Numerical Analysis

Raphael Hauser with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

イロトメ 御 トメミトメミト ニミーのんび

Notation: $\Pi_n = \{$ real polynomials of degree $\leq n\}$

Notation: $\Pi_n = \{$ real polynomials of degree $\leq n\}$

Setup: given data f_i at distinct x_i , $i=0,1,\ldots,n$, with

 $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$? Such a polynomial is said to **interpolate** the data.

2 / 15

KO K K (D K L E K L E K V K K K K K K K K K K

Notation: $\Pi_n = \{$ real polynomials of degree $\leq n\}$

Setup: given data f_i at distinct x_i , $i=0,1,\ldots,n$, with

 $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$? Such a polynomial is said to interpolate the data.

Note: when $n \leq 1$, an interpolating polynomial $p \in \Pi_n$ (trivially) exists.

2 / 15

KO K K (D K L E K L E K V K K K K K K K K K K

Notation: $\Pi_n = \{$ real polynomials of degree $\leq n\}$

Setup: given data f_i at distinct x_i , $i=0,1,\ldots,n$, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$? Such a polynomial is said to **interpolate** the data.

Note: when $n \leq 1$, an interpolating polynomial $p \in \Pi_n$ (trivially) exists.

More generally, we have the following result.

Theorem

Let $n \geq 0$. Then, $\exists p_n \in \Pi_n$ such that $p_n(x_i) = f_i$ for $i = 0, 1, \ldots, n$.

2 / 15

K ロ X (日) X 제공 X 제공 X - 공 : X 이익(N)

Proof. To avoid trivialities, suppose $n \geq 1$.

KOX KOX KEX KEX E YORA

K ロ > K 레 > K 로 > K 로 > - <u>로 - 9 A C</u>

Then

$$
L_{n,k}(x_i) = 0 \text{ for } i = 0, \ldots, k-1, k+1, \ldots, n \text{ and } L_{n,k}(x_k) = 1.
$$

Then

$$
L_{n,k}(x_i) = 0 \text{ for } i = 0, \ldots, k-1, k+1, \ldots, n \text{ and } L_{n,k}(x_k) = 1.
$$

So now define

$$
p_n(x) = \sum_{k=0}^n f_k L_{n,k}(x) \in \Pi_n.
$$
 (1.2)

(ロ) (<mark>리</mark>) (동) (동) - 동 - 990

Then

$$
L_{n,k}(x_i) = 0 \text{ for } i = 0, \ldots, k-1, k+1, \ldots, n \text{ and } L_{n,k}(x_k) = 1.
$$

So now define

$$
p_n(x) = \sum_{k=0}^n f_k L_{n,k}(x) \in \Pi_n.
$$
 (1.2)

Hence

$$
p_n(x_i) = \sum_{k=0}^n f_k L_{n,k}(x_i) = f_i \text{ for } i = 0, 1, \dots, n.
$$

4 / 15

 Ω

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials p_n , $q_n \in \Pi_n$.

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials p_n , $q_n \in \Pi_n$.

Then, their difference $d_n = p_n - q_n \in \Pi_n$ satisfies $d_n(x_k) = 0$ for

 $k = 0, 1, \ldots, n$. i.e., d_n is a polynomial of degree at most n but has at least $n + 1$ distinct roots.

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials p_n , $q_n \in \Pi_n$.

Then, their difference $d_n = p_n - q_n \in \Pi_n$ satisfies $d_n(x_k) = 0$ for

 $k = 0, 1, \ldots, n$. i.e., d_n is a polynomial of degree at most n but has at least $n+1$ distinct roots.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글

Algebra $\implies d_n \equiv 0 \implies p_n = q_n$.

Matlab:

% matlab

>> help lagrange LAGRANGE Plots the Lagrange polynomial interpolant for the given DATA at the given KNOTS >> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);

KO K KØ K K E K K E K DA OKO

KOX KOX KEX KEX E 1990 5 / 15

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 900

 \equiv 990 $6/15$

メロト メタト メミト メミト

Data from an underlying smooth function

Suppose that $f(x)$ has at least $n + 1$ smooth derivatives in the interval (x_0, x_n) . Let $f_k = f(x_k)$ for $k = 0, 1, ..., n$, and let p_n be the Lagrange interpolating polynomial for the data (x_k, f_k) , $k = 0, 1, \ldots, n$.

Error: how large can the error $f(x) - p_n(x)$ be on the interval $[x_0, x_n]$?

7 / 15

KO K K (D K L E K L E K V K K K K K K K K K K

Theorem

For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$
e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},
$$

◆ ロ ▶ → *団* ▶ → 불 ▶ → 불 ▶ │ 불 │

 299

where $f^{(n+1)}$ is the $n+1$ -st derivative of f.

