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Lagrange interpolation

Notation: Πn = {real polynomials of degree ≤ n}

Setup: given data fi at distinct xi, i = 0, 1, . . . , n, with

x0 < x1 < · · · < xn, can we find a polynomial p such that p(xi) = fi?

Such a polynomial is said to interpolate the data.

Note: when n ≤ 1, an interpolating polynomial p ∈ Πn (trivially) exists.

More generally, we have the following result.

Theorem

Let n ≥ 0. Then, ∃pn ∈ Πn such that pn(xi) = fi for i = 0, 1, . . . , n.
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Proof. To avoid trivialities, suppose n ≥ 1.

Consider, for k = 0, 1, . . . , n,

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1.1)

Then

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =

n∑
k=0

fkLn,k(x) ∈ Πn. (1.2)

Hence

pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. �

3 / 15



Proof. To avoid trivialities, suppose n ≥ 1. Consider, for k = 0, 1, . . . , n,

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1.1)

Then

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =

n∑
k=0

fkLn,k(x) ∈ Πn. (1.2)

Hence

pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. �

3 / 15



Proof. To avoid trivialities, suppose n ≥ 1. Consider, for k = 0, 1, . . . , n,

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1.1)

Then

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =

n∑
k=0

fkLn,k(x) ∈ Πn. (1.2)

Hence

pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. �

3 / 15



Proof. To avoid trivialities, suppose n ≥ 1. Consider, for k = 0, 1, . . . , n,

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1.1)

Then

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =

n∑
k=0

fkLn,k(x) ∈ Πn. (1.2)

Hence

pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. �

3 / 15



Proof. To avoid trivialities, suppose n ≥ 1. Consider, for k = 0, 1, . . . , n,

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1.1)

Then

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =

n∑
k=0

fkLn,k(x) ∈ Πn. (1.2)

Hence

pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. �

3 / 15



The polynomial (1.2) is called the Lagrange interpolating polynomial.

Theorem

The interpolating polynomial of degree ≤ n is unique.

Proof. Consider two interpolating polynomials pn, qn ∈ Πn.

Then, their difference dn = pn − qn ∈ Πn satisfies dn(xk) = 0 for

k = 0, 1, . . . , n. i.e., dn is a polynomial of degree at most n but has at least

n+ 1 distinct roots.

Algebra =⇒ dn ≡ 0 =⇒ pn = qn. �
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Matlab:

% matlab

>> help lagrange

LAGRANGE Plots the Lagrange polynomial interpolant for the

given DATA at the given KNOTS

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);
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>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);
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Data from an underlying smooth function

Suppose that f(x) has at least n+ 1 smooth derivatives in the interval

(x0, xn). Let fk = f(xk) for k = 0, 1, . . . , n, and let pn be the Lagrange

interpolating polynomial for the data (xk, fk), k = 0, 1, . . . , n.

Error: how large can the error f(x)− pn(x) be on the interval [x0, xn]?
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Theorem

For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

e(x)
def
= f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)

f (n+1)(ξ)

(n+ 1)!
,

where f (n+1) is the n+ 1-st derivative of f .

Proof. Trivial for x = xk, k ∈ {0, 1, . . . , n}, as e(x) = 0 by construction.

So suppose x 6= xk. Let

φ(t)
def
= e(t)− e(x)

π(x)
π(t),

where

π(t)
def
= (t− x0)(t− x1) · · · (t− xn)

= tn+1 −

(
n∑

i=0

xi

)
tn + · · · (−1)n+1x0x1 · · ·xn

∈ Πn+1.
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Now note that φ vanishes at n+ 2 points x and xk, k = 0, 1, . . . , n.

=⇒ φ′ vanishes at n+ 1 points ξ0, . . . , ξn between these points.

=⇒ φ′′ vanishes at n points between these new points, and so on until

=⇒ φ(n+1) vanishes at an (unknown) point ξ = ξ(x) in (x0, xn).

But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+ 1.

The result follows immediately from this identity since φ(n+1)(ξ) = 0. �

9 / 15



Now note that φ vanishes at n+ 2 points x and xk, k = 0, 1, . . . , n.

=⇒ φ′ vanishes at n+ 1 points ξ0, . . . , ξn between these points.

=⇒ φ′′ vanishes at n points between these new points, and so on until

=⇒ φ(n+1) vanishes at an (unknown) point ξ = ξ(x) in (x0, xn).

But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+ 1.

The result follows immediately from this identity since φ(n+1)(ξ) = 0. �

9 / 15



Now note that φ vanishes at n+ 2 points x and xk, k = 0, 1, . . . , n.

=⇒ φ′ vanishes at n+ 1 points ξ0, . . . , ξn between these points.

=⇒ φ′′ vanishes at n points between these new points, and so on until

=⇒ φ(n+1) vanishes at an (unknown) point ξ = ξ(x) in (x0, xn).

But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+ 1.

The result follows immediately from this identity since φ(n+1)(ξ) = 0. �

9 / 15



Now note that φ vanishes at n+ 2 points x and xk, k = 0, 1, . . . , n.

=⇒ φ′ vanishes at n+ 1 points ξ0, . . . , ξn between these points.

=⇒ φ′′ vanishes at n points between these new points, and so on until

=⇒ φ(n+1) vanishes at an (unknown) point ξ = ξ(x) in (x0, xn).

But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+ 1.

The result follows immediately from this identity since φ(n+1)(ξ) = 0. �

9 / 15



Now note that φ vanishes at n+ 2 points x and xk, k = 0, 1, . . . , n.

=⇒ φ′ vanishes at n+ 1 points ξ0, . . . , ξn between these points.

=⇒ φ′′ vanishes at n points between these new points, and so on until

=⇒ φ(n+1) vanishes at an (unknown) point ξ = ξ(x) in (x0, xn).

But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+ 1.

The result follows immediately from this identity since φ(n+1)(ξ) = 0. �

9 / 15



Now note that φ vanishes at n+ 2 points x and xk, k = 0, 1, . . . , n.

=⇒ φ′ vanishes at n+ 1 points ξ0, . . . , ξn between these points.

=⇒ φ′′ vanishes at n points between these new points, and so on until

=⇒ φ(n+1) vanishes at an (unknown) point ξ = ξ(x) in (x0, xn).

But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+ 1.

The result follows immediately from this identity since φ(n+1)(ξ) = 0. �

9 / 15



Example: f(x) = log(1 + x) on [0, 1]. Here,

|f (n+1)(ξ)| = n!/(1 + ξ)n+1 < n!

on (0, 1). So

|e(x)| < |π(x)|n!/(n+ 1)! ≤ 1/(n+ 1)

since |x− xk| ≤ 1 for each x, xk, k = 0, 1, . . . , n, in [0, 1] =⇒ |π(x)| ≤ 1.

This is probably pessimistic for many x, e.g. for x = 1
2 , π(12) ≤ 2−(n+1) as

|12 − xk| ≤
1
2 .
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This example shows the important fact that the error can be large at the

end points of the interval.

There is a famous example due to Runge, where the error from the

interpolating polynomial approximation to

f(x) = (1 + x2)−1

for n+ 1 equally-spaced points on [−5, 5] diverges near ±5 as n→∞.

Matlab: try runge from the website.
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