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LU Factorization

The basic operation of Gaussian Elimination, row ¢ < row ¢ + A % row j can
be achieved by pre-multiplication by a special lower-triangular matrix

00 0
M@\ =T+ 1 0 x 0 |«
00 0
/]\
J

where [ is the identity matrix.



Example: n =4,

1 0 0 0 a a
0100 b b
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(3,2,4) 0 A 1 0 | M ME2ML b+ ¢
000 1 d d

i.e., M(3,2,\)A performs: row 3 of A < row 3 of A+ Ax row 2 of A and

similarly M (i, j, \)A performs: row i of A < row i of A+ Ax row j of A.
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The [;; are the multipliers.



Be careful:

each multiplier /;; uses the data a;; and a;; that results from the
transformations already applied, not data from the original matrix.
So I35 uses ags and azy that result from the previous transformations
M(2,1,—l91) and M (3,1, —l31).



Example.

1 0 0 3 -1 2 3 -1

M(2,1, —l21)A = -3 1 0 1 2 3 = 0 z

0 0 1 2 —2 —1 2 -2

1 0 0 3 —1 2 3 —1

M(3,1, —l21) [M(2,1, —l21)A] = 0 1 0 0 z 2 =] o0 %
2

-2 0 1 2 -2 -1 0 -3

1 0 0 3 -1 2 3 -1

M(3,2,—l32) [M(3,1, —l21)M(2,1,—l21)A]= | 0 1 0 o = z

4 4 3
o 2 1 o -3 -1 0

0 o
M (3,2, —l3o M(3,1, —lo1)M(2,1, —l21) = [ —o0. 3333 1 0 > ,

—0.8571 0.5714 1

o o\ ! 1 0
L= -o. 3333 1 0 = | 0.3333 1
—0.8571 0.5714 1 0.6667 —0.5714
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Lemma

Ifi 7é jr (M(lvjv )‘))_1 = M(Zaja _)‘)

Proof. Exercise.



Outcome: forn =3, A = M(2,1,1l91) - M(3,1,131) - M(3,2,132) - U, where

1 0 0
M(2,1,151) - M(3,1,151) - M(3,2,03) = | 1s 1 0 | =L=(1).
b3 32 1 lower
triangular
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This is true for general n.
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This is true for general n.
Theorem

For any dimension n, GE can be expressed as A = LU, where U = (V) is
upper triangular resulting from GE, and L = (I\.) is unit lower triangular
(lower triangular with ones on the diagonal) with l;; = multiplier used to
create the zero in the (i, j)th position.




Most implementations of GE therefore, rather than doing GE as above,

factorize A= LU (takes ~ in3 flops)
and then solve Az =1
by solving Ly =0 (forward substitution)
and then Ux =y (back substitution)

Note: this is much more efficient if we have many different right-hand sides
b but the same A.



Pivoting: GE or LU can fail if the pivot a;; = 0, e.g., if

A:<O 1)’
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GE will fail at the first step.



Pivoting: GE or LU can fail if the pivot a;; = 0, e.g., if
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GE will fail at the first step. However, we are free to reorder the equations

(i.e., the rows) into any order we like, e.g., the equations

O-z1+1-20=1 and 1214029 =2
l-21+0-29=2 O-z14+1-29=1

are the same, but their matrices

(1) = (4]

have had their rows reordered:



Pivoting: GE or LU can fail if the pivot a;; = 0, e.g., if

A:<O 1)7
10

GE will fail at the first step. However, we are free to reorder the equations
(i.e., the rows) into any order we like, e.g., the equations

O-z1+1-20=1 and 1214029 =2
l-21+0-29=2 O-z14+1-29=1

are the same, but their matrices

(1) = (4]

have had their rows reordered: GE fails for the first but succeeds for the
second = better to interchange the rows and then apply GE.



Partial pivoting:

when creating the zeros in the j-th column, find

|ak;| = max(|aj;|, [aj+14], - - -, [angl),

then swap (interchange) rows j and k
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e.g.,
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more generally,
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Theorem

GE with partial pivoting cannot fail if A is non singular.
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Theorem J

GE with partial pivoting cannot fail if A is non singular.

Proof. If A is the first matrix above at the j-th stage,

Gi5 -+ Qjn
det[A] = a1y - aj_1j-1-det | ag; - - - apy
Qnj - -+ Qnp
Hence det[A] = 0 if aj; = --- = ag; = - - = an; = 0. Thus if the pivot ax

is zero, A is singular. So if all of the pivots are nonzero, A is nonsingular.
(Note, actually ay,, can be zero and an LU factorization still exist.)
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The effect of pivoting is just a permutation (reordering) of the rows, and
hence can be represented by a permutation matrix P.
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The effect of pivoting is just a permutation (reordering) of the rows, and
hence can be represented by a permutation matrix P.

Permutation matrix: P has the same rows as the identity matrix, but in the
pivoted order. So

PA=LU

represents the factorization—equivalent to GE with partial pivoting.
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The effect of pivoting is just a permutation (reordering) of the rows, and
hence can be represented by a permutation matrix P.

Permutation matrix: P has the same rows as the identity matrix, but in the
pivoted order. So
PA=LU

represents the factorization—equivalent to GE with partial pivoting.
For example,

0 1
00 A
10

o = O

just has the 2nd row of A first, the 3rd row of A second and the 1st row of
A last.
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Matlab:

% matlab

>> A = rand(5,5)

A =
0.8147 0.0975
0.9058 0.2785
0.1270 0.5469
0.9134 0.9575
0.6324 0.9649

>> b = Axones(5,1)

b =

1.8675
2.6124
3.3959
4.0825
4.0358

0.1576
0.9706
0.9572
0.4854
0.8003

0.1419
0.4218
0.9157
0.7922
0.9595

0.6557
0.0357
0.8491
0.9340
0.6787
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> x=A\Db

1.0000
1.0000
1.0000
1.0000
1.0000

>> [L,U,P] = lu(h)
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O O O = O

O = O O O

.0000
.5469
.8870
.3991

.9575
. 7565

o O » O O

.0000

0.9924

O O O O =

.4794

.4854
.2753
L7391

= O O O O

.0000

0.1476

L7922
.5648
.4967
.3559

o O O O

.0000

.9340
L1774
.6223
.3507
.1376
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>> Px*P’

ans =

O O O O =
o O O » O
o O » O O
o = O O O
= O O O O

>> norm(L*U-P*A)

1.6214e-16
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