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Gaussian elimination

Setup: given a square n by n matrix A and vector with n components b,

find = such that
Az =b.

Equivalently find z = (x1,x2,...,x,) for which

1171 + ajoxe + -+ + a1y = by

2121 + ax2 + - - + a2 Ty = by
(5.1)

Ap1T1 + Ap2T2 + -+ - + AppTy = by.



Lower-triangular matrices:
the matrix A is lower triangular if a;; =0 forall 1 <1 < j <n.
The system (5.1) is easy to solve if A is lower triangular.



Lower-triangular matrices:
the matrix A is lower triangular if a;; =0 forall 1 <1 < j <n.
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by
a11ri = bl —— I = —
ail
2 — A21%1
a21x1 + axTy =by = x2=
a2
i—1
bz’ — E aijxj
Jj=1
a;1x1 + a;px9 + - -+ + a;;x; =b = x;=



Lower-triangular matrices:
the matrix A is lower triangular if a;; =0 forall 1 <1 < j <n.
The system (5.1) is easy to solve if A is lower triangular.

b1
a11ri = bl —— I = —
ai
by — az171
a2171 + 42272 =by = x2=
a2
i—1
bz’ — E aijxj
j=1
ain®1 + a2 + -+ aiz;  =b; = x;=

This works if, and only if, a;; # 0 for each .



Lower-triangular matrices:
the matrix A is lower triangular if a;; =0 forall 1 <1 < j <n.
The system (5.1) is easy to solve if A is lower triangular.

b1
a1171 =b = x1=—
ai
by — az171
a21x1 + a22x2 =by — 19=
a2
i—1
bi — E aijxj
i=1
ain®1 + apre + -t azi =b = x; =

This works if, and only if, a;; # 0 for each .
The procedure is known as forward substitution.



Computational work estimate: one floating-point operation (flop) is one
multiply (or divide) and possibly add (or subtraction) as in y = a*x + b,
where a, x, b and y are computer representations of real scalars.



Computational work estimate: one floating-point operation (flop) is one
multiply (or divide) and possibly add (or subtraction) as in y = a*x + b,
where a, x, b and y are computer representations of real scalars.

Hence the work in forward substitution is 1 flop to compute z1 plus 2 flops
to compute x9 plus ... plus i flops to compute x; plus ... plus n flops to
compute x,, or in total

n

Zz’ = in(n+1) = in® + lower order terms flops.
i=1

We sometimes write this as $n? + O(n) flops or more crudely O(n?) flops.



Upper-triangular matrices:
The matrix A is upper triangular if a;; =0 forall 1 <j <i <n.
Once again, the system (5.1) is easy to solve if A is upper triangular.
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n
bi — E aija:j

j=itl
a;i%; + -+ Qin—1Tn—1 + Q10T = b; = T;= o
i
bp—1 — Gn—1nTn
Up—1n—1Tn—1 + Gn_1pTyn =bp_1 = Tp_1 =
Gp—1n—1
n
ApnTn = by = Ty =—

Ann



Upper-triangular matrices:
The matrix A is upper triangular if a;; =0 forall 1 <j <i <n.
Once again, the system (5.1) is easy to solve if A is upper triangular.

n
bi — E aija:j

j=itl
a;i%; + -+ Qin—1Tn—1 + Q10T = b; = T;= o
i
bp—1 — Gn—1nTn
Up—1n—1Tn—1 + Gn_1pTyn =bp_1 = Tp_1 =
Gp—1n—1
n
ApnTn = by = Ty =—

Gnn

Again, this works if, and only if, a;; # 0 for each i.



Upper-triangular matrices:
The matrix A is upper triangular if a;; =0 forall 1 <j <i <n.
Once again, the system (5.1) is easy to solve if A is upper triangular.

n
bi — E aijxj

j=it1
aii%i + -+ Qin—1Tn—1 + A1nTn = b; = T = o
i
bp—1 — Gn—1nTn
Up—1n—1Tn—1 + Gn_1pTyn =bp_1 = Tp_1 =
Gp—1n—1
n
ApnTn = by = Ty =—

Gnn
Again, this works if, and only if, a;; # 0 for each i.
The procedure is known as backward or back substitution.
This also takes approximately %nQ flops.



For computation, we need a reliable, systematic technique for reducing
Az = b to Uz = ¢ with the same solution x but with U (upper) triangular
— Gauss(ian) elimination.



For computation, we need a reliable, systematic technique for reducing

Az = b to Uz = ¢ with the same solution x but with U (upper) triangular

— Gauss(ian) elimination.

Example

() (m)-()

Multiply first equation by 1/3 and subtract from the second —-

(1) (2)-(7)



Gaussian Elimination (GE): this is most easily described in terms of
overwriting the matrix A = {a;;} and vector b.

At each stage, it is a systematic way of introducing zeros into the lower
triangular part of A by subtracting multiples of previous equations (i.e.,
rows); such (elementary row) operations do not change the solution.



Gaussian Elimination

for columns j=1,2,...,n—1
for rows 1=j5+1,7+2,...,n

. . Qg .
Trow 1?1 <— row? — — *IOW )
0. i
7
bi — bi——]*bj

ajj
end
end



Example.