Theorem

For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$
e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},
$$

where $f^{(n+1)}$ is the $n+1$ -st derivative of f.

Proof. Trivial for $x = x_k$, $k \in \{0, 1, \ldots, n\}$, as $e(x) = 0$ by construction. So suppose $x \neq x_k$.

8 / 15

 QQ

◆ ロ ▶ → *団* ▶ → 불 ▶ → 불 ▶ │ 불 │

Theorem

For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$
e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},
$$

where $f^{(n+1)}$ is the $n+1$ -st derivative of f.

Proof. Trivial for $x = x_k$, $k \in \{0, 1, \ldots, n\}$, as $e(x) = 0$ by construction. So suppose $x \neq x_k$. Let

$$
\phi(t) \stackrel{\text{def}}{=} e(t) - \frac{e(x)}{\pi(x)}\pi(t),
$$

where

$$
\pi(t) \stackrel{\text{def}}{=} (t - x_0)(t - x_1) \cdots (t - x_n)
$$
\n
$$
= t^{n+1} - \left(\sum_{i=0}^n x_i\right) t^n + \cdots (-1)^{n+1} x_0 x_1 \cdots x_n
$$
\n
$$
\in \Pi_{n+1}.
$$

8 / 15

 $\begin{array}{rcl} \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 &$

 $\implies \phi'$ vanishes at $n+1$ points ξ_0,\ldots,ξ_n between these points.

 $\implies \phi'$ vanishes at $n+1$ points ξ_0,\ldots,ξ_n between these points.

 $\implies \phi''$ vanishes at n points between these new points, and so on until

- $\implies \phi'$ vanishes at $n+1$ points ξ_0,\ldots,ξ_n between these points.
- $\implies \phi''$ vanishes at n points between these new points, and so on until $\implies \phi^{(n+1)}$ vanishes at an (unknown) point $\xi = \xi(x)$ in $(x_0,x_n).$

9 / 15

KO K KØR K ER K ER K DA Ø

- $\implies \phi'$ vanishes at $n+1$ points ξ_0,\ldots,ξ_n between these points.
- $\implies \phi''$ vanishes at n points between these new points, and so on until $\implies \phi^{(n+1)}$ vanishes at an (unknown) point $\xi = \xi(x)$ in $(x_0,x_n).$ But

$$
\phi^{(n+1)}(t) = e^{(n+1)}(t) - \frac{e(x)}{\pi(x)} \pi^{(n+1)}(t) = f^{(n+1)}(t) - \frac{e(x)}{\pi(x)} (n+1)!
$$

since $p_n^{(n+1)}(t)\equiv 0$ and because $\pi(t)$ is a monic polynomial of degree $n+1.$

- $\implies \phi'$ vanishes at $n+1$ points ξ_0,\ldots,ξ_n between these points.
- $\implies \phi''$ vanishes at n points between these new points, and so on until $\implies \phi^{(n+1)}$ vanishes at an (unknown) point $\xi = \xi(x)$ in $(x_0,x_n).$ But

$$
\phi^{(n+1)}(t) = e^{(n+1)}(t) - \frac{e(x)}{\pi(x)} \pi^{(n+1)}(t) = f^{(n+1)}(t) - \frac{e(x)}{\pi(x)} (n+1)!
$$

since $p_n^{(n+1)}(t)\equiv 0$ and because $\pi(t)$ is a monic polynomial of degree $n+1.$ The result follows immediately from this identity since $\phi^{(n+1)}(\xi)=0.$ $\qquad \Box$

9 / 15

Example: $f(x) = \log(1 + x)$ on [0, 1]. Here,

$$
|f^{(n+1)}(\xi)| = n!/(1+\xi)^{n+1} < n!
$$

on $(0, 1)$. So

 $|e(x)| < |\pi(x)|n!/(n+1)! \leq 1/(n+1)$ since $|x-x_k| \leq 1$ for each $x, x_k, k = 0, 1, \ldots, n$, in $[0, 1] \implies |\pi(x)| \leq 1$. This is probably pessimistic for many x, e.g. for $x=\frac{1}{2}$ $\frac{1}{2}$, $\pi(\frac{1}{2})$ $(\frac{1}{2}) \leq 2^{-(n+1)}$ as $|\frac{1}{2} - x_k| \leq \frac{1}{2}.$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK

This example shows the important fact that the error can be large at the end points of the interval.

There is a famous example due to Runge, where the error from the interpolating polynomial approximation to

$$
f(x) = (1 + x^2)^{-1}
$$

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결 ○

for $n + 1$ equally-spaced points on $[-5, 5]$ diverges near ± 5 as $n \to \infty$.

Matlab: try runge from the website.