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Building Lagrange interpolating polynomials from lower degree ones

Theorem
Let Q; ; be the Lagrange interpolating polynomial at xy, k =1i,...,}.
Then,

Qi,j(l') _ (CC - xi)Qi—l—l,j(-’JU) - (.T - LBj)Qi,j_l(a’J)

a:j—a:i

(0.1)




Building Lagrange interpolating polynomials from lower degree ones

Theorem

Let Q; ; be the Lagrange interpolating polynomial at xy, k =1i,...,}.
Then,
(z — 2:)Qi1,i (%) — (z — 5)Qij—1(x)

a:j—a:i

Qi) = (©1)

Proof. Let s(z) denote the right-hand side of (0.1). Because of uniqueness,
we simply wish to show that s(xy) = fi.



Building Lagrange interpolating polynomials from lower degree ones

Theorem

Let Q; ; be the Lagrange interpolating polynomial at xy, k =1i,...,}.

Then,
( — 2:)Qit+1,5(z) — (. — ) Qi j—1()

Qi’j(x) = xj e (01)

Proof. Let s(z) denote the right-hand side of (0.1). Because of uniqueness,
we simply wish to show that s(z) = fi. Fork=i+1,...,5—1,
Qi+1,5(xk) = fr = Qij—1(zx), and hence

(25) = (z — 24)Qit1,j (1) — (Tk — 25)Qij—1(xk)
s(zg) =

Ij—ﬂfi

= fr-




Building Lagrange interpolating polynomials from lower degree ones

Theorem
Let Q; ; be the Lagrange interpolating polynomial at xy, k =1i,...,}.

Then,
Qs(z) = (@ = :)Qit1,4(2) — (& = j)Qij—1(z) (0.1)

a:j—a:i

Proof. Let s(z) denote the right-hand side of (0.1). Because of uniqueness,
we simply wish to show that s(z) = fi. Fork=i+1,...,5—1,
Qi+1,5(xk) = fr = Qij—1(zx), and hence

s(zp) = (zr — 2i)Qiv1,j(x) — (T — 25)Qij1(x) _ i

Ij—ﬂfi

We also have that Q;1,;(x;) = f; and Q; j—1(x;) = fi, and hence

s(x;) = Qij—1(w;) = fi and s(xj) = Qiy1,5(x;) = fj. O



Comment

This result can be used as the basis for constructing interpolating
polynomials. In books: may find topics such as the Newton form and
divided differences.
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Given data f;, g; at distinct x;, 1 =0,1,...,n, with xp < 21 < -+ < 2y,
can we find a polynomial p such that p(x;) = f; and p'(x;) = ¢;?
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Given data f;, g; at distinct x;, 1 =0,1,...,n, with xp < 21 < -+ < 2y,
can we find a polynomial p such that p(x;) = f; and p'(x;) = ¢;?

Theorem
There is a unique polynomial p € 1o, 41 such that p(x;) = f; and
p(x;) =g fori =0,1,...,n.




Generalisation

Given data f;, g; at distinct x;, 1 =0,1,...,n, with xp < 21 < -+ < 2y,
can we find a polynomial p such that p(x;) = f; and p'(x;) = ¢;?
Theorem

There is a unique polynomial p € 1o, 41 such that p(x;) = f; and
p(x;) =g fori =0,1,...,n.

(z—x0)-(z—ap—1) (T —Tps1) (T —2n)
P ey T iy I e T

Hypo(2) = [Lok(@)]*(1 = 2(2 — 2k) L, (x1))
and K, 1(z) = [Log(z))*(z — z1).

Construction: given L, ;(z) =

Then Hermite interpolating polynomial

n

Poni1(x) =Y [frHn k(@) + gr K ()] (0.2)
k=0

interpolates the data as required.



Theorem

Let hopy1 be the Hermite interpolating polynomial in the case where

fi = f(z;) and g; = f'(x;) and f has at least 2n+2 smooth derivatives.

