Numerical Analysis

Raphael Hauser with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

◆□ > ◆□ > ◆臣 > ◆臣 >

= 990

Notation: $\Pi_n = \{ \text{real polynomials of degree} \le n \}$

Notation: $\Pi_n = \{ \text{real polynomials of degree} \le n \}$

Setup: given data f_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$? Such a polynomial is said to **interpolate** the data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Notation: $\Pi_n = \{ \text{real polynomials of degree} \le n \}$

Setup: given data f_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$? Such a polynomial is said to **interpolate** the data.

Note: when $n \leq 1$, an interpolating polynomial $p \in \Pi_n$ (trivially) exists.

Notation: $\Pi_n = \{ \text{real polynomials of degree} \le n \}$

Setup: given data f_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$? Such a polynomial is said to **interpolate** the data.

Note: when $n \leq 1$, an interpolating polynomial $p \in \Pi_n$ (trivially) exists.

More generally, we have the following result.

Theorem

Let $n \ge 0$. Then, $\exists p_n \in \Pi_n$ such that $p_n(x_i) = f_i$ for i = 0, 1, ..., n.

(日) (同) (E) (E) (E) (0)(0)

Proof. To avoid trivialities, suppose $n \ge 1$.

・ロ・・西・・ヨ・・ヨ・ ヨー うへぐ

Then

$$L_{n,k}(x_i) = 0$$
 for $i = 0, \dots, k - 1, k + 1, \dots, n$ and $L_{n,k}(x_k) = 1$.

・ロット・「山・・山・・山・・山・

Then

$$L_{n,k}(x_i) = 0$$
 for $i = 0, \dots, k - 1, k + 1, \dots, n$ and $L_{n,k}(x_k) = 1$.

So now define

$$p_n(x) = \sum_{k=0}^n f_k L_{n,k}(x) \in \Pi_n.$$
 (1.2)

・ロ・・ 白・ ・ 川・ ・ 山・ ・ 日・

Then

$$L_{n,k}(x_i) = 0$$
 for $i = 0, \dots, k - 1, k + 1, \dots, n$ and $L_{n,k}(x_k) = 1.$

So now define

$$p_n(x) = \sum_{k=0}^n f_k L_{n,k}(x) \in \Pi_n.$$
 (1.2)

Hence

$$p_n(x_i) = \sum_{k=0}^n f_k L_{n,k}(x_i) = f_i \text{ for } i = 0, 1, \dots, n.$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials p_n , $q_n \in \Pi_n$.

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials p_n , $q_n \in \Pi_n$.

Then, their difference $d_n = p_n - q_n \in \Pi_n$ satisfies $d_n(x_k) = 0$ for

k = 0, 1, ..., n. i.e., d_n is a polynomial of degree at most n but has at least n + 1 distinct roots.

Theorem

The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials p_n , $q_n \in \Pi_n$.

Then, their difference $d_n = p_n - q_n \in \Pi_n$ satisfies $d_n(x_k) = 0$ for

k = 0, 1, ..., n. i.e., d_n is a polynomial of degree at most n but has at least n + 1 distinct roots.

(日) (周) (日) (日) (日)

 $\mathsf{Algebra} \implies d_n \equiv 0 \implies p_n = q_n.$

Matlab:

- % matlab
- >> help lagrange

LAGRANGE Plots the Lagrange polynomial interpolant for the given DATA at the given KNOTS

・ロト ・日 ・ モー・ モー・ うへぐ

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);

◆□ → ◆□ → ◆ 三 → ◆ 三 → つへぐ

5 / 15

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);

・ロト・4回ト・モート・モート ヨーのへの

≣ ৩৭ে 6/15

◆□→ ◆□→ ◆国→ ◆国→

Data from an underlying smooth function

Suppose that f(x) has at least n + 1 smooth derivatives in the interval (x_0, x_n) . Let $f_k = f(x_k)$ for k = 0, 1, ..., n, and let p_n be the Lagrange interpolating polynomial for the data (x_k, f_k) , k = 0, 1, ..., n.

Error: how large can the error $f(x) - p_n(x)$ be on the interval $[x_0, x_n]$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem

For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

where $f^{(n+1)}$ is the n + 1-st derivative of f.

Theorem

For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

where $f^{(n+1)}$ is the n + 1-st derivative of f.

