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Building Lagrange interpolating polynomials from lower degree ones

Theorem

Let Qi,j be the Lagrange interpolating polynomial at xk, k = i, . . . , j.

Then,

Qi,j(x) =
(x− xi)Qi+1,j(x)− (x− xj)Qi,j−1(x)

xj − xi
(0.1)

Proof. Let s(x) denote the right-hand side of (0.1). Because of uniqueness,

we simply wish to show that s(xk) = fk. For k = i+ 1, . . . , j − 1,

Qi+1,j(xk) = fk = Qi,j−1(xk), and hence

s(xk) =
(xk − xi)Qi+1,j(xk)− (xk − xj)Qi,j−1(xk)

xj − xi
= fk.

We also have that Qi+1,j(xj) = fj and Qi,j−1(xi) = fi, and hence

s(xi) = Qi,j−1(xi) = fi and s(xj) = Qi+1,j(xj) = fj . �
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Comment

This result can be used as the basis for constructing interpolating

polynomials. In books: may find topics such as the Newton form and

divided differences.
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Generalisation

Given data fi, gi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 < · · · < xn,

can we find a polynomial p such that p(xi) = fi and p′(xi) = gi?

Theorem

There is a unique polynomial p ∈ Π2n+1 such that p(xi) = fi and

p′(xi) = gi for i = 0, 1, . . . , n.

Construction: given Ln,k(x) =
(x−x0)···(x−xk−1)(x−xk+1)···(x−xn)

(xk−x0)···(xk−xk−1)(xk−xk+1)···(xk−xn) , let

Hn,k(x) = [Ln,k(x)]2(1− 2(x− xk)L′n,k(xk))
and Kn,k(x) = [Ln,k(x)]2(x− xk).

Then Hermite interpolating polynomial

p2n+1(x) =

n∑
k=0

[fkHn,k(x) + gkKn,k(x)] (0.2)

interpolates the data as required.
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Theorem

Let h2n+1 be the Hermite interpolating polynomial in the case where

fi = f(xi) and gi = f ′(xi) and f has at least 2n+2 smooth derivatives.

Then, for every x ∈ [x0, xn],

f(x)− h2n+1(x) = [(x− x0)(x− xk−1) · · · (x− xn)]2
f (2n+2)(ξ)

(2n+ 2)!
,

where ξ ∈ (x0, xn) and f (2n+2) is the 2n+2-nd derivative of f .

Compare with the error formula we obtained for Lagrange interpolation:

Theorem

For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)
f (n+1)(ξ)

(n+ 1)!
,

where f (n+1) is the n+ 1-st derivative of f .
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Newton–Cotes Quadrature

Terminology: Quadrature ≡ numerical integration

Setup: given f(xk) at n+ 1 equally spaced points xk = x0 + k · h,

k = 0, 1, . . . , n, where h = (xn − x0)/n. Suppose that pn ∈ Πn

interpolates this data.

Idea: does ∫ xn

x0

f(x) dx ≈
∫ xn

x0

pn(x) dx? (2.3)
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We investigate the error in such an approximation below, but note that∫ xn

x0

pn(x) dx =

∫ xn

x0

n∑
k=0

f(xk) · Ln,k(x) dx

=

n∑
k=0

f(xk) ·
∫ xn

x0

Ln,k(x) dx

=

n∑
k=0

wkf(xk),

(2.4)

where the coefficients

wk =

∫ xn

x0

Ln,k(x) dx (2.5)

k = 0, 1, . . . , n, are independent of f .
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A formula ∫ b

a
f(x) dx ≈

n∑
k=0

wkf(xk)

with xk ∈ [a, b] and wk independent of f for k = 0, 1, . . . , n is called a

quadrature formula; the coefficients wk are known as weights; the points

xk are called the quadrature points. The specific form (2.3)–(2.5) is

called a Newton–Cotes formula of order n.
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Trapezium Rule: n = 1:

��
����

f

p1

x0 x1h

∫ x1

x0

f(x) dx ≈ h

2
[f(x0) + f(x1)]

Proof.

∫ x1

x0

p1(x) dx = f(x0)

L1,0(x)∫ x1

x0

︷ ︸︸ ︷
x− x1
x0 − x1

dx +f(x1)

L1,1(x)∫ x1

x0

︷ ︸︸ ︷
x− x0
x1 − x0

dx

= f(x0)
(x1 − x0)

2
+ f(x1)

(x1 − x0)
2
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Simpson’s Rule: n = 2:

x0 x1h x2h

f

p2

∫ x2

x0

f(x) dx ≈ h
3 [f(x0) + 4f(x1) + f(x2)]

=

∫ x2

x0

p2(x) dx

=
2∑

k=0

f(xk) ·
∫ x2

x0

L2,k(x) dx.

Note: The Trapezium Rule is exact if f ∈ Π1, since if f ∈ Π1 =⇒ p1 = f .

Similarly, Simpson’s Rule is exact if f ∈ Π2, since if f ∈ Π2 =⇒ p2 = f .

The highest degree of polynomial exactly integrated by a quadrature rule is

called the degree of accuracy.
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Error: we can use the error in interpolation directly to obtain∫ xn

x0

[f(x)− pn(x)] dx =

∫ xn

x0

π(x)

(n+ 1)!
f (n+1)(ξ(x)) dx

so that∣∣∣∣∫ xn

x0

[f(x)− pn(x)] dx

∣∣∣∣ ≤ 1

(n+ 1)!
max

ξ∈[x0,xn]
|f (n+1)(ξ)|

∫ xn

x0

|π(x)|dx,

(2.6)

which, e.g., for the Trapezium Rule, n = 1, gives∣∣∣∣∫ x1

x0

f(x) dx− (x1 − x0)
2

[f(x0) + f(x1)]

∣∣∣∣ ≤ (x1 − x0)3

12
max

ξ∈[x0,x1]
|f ′′(ξ)|.

