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Notation: II,, = {real polynomials of degree < n}

Setup: given data f; at distinct x;, i =0,1,...,n, with
xo < 1 < -+ < xp, can we find a polynomial p such that p(z;) = f;?
Such a polynomial is said to interpolate the data.

Note: when n <1, an interpolating polynomial p € II,, (trivially) exists.

More generally, we have the following result.

Theorem
Let n > 0. Then, 3p,, € I1,, such that p,(x;) = f; fori =0,1,...,n.
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Then

Lpi(z;)) =0 for i=0,...,k—1,k+1,...,n and L, ;(zx) = 1.

So now define

pu(®) = fiLn k(@) €y (1.2)
k=0
Hence .
pu(i) = Y fuLng(xi) = fi for i =0,1,....n. O
k=0
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The polynomial (1.2) is called the Lagrange interpolating polynomial.

Theorem
The interpolating polynomial of degree < n is unique.

Proof. Consider two interpolating polynomials p,, g, € II,.

Then, their difference d,, = p,, — ¢, € 11, satisfies d,,(zx) = 0 for
k=0,1,...,n. i.e., dy is a polynomial of degree at most n but has at least
n + 1 distinct roots.

Algebra — d,, =0 = p, = ¢n. U



Matlab:

% matlab
>> help lagrange
LAGRANGE Plots the Lagrange polynomial interpolant for the
given DATA at the given KNOTS
>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]1);
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>> lagrange([0,2.3,3.5,3.6,4.7,5.9]1,[0,0,0,1,1,1]);
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Data from an underlying smooth function

Suppose that f(z) has at least n + 1 smooth derivatives in the interval
(xo,xy). Let fr = f(xy) for k=0,1,...,n, and let p, be the Lagrange
interpolating polynomial for the data (z, fx), k =0,1,...,n.

Error: how large can the error f(z) — p,(z) be on the interval [zg, x,]?



Theorem

For every x € [xg, z,] there exists £ = £(x) € (xg,xy) such that

()

o(w) ¥ (@) = pale) = (@ = z0)(w = 21) -+ (o = 20) T

where f(" 1) js the n + 1-st derivative of f.
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y £ ()
e(@) € J(@) = pn(e) = (@ = o) (@ — 1)+ (@ = 2)

where f(" 1) js the n + 1-st derivative of f.
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Theorem
For every x € [xg, z,] there exists £ = £(x) € (xg,xy) such that

F0(e)

def
e(x) = f(z) — pn(z) = (x —xo)(x — 1) -+ (. — xn)ma

where f(" 1) js the n + 1-st derivative of f.

Proof. Trivial for z =z, k € {0,1,...,n}, as e(x) = 0 by construction.

So suppose x # xj. Let

where
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Now note that ¢ vanishes at n + 2 points z and z, k=0,1,...,n.
= ¢ vanishes at n + 1 points &g, ..., &, between these points.

= ¢" vanishes at n points between these new points, and so on until
— ¢(™*1) vanishes at an (unknown) point £ = &(x) in (g, y,).

But

$ ) = 1) — SR (0 = 1) ~ Sk 1)

since p,(lnﬂ)(t) = 0 and because 7(t) is a monic polynomial of degree n + 1.

The result follows immediately from this identity since ¢("+1)(§) = 0. (]



Example: f(x) =log(1l+ z) on [0,1]. Here,

D) = nl/(1+ &)™ < nl
on (0,1). So

le(z)| < |m(z)|n!/(n+ 1! <1/(n+1)
since |z — x| < 1 for each x, z, k=0,1,...,n,in [0,1] = |7(z)| < 1.

This is probably pessimistic for many z, e.g. for x = % ’/T(%) < 2=(n+1) 3¢

|% — x| < %

10 / 15



This example shows the important fact that the error can be large at the
end points of the interval.

There is a famous example due to Runge, where the error from the
interpolating polynomial approximation to

fla)=(1+a?)™

for n + 1 equally-spaced points on [—5, 5] diverges near +5 as n — co.

Matlab: try runge from the website.
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