Proof. Trivial for $x = x_k$, $k \in \{0, 1, ..., n\}$, as e(x) = 0 by construction. So suppose $x \neq x_k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

/ 15

Theorem

For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

where $f^{(n+1)}$ is the n + 1-st derivative of f.

Proof. Trivial for $x = x_k$, $k \in \{0, 1, ..., n\}$, as e(x) = 0 by construction. So suppose $x \neq x_k$. Let

$$\phi(t) \stackrel{\text{def}}{=} e(t) - \frac{e(x)}{\pi(x)} \pi(t),$$

where

$$\pi(t) \stackrel{\text{def}}{=} (t - x_0)(t - x_1) \cdots (t - x_n)$$

$$= t^{n+1} - \left(\sum_{i=0}^n x_i\right) t^n + \cdots (-1)^{n+1} x_0 x_1 \cdots x_n$$

$$\in \Pi_{n+1}.$$

(ロ)

 $\implies \phi'$ vanishes at n+1 points ξ_0, \ldots, ξ_n between these points.

 $\implies \phi'$ vanishes at n+1 points ξ_0, \ldots, ξ_n between these points.

 $\implies \phi''$ vanishes at n points between these new points, and so on until

- $\implies \phi'$ vanishes at n+1 points ξ_0, \ldots, ξ_n between these points.
- $\implies \phi''$ vanishes at n points between these new points, and so on until $\implies \phi^{(n+1)}$ vanishes at an (unknown) point $\xi = \xi(x)$ in (x_0, x_n) .

・ロ・・一部・・ヨ・・ヨ・ ・ ヨ・ ・ のへで

Now note that ϕ vanishes at n + 2 points x and x_k , k = 0, 1, ..., n. $\implies \phi'$ vanishes at n + 1 points $\xi_0, ..., \xi_n$ between these points. $\implies \phi''$ vanishes at n points between these new points, and so on until $\implies \phi^{(n+1)}$ vanishes at an (unknown) point $\xi = \xi(x)$ in (x_0, x_n) . But

$$\phi^{(n+1)}(t) = e^{(n+1)}(t) - \frac{e(x)}{\pi(x)}\pi^{(n+1)}(t) = f^{(n+1)}(t) - \frac{e(x)}{\pi(x)}(n+1)!$$

since $p_n^{(n+1)}(t) \equiv 0$ and because $\pi(t)$ is a monic polynomial of degree n+1.

Now note that ϕ vanishes at n + 2 points x and x_k , $k = 0, 1, \dots, n$. $\implies \phi'$ vanishes at n + 1 points ξ_0, \dots, ξ_n between these points. $\implies \phi''$ vanishes at n points between these new points, and so on until $\implies \phi^{(n+1)}$ vanishes at an (unknown) point $\xi = \xi(x)$ in (x_0, x_n) .

But

$$\phi^{(n+1)}(t) = e^{(n+1)}(t) - \frac{e(x)}{\pi(x)}\pi^{(n+1)}(t) = f^{(n+1)}(t) - \frac{e(x)}{\pi(x)}(n+1)!$$

since $p_n^{(n+1)}(t) \equiv 0$ and because $\pi(t)$ is a monic polynomial of degree n+1. The result follows immediately from this identity since $\phi^{(n+1)}(\xi) = 0$. \Box

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めへぐ

Example: $f(x) = \log(1+x)$ on [0,1]. Here,

$$|f^{(n+1)}(\xi)| = n!/(1+\xi)^{n+1} < n!$$

on (0, 1). So

 $|e(x)| < |\pi(x)|n!/(n+1)! \le 1/(n+1)$ since $|x - x_k| \le 1$ for each $x, x_k, k = 0, 1, ..., n$, in $[0, 1] \implies |\pi(x)| \le 1$. This is probably pessimistic for many x, e.g. for $x = \frac{1}{2}, \pi(\frac{1}{2}) \le 2^{-(n+1)}$ as $|\frac{1}{2} - x_k| \le \frac{1}{2}$.

10 / 15

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへぐ

This example shows the important fact that the error can be large at the end points of the interval.

There is a famous example due to Runge, where the error from the interpolating polynomial approximation to

$$f(x) = (1 + x^2)^{-1}$$

・ロト ・通 ト ・ ヨト ・ ヨト … ヨー

for n+1 equally-spaced points on [-5,5] diverges near ± 5 as $n \to \infty$.

Matlab: try runge from the website.