Part A Linear Algebra MT 2018, Sheet 2 of 4

1. Find all the invariant subspaces of A viewed as a linear map on \mathbb{R}^2 or \mathbb{R}^3 when A is

$$\left(\begin{array}{cc} 2 & -5 \\ 1 & -2 \end{array}\right), \quad \left(\begin{array}{ccc} 5 & 1 & -1 \\ 0 & 4 & 0 \\ 1 & 1 & 3 \end{array}\right).$$

Now consider A as a linear map on \mathbb{C}^2 or \mathbb{C}^3 . Find the invariant subspaces of A. Also find invertible matrices P such that $P^{-1}AP$ is upper triangular.

- 2. Let A be an $n \times n$ matrix over \mathbb{C} . Show that trace of A is equal to the sum of the eigenvalues, counting each eigenvalue m-times where m is its algebraic multiplicity. Show that the determinant of A is the product of the eigenvalues, again counting algebraic multiplicity. [Use the upper triangular form, rather than reproducing the proof in Prelims.]
- 3. Calculate the minimal and characteristic polynomials of the following matrices.

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ -9 & -4 & 1 \\ -3 & 3 & 2 \end{array}\right), \left(\begin{array}{ccc} -2 & -3 & -3 \\ -1 & 0 & -1 \\ 0 & 1 & -1 \end{array}\right), \left(\begin{array}{ccc} -1 & -3 & 6 \\ -1 & 1 & -7 \\ 0 & 1 & -3 \end{array}\right)$$

- 4. (a) Find two 2×2 matrices over \mathbb{R} which have the same characteristic polynomial but which are not similar.
 - (b) Find two 3×3 matrices over \mathbb{R} which have the same minimal polynomial but which are not similar.
 - (c) Find two 4×4 matrices over \mathbb{R} which have the same minimal polynomial and the same characteristic polynomial, but which are not similar.
 - (d) [Optional] Find two nilpotent matrices over \mathbb{R} which have the same minimal polynomial and the same characteristic polynomial, and which have kernels of the same dimension, but which are not similar.
- 5. The Fibonacci numbers x_n are defined by $x_{n+2} = x_{n+1} + x_n$ and $x_0 = 0, x_1 = 1$. Find a formula for x_n in terms of n. [Hint: Find a two-by-two matrix A that maps (x_n, x_{n+1}) to (x_{n+1}, x_{n+2}) .]
- 6. Decide whether or not the matrix $A=\left(\begin{array}{cc} 1 & 6 \\ 3 & 5 \end{array}\right)$ can be diagonalised over the field
 - (i) \mathbb{R} ;
 - (ii) ℂ;
 - (iii) \mathbb{O} :
 - (iv) any field where 1 + 1 = 0;
 - (v) $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ with addition and multiplication modulo 7.

7. Consider the matrix

$$A = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

Is A diagonisable over \mathbb{C} , \mathbb{R} , and \mathbb{F}_3 ?

- 8. Let V be an n-dimensional complex vector space, and let $T \colon V \to V$ be a linear transformation.
 - (i) Show that for each i, $\ker T^i \subseteq \ker T^{i+1}$, and deduce that there exists a non-negative integer r such that $\ker T^r = \ker T^{r+1}$. Prove that $\ker T^r = \ker T^{r+j}$ for all $j \ge 1$. Hence, or otherwise, show that $V = \ker T^r \oplus \operatorname{Im} T^r$.
 - (ii) Suppose that the only eigenvalues of T are 0 and λ , where $\lambda \neq 0$. Let $W := \operatorname{Im} T^r$, where r is as above. Show that $T(W) \subseteq W$, and that the restriction of T to W has λ as its only eigenvalue. Let S denote the restriction of $(T \lambda I)$ to W. Show that 0 is the only eigenvalue of S. By applying (i) with S, W in place of T, V, show that $S^m = 0$ for some M.
- 9. Let $T: V \to V$ be a linear transformation and suppose that for some $v \in V$, $T^k(v) = 0$ but $T^{k-1}(v) \neq 0$. Prove that the set $\mathcal{B} = \{T^{k-1}(v), \dots, T(v), v\}$ is linearly independent, and its span U is T-invariant. Find the matrix of T restricted to U relative to the basis \mathcal{B} .
- 10. Let $T: V \to V$ be linear and V be finite dimensional. Assume $m_T(x) = x^m$. Prove that

$$0 \subsetneqq \ker(T) \subsetneqq \ker(T^2) \subsetneqq \cdots \subsetneqq \ker(T^{m-1}) \subsetneqq \ker(T^m) = V.$$

and that these inclusions are indeed strict.