Then, for every x € [xg, xy),

(2n+2)
f(z) — hopt1(z) = [(z — zo)(z — 1) -+ - (. — xn)]2fz2n - 2()5!)’

where ¢ € (0, x,) and f*"*2) s the 2n+2-nd derivative of f.




Theorem
Let hopy1 be the Hermite interpolating polynomial in the case where

fi = f(z;) and g; = f'(x;) and f has at least 2n+2 smooth derivatives.
Then, for every x € [xq, xy),

2 FE2(E)

F@) = hania(@) = [(@ = 20) (& 1) -+ (2 = 2] gy

where ¢ € (0, x,) and f*"*2) s the 2n+2-nd derivative of f.

Compare with the error formula we obtained for Lagrange interpolation:

Theorem

For every © € [xg, xy] there exists & = {(x) € (xo,xy) such that

FIE)

f(x) —pn(x) = (x — 20)(T —21) - - - (T — fn)W7

where f("*1) js the n + 1-st derivative of f.




Newton—Cotes Quadrature

Terminology: Quadrature = numerical integration

Setup: given f(zy) at n + 1 equally spaced points x = z¢ + k - h,
k=0,1,...,n, where h = (z,, — xg)/n. Suppose that p, € II,
interpolates this data.

Idea: does

/x : f()dz ~ / : pu(2) da?

(2.3)



We investigate the error in such an approximation below, but note that

/xn pn(z)de = /1’n Z f(xg) - Ly g(x)de
*o o k=0

= > ) / Loi(z)de (2.4)
kﬁO o
k=0
where the coefficients .
wy = / Ly, (x)dz (2.5)
x0

k=0,1,...,n, are independent of f.



A formula , "
[ f@ydem S s
a k=0

with zj € [a,b] and wy independent of f for k =0,1,...,nis called a
quadrature formula; the coefficients wy are known as weights; the points
xy, are called the quadrature points. The specific form (2.3)—(2.5) is
called a Newton—Cotes formula of order n.



Trapezium Rule: n = 1:

P1
1
/ f(z)dz =~
i) h I ’

| >

[f (x0) + f(21)]



Trapezium Rule: n = 1:

p1
4 | f@yde x Gif@0) + )
zo h T ’
Proof.
Lio(x) Li1(x)
/mollh(x) dr = f(zo) /xol ;0__1; dr +f(z1) /IO1 ;1__3;00
= ) P s

dx



Simpson's Rule: n = 2:
f

D2

i) h I h X9

10 / 18



Simpson’s Rule: n = 2:

/
%%‘ /mf(m)d:z %[f (zo) +4f(z1) + f(x2)]
o h T h T

10 / 18



Simpson’s Rule: n = 2:

/ Y f@)de ~ %[f<xo> T Af () + fla2)]

= pz

Zo
2

= flzp) - /I2 Ly i () de.

0 xo

=

Note: The Trapezium Rule is exact if f € Iy, since if f € I} = p; = f.
Similarly, Simpson’s Rule is exact if f € Iy, since if f € IIs = ps = f.
The highest degree of polynomial exactly integrated by a quadrature rule is
called the degree of accuracy.

10 / 18



Error: we can use the error in interpolation directly to obtain

[ 1@ = patoas = [ I ()

0 o

11 / 18



Error: we can use the error in interpolation directly to obtain

[ 1@ = patoas = [ I ()

so that

<

[ 1@ = @ ds

0

el T i
(2.6)

11 / 18



Error: we can use the error in interpolation directly to obtain

[ 1@ == [T IO e o)) s

o s (n+ 1)!

so that
Ty - < (n+1) /
5@ @l dn] < gy 15001 [ el
(2.6)
which, e.g., for the Trapezium Rule, n =1, gives
3
T1— T T1— T
e = I g ¢ ]| < PN e 17760
2 12 &€(zo,x1]
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Error: we can use the error in interpolation directly to obtain

[ 1@ == [T IO e o)) s

o s (n+ 1)!

so that
Ty - < (n+1) /
5@ @l dn] < gy 15001 [ el
(2.6)
which, e.g., for the Trapezium Rule, n =1, gives
3
T1— T T1— T
e = I g ¢ ]| < PN e 17760
2 12 &€(zo,x1]

In fact, we can prove a tighter result using the Integral Mean-Value
Theorem.