In fact, we can prove a tighter result using the Integral Mean-Value

Theorem.
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Theorem (Integral Mean-Value Theorem)

Suppose that f and g are continuous on [a, b] and g(x) ≥ 0 on this interval.

Then, there exits an η ∈ (a, b) for which∫ b

a
f(x)g(x) dx = f(η)

∫ b

a
g(x) dx.

Theorem

Suppose f ′′ is continuous on (x0, x1). Then, there exists ξ ∈ (x0, x1) such

that ∫ x1

x0

f(x) dx− (x1 − x0)
2

[f(x0) + f(x1)] = −(x1 − x0)3

12
f ′′(ξ).

Proof. See problem sheet. �
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For n > 1, (2.6) gives pessimistic bounds. For example, in the case n = 2,

corresponding to Simpson’s Rule, the bound becomes∣∣∣∣∫ x2

x0

[f(x)− p2(x)] dx

∣∣∣∣ ≤ (x2 − x0)4

192
max

ξ∈[x0,x2]
|f ′′′(ξ)|.

We can prove a better result:

Theorem (Error in Simpson’s Rule)

Suppose that f ′′′′ is continuous on [x0, x2]. Then,∣∣∣∣∫ x2

x0

f(x) dx− (x2 − x0)
6

[f(x0) + 4f(x1) + f(x2)]

∣∣∣∣
≤ (x2 − x0)5

720
max

ξ∈[x0,x2]
|f ′′′′(ξ)|.
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The proof relies on the following result.

Theorem (Intermediate-Value Theorem)

Suppose that f is continuous on a closed interval [a, b], and c is any

number between f(a) and f(b) inclusive. Then, there is at least one

number ξ in the closed interval such that f(ξ) = c.

In particular, since c = (df(a) + ef(b))/(d+ e) lies between f(a) and f(b)

for any positive d and e, there is a value ξ in the closed interval for which

d · f(a) + e · f(b) = (d+ e) · f(ξ).
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Proof. Recall ∫ x2

x0

p2(x) dx = 1
3
h[f(x0) + 4f(x1) + f(x2)],

where h = x2 − x1 = x1 − x0.

Consider f(x0)− 2f(x1) + f(x2) = f(x1 − h)− 2f(x1) + f(x1 + h).

Then, by Taylor’s Theorem,

f(x1 − h) f(x1)− hf ′(x1) + 1
2h

2f ′′(x1)− 1
6
h3f ′′′(x1) + 1

24
h4f ′′′′(ξ1)

−2f(x1) = −2f(x1) +

+f(x1 + h) f(x1) + hf ′(x1) + 1
2h

2f ′′(x1) + 1
6
h3f ′′′(x1) + 1

24
h4f ′′′′(ξ2)

for some ξ1 ∈ (x0, x1) and ξ2 ∈ (x1, x2), and hence

f(x0)− 2f(x1) + f(x2) = h2f ′′(x1) + 1
24
h4[f ′′′′(ξ1) + f ′′′′(ξ2)]

= h2f ′′(x1) + 1
12
h4f ′′′′(ξ3),

(2.7)

the last result following from the Intermediate-Value Theorem for some
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Now for any x ∈ [x0, x2], we may use Taylor’s Theorem again to deduce

∫ x2

x0

f(x) dx = f(x1)

∫ x1+h

x1−h
dx+ f ′(x1)

∫ x1+h

x1−h
(x− x1) dx

+ 1
2f
′′(x1)

∫ x1+h

x1−h
(x− x1)2 dx+ 1

6
f ′′′(x1)

∫ x1+h

x1−h
(x− x1)3 dx

+ 1
24

∫ x1+h

x1−h
f ′′′′(η1(x))(x− x1)4 dx where η1(x) ∈ (x0, x2),

IMVT
= 2hf(x1) + 1

3
h3f ′′(x1) + 1

60
h5f ′′′′(η2),

where η2 ∈ (x0, x2) by the Integral Mean Value Theorem,
(2.7)
= 1

3
h[f(x0) + 4f(x1) + f(x2)] + 1

60
h5f ′′′′(η2)− 1

36
h5f ′′′′(ξ3)

for some ξ3 ∈ (ξ1, ξ2) ⊂ (x0, x2), having replaced h2f ′′(x1) from (2.7).
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36
h5f ′′′′(ξ3)

=

∫ x2

x0

p2(x) dx+
1

180

(
x2 − x0

2

)5 (
3f ′′′′(η2)− 5f ′′′′(ξ3)

)
.

Thus, taking moduli, and using the Intermediate-Value Theorem,∣∣∣∣∫ x2

x0

[f(x)− p2(x)] dx

∣∣∣∣ ≤ 8

25 · 180
(x2 − x0)5 max

ξ∈[x0,x2]
|f ′′′′(ξ)|. �
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Note: Simpson’s Rule is exact if f ∈ Π3 since then f ′′′′ ≡ 0.

In fact, it is possible to compute a slightly stronger bound.

Theorem (Error in Simpson’s Rule II)

Suppose that f ′′′′ is continuous on (x0, x2). Then,∫ x2

x0

f(x) dx =
x2 − x0

6
[f(x0) + 4f(x1) + f(x2)]−

(x2 − x0)5

2880
f ′′′′(ξ)

for some ξ ∈ (x0, x2).

Proof. See Süli and Mayers, Thm. 7.2.
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