Part A Statistics

HT 2019

Problem Sheet 4

- **1.** Suppose that X_1, \ldots, X_n each have a geometric distribution with probability mass function $f(x | \theta) = (1 \theta)^x \theta$ for $x = 0, 1, \ldots$. Suppose that the prior for θ is a Beta(a, b) density. Find the posterior distribution of θ .
- **2.** Let $\theta > 0$ be an unknown parameter and let c > 0 be a known constant. Conditional on θ , suppose X_1, \ldots, X_n are independent each with probability density function

$$f(x|\theta) = \theta c^{\theta} x^{-(\theta+1)}, \quad x \ge c$$

and suppose the prior for θ is a Gamma (α, β) density. Find the posterior distribution of θ .

3. Let $r \ge 1$ be a known integer and let $\theta \in [0, 1]$ be an unknown parameter. The negative binomial distribution with index r and parameter θ has probability mass function

$$f(x \mid \theta) = \binom{x+r-1}{x} (1-\theta)^x \theta^r \quad \text{for } x = 0, 1, \dots$$

Let θ have a Beta(a, b) prior density and suppose, given θ , that X_1, \ldots, X_n are independent each with the above negative binomial distribution.

- (a) Show that the posterior density is also a Beta density.
- (b) Explain how to construct a $100(1 \alpha)\%$ equal-tailed credible interval for θ . Will this interval be a highest posterior density interval?
- **4.** Suppose that X has a $N(\theta, \phi)$ distribution, where ϕ is known, Suppose also that the prior distribution for θ is $N(\theta_0, \phi_0)$, where θ_0 and ϕ_0 are known.
 - (a) Find the posterior distribution of θ given X = x.
 - (b) Show that the posterior mean of θ always lies between the prior mean and the observed value x.
 - (c) Construct a $100(1-\alpha)\%$ highest posterior density interval for θ .
 - (d) Let $\phi = 2$, $\theta_0 = 0$ and $\phi_0 = 2$.
 - (i) Suppose the observed value is x = 4. What are the mean and variance of the resulting posterior distribution? Sketch the prior, likelihood, and posterior on a single set of coordinate axes.
 - (ii) Repeat (i) assuming $\phi_0 = 18$. Explain any resulting differences. Which of these two priors would likely have more appeal for a frequentist statistician?
- 5. Let X be the number of heads when a coin with probability θ of heads is flipped n times.
 - (a) When the prior is $\pi(\theta)$, the prior predictive distribution for X (the predictive distribution before observing any data) is given by

$$P(X=k) = \int_0^1 P(X=k|\theta)\pi(\theta) \, d\theta, \quad k=0,1,\ldots,n.$$

Find the prior predictive distribution when $\pi(\theta)$ is uniform on (0, 1).

(b) Suppose you assign a Beta(a, b) prior for θ , and then you observe x heads out of n flips. Show that the posterior mean of θ is always lies between your prior mean, a/(a+b), and the observed relative frequency of heads, x/n.

- (c) Show that, if the prior distribution on θ is uniform, then the posterior variance is always less than the prior variance.
- (d) Give an example of a Beta(a, b) prior distribution and values of x, n for which the posterior variance is larger than the prior variance. (Try x = n = 1.)
- **6.** A coin, with probability θ of heads, is flipped n times and r heads are observed.
 - (a) If the prior for θ is a uniform distribution on (0, 1), what is the probability that the next flip is a head?
 - (b) Can you generalise to the case where θ has a Beta(a, b) prior and where we wish to find the probability of getting k heads from m further flips?
- **7.** (a) Let $X \sim N(\theta, \sigma_0^2)$, where σ_0^2 is known. Find the Jeffreys' prior for θ .
 - (b) Let $X \sim N(\mu_0, \sigma^2)$, where μ_0 is known. Find the Jeffreys' prior for σ .
 - (c) Let X be Poisson with parameter λ . Find the Jeffreys' prior for λ . Check that the posterior distribution of θ given X = x is proper, but that the Jeffreys' prior is not.
- 8. Suppose X is the number of successes in a binomial experiment with n trials and probability of success θ . Either $H_0: \theta = \frac{1}{2}$ or $H_1: \theta = \frac{3}{4}$ is true. Show that the posterior probability that H_0 is true is greater than the prior probability for H_0 if and only if

 $x \log 3 < n \log 2.$

9. Let X ~ Binomial(n, θ), where the prior for θ is uniform on (0, 1). Suppose that we wish to compare the hypotheses H₀: θ ≤ ¹/₂ and H₁: θ > ¹/₂. What are the prior odds of H₀ relative to H₁?

Find an expression for the posterior odds of H_0 relative to H_1 .

If we observe X = n, find the Bayes factor B of H_0 relative to H_1 .

Check that $B \to 0$ as $n \to \infty$. Why is this expected?

10. Suppose we have a random sample X_1, \ldots, X_n from a Poisson distribution with mean θ . Suppose we wish to test the hypothesis $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ and that, under H_1 , the prior distribution $\pi(\theta|H_1)$ for θ is given by

$$\pi(\theta|H_1) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta\theta}, \quad \theta > 0.$$

Calculate the Bayes factor of H_0 relative to H_1 .

When n = 6, $\sum x_i = 19$, $\theta_0 = 2$, find the numerical value of the Bayes factor (i) when $\alpha = 4$ and $\beta = \frac{2}{3}$, and (ii) when $\alpha = 36$ and $\beta = 6$. Compare and interpret the values of the Bayes factor in cases (i) and (ii).