3 —1 2

1 2 3

2 -2 -1
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=
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T3 2

row 2 < row 2 —
row 3 < row 3 —
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Back substitution:

r3 = 2
7
T2 = 7 _;(2) = 1
12 (—1)(1) - 2(2)
xr3 = 3 =3.
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Cost of Gaussian Elimination:



Cost of Gaussian Elimination: note, row 7 < row 7 —

for columns k=j+1,7+2,...,n

Qg
Qi <= Qik — o Gk

Ji
end

CLU

@jj

* row j is



Cost of Gaussian Elimination: note, row i < row i — —2
Do
Jj

for columns k=j5+1,7+2,...,n

Qg
Qi <= Qik — o Gk

JJ
end

* row j is

This is approximately n — j flops as the multiplier a;;/a;; is calculated

with just one flop; a;; is called the pivot.



Cost of Gaussian Elimination: note, row i < row i — —2 % row jis
s
33
for columns k=j5+1,7+2,...,n
Qg
Qi <= Qi) — —Qjk
ajj
end
This is approximately n — j flops as the multiplier a;;/a;; is calculated
with just one flop; a;; is called the pivot.
Overall therefore, the cost of GE is approximately

n—1
—1(2n -1 1
jz; n— ) Zl2 n(n )6( n ):3n3+0(n2) flops.
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Cost of Gaussian Elimination: note, row i < row i — —2 % row jis
s
33
for columns k=j5+1,7+2,...,n
Qg
Qi <= Qi) — —Qjk
ajj
end
This is approximately n — j flops as the multiplier a;;/a;; is calculated
with just one flop; a;; is called the pivot.
Overall therefore, the cost of GE is approximately

n—1

~1)@n-1) 1
> (n—j5)? §jz2 n(n — 0?4+ O(n?) flops.
jln J 3n+ (n*) flops

6

The calculations involving b are

n—1 n—1 n(n . 1 1
dn—j) =) 1= T = 5n°+0(n) flops,
j=1 =1
just as for the triangular substitution.



LU Factorization

The basic operation of Gaussian Elimination, row ¢ < row ¢ + A % row j can
be achieved by pre-multiplication by a special lower-triangular matrix

00 0
M@\ =T+ 1 0 x 0 |«
00 0
/]\
J

where [ is the identity matrix.
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Example: n =4,

100
010
M@E2M =],
000

i.e., M(3,2,\)A performs:

0 a a
0 b b
d M(3,2, )\ =
0 an (3,2,4) c MNo+c |’
1 d d

row 3 of A < row 3 of A+ Ax row 2 of A and

similarly M (i, j, \)A performs: row i of A < row i of A+ Ax row j of A.
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Example: n =4,

1 0 0 O a a
01 0 O b b
M3’27)\ = d M3,2,>\ - 5
(3,2,4) 0o a 1o | MME2N] Ab+ ¢
0 0 0 1 d d

i.e., M(3,2,\)A performs: row 3 of A < row 3 of A+ Ax row 2 of A and
similarly M (i, j, \)A performs: row i of A < row i of A+ Ax row j of A.

So GE fore.g., n =3 s

M(3,2,—lsp) - M(3,1,—l3) - M(2,1,—ly) - A=U=(\).

asz asi as
l3g = — l31 = — log = — upper
an aii an

triangular
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Example: n =4,

1 0 0 O a a
01 0 O b b
M3’27)\ = d M3,2,>\ - 5
(3,2,4) 0o a 1o | MME2N] b+ ¢
0 0 0 1 d d

i.e., M(3,2,\)A performs: row 3 of A < row 3 of A+ Ax row 2 of A and
similarly M (i, j, \)A performs: row i of A < row i of A+ Ax row j of A.

So GE fore.g., n =3 s

M(3,2,—lsp) - M(3,1,—l3) - M(2,1,—ly) - A=U=(\).
as2 a31 a1
l32 = — l31 = — lo1 = — upper
a2 aii ail
triangular

The [;; are the multipliers.
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Be careful:
each multiplier /;; uses the data a;; and a;; that results from the
transformations already applied, not data from the original matrix.

So I35 uses ags and azy that result from the previous transformations
M(Q, 1, —121> and M(3, 1, —l31).
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Lemma
Ifi# 5, (M(i,j,\)~t = M(3,7,—\). J

Proof. Exercise.

o - = = z 9ace



Outcome: forn =3, A = M(2,1,1l91) - M(3,1,131) - M(3,2,132) - U, where

1 0 0
M(2,1,151) - M(3,1,151) - M(3,2,03) = | 1s 1 0 | =L=(1).
b3 32 1 lower
triangular
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This is true for general n.
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Outcome: forn =3, A = M(2,1,1l91) - M(3,1,131) - M(3,2,132) - U, where

1 0 0
M(2,1,151) - M(3,1,151) - M(3,2,03) = | 1s 1 0 | =L=(1).
b3 32 1 lower
triangular

This is true for general n.
Theorem

For any dimension n, GE can be expressed as A = LU, where U = (V) is
upper triangular resulting from GE, and L = (I\.) is unit lower triangular
(lower triangular with ones on the diagonal) with l;; = multiplier used to
create the zero in the (i, j)th position.
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Most implementations of GE therefore, rather than doing GE as above,

factorize A= LU (takes ~ in3 flops)
and then solve Az =1
by solving Ly =0 (forward substitution)
and then Ux =y (back substitution)

Note: this is much more efficient if we have many different right-hand sides
b but the same A.
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