant. [Hint: If $g = f \sum_{i=1}^n P_i(f)$ then $f(\mathbb{P}^1)$ is compact and so closed in \mathbb{P}^1 , and does not contain ∞ .]

[Note that this gives an "analytic proof" that any rational function has an expansion into "partial fractions".].