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Newton—Cotes quadrature continued

Motivation: We've seen oscillations in polynomial interpolation — the Runge
Phenomenon — for high-degree polynomials.



Newton—Cotes quadrature continued

Motivation: We've seen oscillations in polynomial interpolation — the Runge
Phenomenon — for high-degree polynomials.

Idea: split a required integration interval [a, b] = [z¢, 2] into n equal
intervals [z;_1,2;] fori =1,...,n. Then use a composite rule:

b xn noorw
/a f(a:)dx:/mo f(x)dx:;/xilf(q:)dx

T
in which each / f(z)dz is approximated by quadrature.
Ti—1
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in which each f(z)dx is approximated by quadrature.
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Thus rather than increasing the degree of the polynomials to attain high

accuracy, instead increase the number of intervals.



Trapezium Rule:

for some &; €

/ fla
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Composite Trapezium Rule:

Tn n 3
[ 1@ = Y Sl + sl - 3516

i=1
=5 [f(zo) +2f(x1) + 2 (x2) + ...+ 2f (wn1) + f(2a)] + €]
where & € (zi—1,x;) and h = x; — xi—1 = (v, — x9)/n = (b—a)/n, and
the error ¢ is given by

h? &
ep = —mz;f”(fi)
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Composite Trapezium Rule:

Tn n 3
[ 1@ = Y Sl + sl - 3516

i=1
=2 [f(wo) + 2f (1) + 2f(x2) + ... + 2f (wp—1) + flzn)] + €],
where &; € (zj—1,2;) and h = z; — z;—1 = (2, — 29)/n = (b—a)/n, and
the error ¢ is given by
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for some ¢ € (a,b), using the Intermediate-Value Theorem n times (see

Lecture 2: af (&) + Bf (§it1) = (a + B) f(§) for some £ € (&, &i+1))
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Composite Trapezium Rule:

Tn n 3
[ 1@ = 3 Sl + s - G516

i=1
=2 [f(wo) + 2f (1) + 2f(x2) + ... + 2f (wp—1) + flzn)] + €],
where &; € (zj—1,2;) and h = z; — z;—1 = (2, — 29)/n = (b—a)/n, and
the error ¢ is given by
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for some ¢ € (a,b), using the Intermediate-Value Theorem n times (see

Lecture 2: af (&) + Bf (§it1) = (a + B) f(§) for some £ € (&, &i+1))
SOF&) =2+ &) =341 E) + ) &) = = nf” (€M)
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Note that if we halve the stepsize h by introducing a new point half way

between each current pair (z;_1,z;), the factor h? in the error will decrease

by four.



Another composite rule: if [a, b] = [zg, T2p],

b Ton n To;
JRCES / floyds =3 /xwf(m)dx

x2;
in which each / f(z)dz is approximated by quadrature.

2i—2



Another composite rule: if [a, b] = [zg, T2p],

b Ton n To;
JRCES / floyds =3 /mﬂx)dx

x2;
in which each / f(z)dz is approximated by quadrature.

T25—2
Simpson’s Rule:

(2h)°
2830

/W f(z)dzr = g[f(x%fl) +4f(woi—1) + fx2)] — (&)

x2i—2

for some &; € (z2;—2,x2;).



Composite Simpson's Rule:

In n 5
[ iwar= Y [Z[ﬂx%_l) A f(wnia) + flam)] — 2 ey

£ 2880
= D7) + 4 (o) + 27 () + 4F () + 27 () + -

+ 2f(zon—2) + 4f(x2n—1) + f(x20)] + €],
where &; € (1‘21',2, .fgi) and h=x; —x;,_1 = (LBQn — $0)/2’I’L = (b — a)/2n,

and the error €} is given by

5 1 n 5 4
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for some £ € (a,b), using the Intermediate-Value Theorem n times.



Composite Simpson's Rule:

n

[ rrae = 3| i) + 4 eaion) + o] -

=1
= D7) + 47 () + 27 (@) + 45 (ws) + 2f () +
+ 2f(zon—2) + 4f(x2n—1) + f(x20)] + €],

(2h)°

e (&)

where &; € (.1/‘21',2, 1?21') and h=x; —x;,_1 = (:Egn — .TQ)/Q’I’L = (b — a)/2n,
and the error €} is given by

S _ /l// ( ) " _ h4 "
¢ =~ 2880 Zf (&) = =gy /(€)= —(b—a) ;55 /(&)

for some £ € (a,b), using the Intermediate-Value Theorem n times.

Note that if we halve the stepsize h by introducing a new point half way
between each current pair (x;—1,x;), the factor h* in the error will decrease

by sixteen.



Adaptive procedure: if Sy, is the value given by Simpson’s rule with a

stepsize h, then
15 .

16

b
This suggests that if we wish to compute / f(x) dx with an absolute error

Sh—Sl

a
€, we should compute the sequence Sy, Slh, Siyp,... and stop when the
5 4

difference, in absolute value, between two consecutive values is smaller than
15/16€. That will ensure that (approximately) |e7 | < e.

Sometimes much better accuracy may be obtained: for example, as might
happen when computing Fourier coefficients, if f is periodic with period
b—asothat f(a+z) = f(b+ z) for all z.



Matlab:

% matlab

>> help adaptive_simpson

ADAPTIVE_SIMPSON Adaptive Simpson’s rule.
S = ADAPTIVE_SIMPSON(F,A,B,NMAX,TOL) computes an approximation
to the integral of F on the interval [A,B]. It will take a
maximum of NMAX steps and will attempt to determine the
integral to a tolerance of TOL.

The function uses an adaptive Simpson’s rule, as described
in lectures.



>> f

inline(’sin(x)’);

>> adaptive_simpson(f,0,pi,8,1.0e-7);
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.0943951024,
.0045597550,
.0002691699,
.0000165910,
.0000010334,
.0000000645,
Successful termination at iteration 7:

with
with
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error
error
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error
error
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estimate
estimate
estimate
estimate
estimate
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.0944.
.089835.
.0042906.
.00025258.
.5558e-05.
.6884e-07.

The integral is 2.0000000040, with error estimate 6.0498e-08.
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>> g = inline(’sin(sin(x))’);
>> fplot(g, [0,pil])



>> adaptive_simpson(g,0,pi,8,1.0e-7);
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.7623727094,
.8011896009,
.7870879453,
.7865214631,
. 7864895607,
.7864876112,
.7864874900,
Successful termination at iteration 8:

with
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error
error
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estimate
estimate
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.7624.
.038817.
.014102.
.00056648.
.1902e-05.
.9495e-06.
.2118e-07.

The integral is 1.7864874825, with error estimate 7.5634e-09.
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