Part A Fluid Dynamics and Waves: Sheet 4

1. The free surface of a fluid moving in two dimensions is given parametrically by
r(z,t) = (z,n(z,t)). Show that a unit normal to the surface is
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and deduce that the velocity of the surface normal to itself is given by
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Hence show that the kinematic condition that the wvelocity of the fluid normal to
the surface equals the velocity of the surface normal to itself leads to the boundary
condition
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Deduce that fluid particles on the free surface stay on the free surface.

2. Consider small two-dimensional water waves on the free surface of an incompressible
irrotational fluid with a velocity potential ¢(x,y, t), which satisfies Laplaces equation.
Suppose that the free surface has equation y = n(x,t), the water has depth h, and the
bottom is at y = —h. Show that we can choose ¢ such that the boundary conditions
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are satisfied on the free surface y = 1. Show that, when the problem is linearised by
neglecting quadratic terms, these boundary conditions are simplified to
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on y = 0. Show that travelling harmonic waves, with 7= Acos(kx — wt) and

¢ = f(y)sin(kx — wt), are possible provided w? = gk tanh(kh). Find and sketch the
particle paths.

3. Inviscid incompressible fluid of density ps occupies the region y > 0 and lies vertically
above a similar fluid of greater density p; in ¥ < 0. Small amplitude waves perturb
the interface between the fluids so that its equation becomes y = n(z,t). Assuming n
and the fluid velocities to be small, derive three boundary conditions relating 1 and
the velocity potentials ¢q, ¢ of the two fluids at y = 0. If n(x,t) = Acos(kx — wt),

with & > 0, show that
w? = (_p1 — pQ) gk.
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4. Suppose now that there is a surface tension 7' between the two fluids of question 3
and that p; < ps. Derive the linearised boundary conditions to be satisfied at y = 0.
Show that the frequency w is now related to the wavenumber k by the equation
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Deduce that the waves are unstable if their wavelength A exceeds a critical value
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5. Water flows steadily with speed U over a corrugated bed y = —h + ¢ cos(kz), where
e < h, so that there is a time-independent disturbance n(z) to the free surface, which
would be at y = 0 but for the corrugations. By writing the velocity components as
d¢ 9¢
u=U+ —, V==,
ox oy
where ¢(x,y) denotes the velocity potential of the disturbance to the uniform flow,
show that the linearized boundary conditions are
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and hence find n(x). Deduce that crests on the free surface occur immediately above
troughs on the bed if

U? < % tanh(kh),

but that crests on the surface overlie the crests on the bed if this inequality is reversed.