11 / 18



Theorem (Integral Mean-Value Theorem)

Suppose that f and g are continuous on [a,b] and g(x) > 0 on this interval.
Then, there exits an n € (a,b) for which

[ 1)@z = 1) [ o)

12 / 18



Theorem (Integral Mean-Value Theorem)

Suppose that f and g are continuous on [a,b] and g(x) > 0 on this interval.
Then, there exits an n € (a,b) for which

[ 1)@z = 1) [ o)

Theorem

Suppose f" is continuous on (xg,x1). Then, there exists £ € (xg,x1) such
that

1 1 —T T — 10)3
[ @rae = 2 ) + @) = 2T )

Proof. See problem sheet. O

12 / 18



For n > 1, (2.6) gives pessimistic bounds. For example, in the case n = 2,

corresponding to Simpson’'s Rule, the bound becomes

o 192 £€lzo,xa]

T2 To — 1T 4
[ U@ -m@ias] < CS0 ()

13 / 18



For n > 1, (2.6) gives pessimistic bounds. For example, in the case n = 2,
corresponding to Simpson’'s Rule, the bound becomes

T2 _ 4
@) = patanaa] < EIE (770

We can prove a better result:

Theorem (Error in Simpson'’s Rule)

Suppose that f"" is continuous on [xg, z3]. Then,

6

| @ e = 1) + 450 + Sa2)

5

($2 xO) "
720 EGI[I;U??;] | (5)’

13 / 18



The proof relies on the following result.

Theorem (Intermediate-Value Theorem)

Suppose that f is continuous on a closed interval [a,b], and c is any
number between f(a) and f(b) inclusive. Then, there is at least one
number £ in the closed interval such that f(§) = c.

14 / 18



The proof relies on the following result.

Theorem (Intermediate-Value Theorem)

Suppose that f is continuous on a closed interval [a,b], and c is any
number between f(a) and f(b) inclusive. Then, there is at least one
number £ in the closed interval such that f(§) = c.

In particular, since ¢ = (df (a) + ef(b))/(d + €) lies between f(a) and f(b)
for any positive d and e, there is a value £ in the closed interval for which

d-fla)+e-f(b) =(d+e)- f(E)

14 / 18



Proof. Recall

/ " pa(e) de = SH[f (o) + 4 (1) + F(2)],

0

where h = ©9 — 21 = 1 — 2.

15 / 18



Proof. Recall

/ " pa(w) de = 3h[f(z0) + 4f (21) + f(22)],

where h = 29 — 21 = 21 — 9.
Consider f(zo) — 2f(x1) + f(z2) = f(z1 — h) — 2f(x1) + f(z1 + h).
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Proof. Recall

/ " pa(w) de = 3h[f(z0) + 4f (21) + f(22)],

where h = 29 — 21 = 21 — 9.
Consider f(zo) — 2f(x1) + f(z2) = f(z1 — h) — 2f(x1) + f(z1 + h).
Then, by Taylor's Theorem,
f(x1—h) f(@1) = hf' (1) + 5h2 f" (1) — Lh3 7" (1) 4+ & h* 7" (&1)
=2f(z1) = —2f(z1) +
+f(x1+ h) f(@1) + hf' (1) + 5h2 f" (1) + Lh3 7 (1) 4+ h* 7 (&)

for some &1 € (zg,z1) and & € (x1, x2),

15 / 18



Proof. Recall

/ " pa(w) de = 3h[f(z0) + 4f (21) + f(22)],

where h = 29 — 21 = 21 — 9.
Consider f(zo) — 2f(x1) + f(z2) = f(z1 — h) — 2f(x1) + f(z1 + h).
Then, by Taylor's Theorem,

f(z1—h) f(@1) = hf'(x1) + 3h2 " (1) — 303 7" (1) + SR " (&)
=2f(z1) = —2f(z1) +
+f(x1+ h) f(ar) + hf(@1) + SH2f" (x1) + Sh3 7 (z1) + LR (&)
for some & € (zg, 1) and & € (x1,x2), and hence
f(xo) = 2f(a1) + f(x2) = R2f"(x1) + LR (&) + (&) 2.7)
— thN(-'L’l) + 1712}1470////(53), :
the last result following from the Intermediate-Value Theorem for some

53 € (617§2) - (37(),.%'2).



