Metric spaces and complex analysis

Mathematical Institute, University of Oxford
Michaelmas Term 2018

Problem Sheet 8

1. Evaluate, using a keyhole contour cut along the positive real axis, or otherwise,

$$
\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{(1+x)^{2}} \mathrm{~d} x
$$

2. Let $n \geqslant 2$. By using the contour comprising $[0, R]$, the circular arc from R to $R e^{2 \pi i / n}$, and $\left[0, R e^{2 \pi i / n}\right]$, show that

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{1+x^{n}}=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right)
$$

3. Suppose that $f: U \rightarrow \mathbb{C}$ is a holomorphic function on an open set $U \subseteq \mathbb{C}$, and suppose $f^{\prime}(a) \neq 0$ for some $a \in U$. Show that there is an $r>0$ such that f is injective on $B(a, r)$ and that its inverse g is given on such a disk by

$$
g(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{z f^{\prime}(z)}{f(z)-w} d z
$$

where $\gamma(t)=a+r e^{i t}, t \in[0,2 \pi]$.
4. In each of the following cases find a conformal mapping from the given region G onto the open unit disc $D(0,1)$.
i) $G=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$,
ii) $G=\{z \in \mathbb{C}: z \neq 0$ and $-\pi / 4<\arg z<\pi / 4\}$,
iii) $G=\{z \in \mathbb{C}:|z-i|<\sqrt{2}$ and $|z+i|>\sqrt{2}\}$.
5. Let

$$
A=\{z \in \mathbb{C}:|z-2|<2 \text { and }|z-1|>1\} ; \quad B=\{z \in \mathbb{C}: 0<\operatorname{Re} z<\pi\}
$$

Find the image of A under the map $z \mapsto 1 / z$ and the image of B under the map $z \mapsto \exp (i z)$.
Let $H=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. Given $a, b \in H$ find a conformal bijection $H \rightarrow H$ of the form $z \mapsto \lambda z+\mu$ which maps a to b.

Deduce that for any two points $a, b \in A$ there is a conformal bijection $f: A \rightarrow A$ such that $f(a)=b$.
6. Let $\mathbb{R}_{\infty}=\mathbb{R} \cup\{\infty\} \subset \mathbb{C}_{\infty}$.
(1) Show that group Γ of Mobius transformations T for which $T\left(\mathbb{R}_{\infty}\right)=\mathbb{R}_{\infty}$ are exactly those of the form $T(z)=(a z+b) /(c z+d)$ where a, b, c, d can be chosen to be real.
(2) Calculate the group Γ_{1} of Mobius tranformations which preserve $\mathbb{H}=\{z \in \mathbb{C}: \Im(z)>0\}$
[Hint: Why must Γ_{1} be a subgroup of Γ ?]
7. Suppose that $f(z)=(a z+b) /(c z+d)$ is a Mobius transformation. We have seen any Mobius transformation is conformal. Find the subgroup I of Mob, the group of all Mobius transformations, which consists of those Mobius transformations which are isometries with respect to the standard metric on the Riemann sphere (i.e. the one induced from the Euclidean metric on \mathbb{R}^{3}).
[Hint: In the lecture notes it is shown that the distance on the Riemann sphere corresponds to the distance function on \mathbb{P}^{1} given by

$$
d\left(L_{1}, L_{2}\right)=2 \sqrt{1-\frac{|\langle v, w\rangle|^{2}}{\|v\|^{2}\|w\|^{2} \mid}}
$$

where $v \in L_{1} \backslash\{0\}$ and $w \in L_{2} \backslash\{0\}$. A Mobius map corresponds to the action of a matrix $A \in G L_{2}(\mathbb{C})$ on lines in \mathbb{C}^{2}. Which 2×2 matrices automatically preserve the above expression for d?]
8. Write down the solution $u(x, y)$ to the Dirichlet problem for the following region and boundary conditions:

$$
U=\{x+i y: 0 \leqslant y \leqslant 1\}, \quad u(x, 0)=0, \quad u(x, 1)=1 .
$$

Hence, using appropriate conformal maps, solve the Dirichlet problem for the following regions and boundary conditions.
i) $U=\left\{z: r_{1} \leqslant|z| \leqslant r_{2}\right\}, \quad u(z)=0$ when $|z|=r_{1}, \quad u(z)=1$ when $|z|=r_{2}$.
ii) $U=\{z: \operatorname{Im} z \geqslant 0\}, \quad u(x, 0)=0$ when $x>0, \quad u(x, 0)=1$ when $x<0$.
iii) $U=\{z:|z| \leqslant 1\}, \quad u(z)=0$ when $|z|=1$ and $\operatorname{Im} z<0, \quad u(z)=1$ when $|z|=1$ and $\operatorname{Im} z>0$.
iv) $U=\{z: \operatorname{Im} z \geqslant 0\}, \quad u(x, 0)=0$ when $|x|>1, \quad u(x, 0)=1$ when $|x|<1$.
v) $U=\{z: \operatorname{Im} z \geqslant 0,-1 \leqslant \operatorname{Re} z \leqslant 1\}, \quad u(1, y)=u(-1, y)=0$ when $y>0, \quad u(x, 0)=1$ when $|x|<1$.
9. (Optional.) Let $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be a meromorphic function on the extended complex plane.
i) Show that either f is constant or $f^{-1}(a)$ is finite for each $a \in \mathbb{P}^{1}$.
ii) In particular it follows that f has finitely many poles, say $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. Let P_{i} be the principal part of f at s_{i} (so that P_{i} for $s_{i} \neq \infty$ is a rational function which has a pole at s_{i}, takes the value 0 at ∞, and is finite on \mathbb{C}, while the "principal part" at ∞ is a polynomial in z, the coordinate in the chart U_{0}, which vanishes at 0). Show that $f-\sum_{i=1}^{k} P_{i}(f)$ is constant. [Hint: If $g=f-\sum_{i=1}^{n} P_{i}(f)$ then $f\left(\mathbb{P}^{1}\right)$ is compact and so closed in \mathbb{P}^{1}, and does not contain ∞.]
[Note that this gives an "analytic proof" that any rational function has an expansion into"partial fractions".].

