
Part A Fluid Dynamics and Waves: Sheet 4

1. The free surface of a fluid moving in two dimensions is given parametrically by
r(x, t) =

(

x, η(x, t)
)

. Show that a unit normal to the surface is

n =
1

√

1 + η2
x

(−ηx, 1) ,

and deduce that the velocity of the surface normal to itself is given by

∂r

∂t
· n =

ηt
√

1 + η2
x

.

Hence show that the kinematic condition that the velocity of the fluid normal to

the surface equals the velocity of the surface normal to itself leads to the boundary
condition

v =
∂η

∂t
+ u

∂η

∂x
on y = η.

Deduce that fluid particles on the free surface stay on the free surface.

2. Consider small two-dimensional water waves on the free surface of an incompressible
irrotational fluid with a velocity potential φ(x, y, t), which satisfies Laplaces equation.
Suppose that the free surface has equation y = η(x, t), the water has depth h, and the
bottom is at y = −h. Show that we can choose φ such that the boundary conditions

∂φ

∂y
=

∂η

∂t
+

∂φ

∂x

∂η

∂x
,

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0

are satisfied on the free surface y = η. Show that, when the problem is linearised by
neglecting quadratic terms, these boundary conditions are simplified to

∂φ

∂y
=

∂η

∂t
,

∂φ

∂t
+ gη = 0

on y = 0. Show that travelling harmonic waves, with η = A cos(kx− ωt) and
φ = f(y) sin(kx− ωt), are possible provided ω2 = gk tanh(kh). Find and sketch the
particle paths.

3. Inviscid incompressible fluid of density ρ2 occupies the region y > 0 and lies vertically
above a similar fluid of greater density ρ1 in y < 0. Small amplitude waves perturb
the interface between the fluids so that its equation becomes y = η(x, t). Assuming η

and the fluid velocities to be small, derive three boundary conditions relating η and
the velocity potentials φ1, φ2 of the two fluids at y = 0. If η(x, t) = A cos(kx− ωt),
with k > 0, show that

ω2 =

(

ρ1 − ρ2

ρ1 + ρ2

)

gk.



4. Suppose now that there is a surface tension T between the two fluids of question 3
and that ρ1 < ρ2. Derive the linearised boundary conditions to be satisfied at y = 0.
Show that the frequency ω is now related to the wavenumber k by the equation

(ρ1 + ρ2)ω
2 = k

[

Tk2 − (ρ2 − ρ1) g
]

.

Deduce that the waves are unstable if their wavelength λ exceeds a critical value

λc = 2π

√

T

(ρ2 − ρ1) g
.

5. Water flows steadily with speed U over a corrugated bed y = −h+ ε cos(kx), where
ε ≪ h, so that there is a time-independent disturbance η(x) to the free surface, which
would be at y = 0 but for the corrugations. By writing the velocity components as

u = U +
∂φ

∂x
, v =

∂φ

∂y
,

where φ(x, y) denotes the velocity potential of the disturbance to the uniform flow,
show that the linearized boundary conditions are

∂φ

∂y
= U

dη

dx
, U

∂φ

∂x
+ gη = 0 on y = 0,

∂φ

∂y
= −Ukε sin(kx) on y = −h,

and hence find η(x). Deduce that crests on the free surface occur immediately above
troughs on the bed if

U2 <
g

k
tanh(kh),

but that crests on the surface overlie the crests on the bed if this inequality is reversed.