Now for any x € [xq, z2], we may use Taylor's Theorem again to deduce

16 / 18



Now for any x € [zg, z2], we may use Taylor's Theorem again to deduce

[ s = s | e [

17h+h xr1—h +h
1 1
—i—%f”(:vl)/ (m—xl)zdx—i-éf'"(xl)/ (z — 1) dz
. z1—h z1—h
+ 5 S (m(@))(x — 21)*dz - where 11 (z) € (0, 22),
x1—h

16 / 18



Now for any x € [zg, z2], we may use Taylor's Theorem again to deduce

[ s = s | e [

1—h xr1—h

1 e wrth _ 2 1 g wth _ 3
+ 51" (1) (x —z1)de + L f"(z1) (x —x1)° da
z1+h z1—h z1—h
s [ @)@ o) de where m(z) € (so.22),
z1—h

"N 2hf (@) + LhP (1) + SBE (),

where 79 € (xg,x2) by the Integral Mean Value Theorem,

16 / 18



Now for any x € [zg, z2], we may use Taylor's Theorem again to deduce

[ s = s | e [

1—h xr1—h

z1+h
A |

r1—h

x1+h
s [ @)@ o) de where m(z) € (so.22),
z1—h

= 2hf(x1)+ %hsf”(mﬂ + &h5f////(772),
where 12 € (zg, x2) by the Integral Mean Value Theorem,

3hif(zo) +4f (x1) + f(@2)] + G f"" (n2) — 55h°F" (&)

z1+h
(z —z1)? dz + éf’”(ml)/ (x —21)%dz

r1—h

16 / 18



Now for any x € [zg, z2], we may use Taylor's Theorem again to deduce

[ s = s | e [

1—h xr1—h

x1+h
Ao |

z1—h

x1+h
s [ @)@ o) de where m(z) € (so.22),
T

1—h
"B onf(a) + LR (a0) + B (),

where 19 € (¢, z2) by the Integral Mean Value Theorem,
Sh[f (o) + 4f (x1) + flx2)] + HhF" (12) = Zh° " (&3)

z1+h
(z —z1)? dz + éf’”(ml)/ (z — 1) dz

z1—h

27)

for some &3 € (€1,&2) C (0, 72), having replaced h2f”(z1) from (2.7).

16 / 18



In summary, for any x € [z, z2],

z2

f(@)da = Sh[f(wo) +4f (x1) + f(z2)] + Sh° " (n2) — 55h° £ (&)

zo

X9 To — 5
e g (257) 617 - 57760).

17 / 18



In summary, for any x € [z, z2],

/552 f(@)da = Sh[f(wo) +4f (x1) + f(z2)] + Sh° " (n2) — 55h° £ (&)

*2 T9 — 20 \°
= [ mde s g5 (257) 6 - 5776).

Thus, taking moduli, and using the Intermediate-Value Theorem,

(w2 —20)° max [f"(§)]. O

z2 8
_ < —
/3: @) = pa()] d) < 25.180 €lzo,w2]

0

17 / 18



Note: Simpson's Rule is exact if f € II3 since then f"” = 0.

In fact, it is possible to compute a slightly stronger bound.

Theorem (Error in Simpson’s Rule II)

Suppose that f"" is continuous on (x,x2). Then,

6

| @) do = 0 ) + 41 ) + fla)) -

for some £ € (xo, z2).

(w2 — 930)5

f//l/(g)

Proof. See Suli and Mayers, Thm. 7.2.
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