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LU Factorization

The basic operation of Gaussian Elimination, row i← row i+ λ ∗ row j can

be achieved by pre-multiplication by a special lower-triangular matrix

M(i, j, λ) = I +

 0 0 0

0 λ 0

0 0 0

← i

↑
j

where I is the identity matrix.
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Example: n = 4,

M(3, 2, λ) =


1 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 1

 and M(3, 2, λ)


a

b

c

d

 =


a

b

λb+ c

d

 ,

i.e., M(3, 2, λ)A performs: row 3 of A← row 3 of A+ λ∗ row 2 of A and

similarly M(i, j, λ)A performs: row i of A← row i of A+ λ∗ row j of A.

So GE for e.g., n = 3 is

M(3, 2,−l32) · M(3, 1,−l31) · M(2, 1,−l21) · A = U = ( )@@ .

l32 =
a32
a22

l31 =
a31
a11

l21 =
a21
a11

upper

triangular

The lij are the multipliers.

3 / 14



Example: n = 4,

M(3, 2, λ) =


1 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 1

 and M(3, 2, λ)


a

b

c

d

 =


a

b

λb+ c

d

 ,

i.e., M(3, 2, λ)A performs: row 3 of A← row 3 of A+ λ∗ row 2 of A and

similarly M(i, j, λ)A performs: row i of A← row i of A+ λ∗ row j of A.

So GE for e.g., n = 3 is

M(3, 2,−l32) · M(3, 1,−l31) · M(2, 1,−l21) · A = U = ( )@@ .

l32 =
a32
a22

l31 =
a31
a11

l21 =
a21
a11

upper

triangular

The lij are the multipliers.

3 / 14



Example: n = 4,

M(3, 2, λ) =


1 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 1

 and M(3, 2, λ)


a

b

c

d

 =


a

b

λb+ c

d

 ,

i.e., M(3, 2, λ)A performs: row 3 of A← row 3 of A+ λ∗ row 2 of A and

similarly M(i, j, λ)A performs: row i of A← row i of A+ λ∗ row j of A.

So GE for e.g., n = 3 is

M(3, 2,−l32) · M(3, 1,−l31) · M(2, 1,−l21) · A = U = ( )@@ .

l32 =
a32
a22

l31 =
a31
a11

l21 =
a21
a11

upper

triangular

The lij are the multipliers.

3 / 14



Be careful:

each multiplier lij uses the data aij and aii that results from the

transformations already applied, not data from the original matrix.

So l32 uses a32 and a22 that result from the previous transformations

M(2, 1,−l21) and M(3, 1,−l31).
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Example.

M(2, 1,−l21)A =

 1 0 0

− 1
3

1 0

0 0 1

 3 −1 2

1 2 3

2 −2 −1

 =

 3 −1 2

0 7
3

2

2 −2 −1

 ,

M(3, 1,−l21) [M(2, 1,−l21)A] =

 1 0 0

0 1 0

− 2
3

0 1

 3 −1 2

0 7
3

2

2 −2 −1

 =

 3 −1 2

0 7
3

7
3

0 − 4
3

− 7
3



M(3, 2,−l32) [M(3, 1,−l21)M(2, 1,−l21)A] =

 1 0 0

0 1 0

0 4
7

1


 3 −1 2

0 7
3

7
3

0 − 4
3

− 7
3

 =

 3 −1 2

0 7
3

7
3

0 0 −1



M(3, 2,−l32M(3, 1,−l21)M(2, 1,−l21) =

 1 0 0

−0.3333 1 0

−0.8571 0.5714 1

 ,

L =

 1 0 0

−0.3333 1 0

−0.8571 0.5714 1

−1

=

 1 0 0

0.3333 1 0

0.6667 −0.5714 1



U =

 3 −1 2

0 7
3

7
3

0 0 −1


A = LU
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Lemma

If i 6= j, (M(i, j, λ))−1 =M(i, j,−λ).

Proof. Exercise.
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Outcome: for n = 3, A =M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) · U , where

M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) =

 1 0 0

l21 1 0

l31 l32 1

 = L = ( )@@ .

lower

triangular

This is true for general n.

Theorem

For any dimension n, GE can be expressed as A = LU , where U = ( )@@ is

upper triangular resulting from GE, and L = ( )@@ is unit lower triangular

(lower triangular with ones on the diagonal) with lij = multiplier used to

create the zero in the (i, j)th position.
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Most implementations of GE therefore, rather than doing GE as above,

factorize A = LU (takes ≈ 1
3
n3 flops)

and then solve Ax = b

by solving Ly = b (forward substitution)

and then Ux = y (back substitution)

Note: this is much more efficient if we have many different right-hand sides

b but the same A.
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Pivoting: GE or LU can fail if the pivot aii = 0, e.g., if

A =

(
0 1

1 0

)
,

GE will fail at the first step.

However, we are free to reorder the equations

(i.e., the rows) into any order we like, e.g., the equations

0 · x1 + 1 · x2 = 1

1 · x1 + 0 · x2 = 2
and

1 · x1 + 0 · x2 = 2

0 · x1 + 1 · x2 = 1

are the same, but their matrices(
0 1

1 0

)
and

(
1 0

0 1

)

have had their rows reordered: GE fails for the first but succeeds for the

second =⇒ better to interchange the rows and then apply GE.
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Partial pivoting:

when creating the zeros in the j-th column, find

|akj | = max(|ajj |, |aj+1j |, . . . , |anj |),

then swap (interchange) rows j and k
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e.g.,


4 2 5 1

0 1 2 3

0 2 −2 −1
0 3 −1 2

→


4 2 5 1

0 3 −1 2

0 1 2 3

0 2 −2 −1



M(3, 2,−l3,2)


4 2 5 1

0 3 −1 2

0 1 2 3

0 2 −2 −1

 =


1 0 0 0

0 1 0 0

0 − 1
3 1 0

0 0 0 1




4 2 5 1

0 3 −1 2

0 1 2 3

0 2 −2 −1



=


4 2 5 1

0 3 −1 2

0 0 7
3

7
3

0 2 −2 −1



M(4, 2,−l4,2)


4 2 5 1

0 3 −1 2

0 0 7
3

7
3

0 2 −2 −1

 = . . .
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more generally, 

a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·
0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 ajj · · · ajn
0 · 0 · · · · ·
0 · 0 akj · · · akn
0 · 0 · · · · ·
0 · 0 anj · · · ann


→ 

a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·
0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 akj · · · akn
0 · 0 · · · · ·
0 · 0 ajj · · · ajn
0 · 0 · · · · ·
0 · 0 anj · · · ann
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Theorem

GE with partial pivoting cannot fail if A is non singular.

Proof. If A is the first matrix above at the j-th stage,

det[A] = a11 · · · aj−1j−1 · det


ajj · · · ajn
· · · · ·
akj · · · akn
· · · · ·
anj · · · ann

 .

Hence det[A] = 0 if ajj = · · · = akj = · · · = anj = 0. Thus if the pivot ak,j
is zero, A is singular. So if all of the pivots are nonzero, A is nonsingular.

(Note, actually ann can be zero and an LU factorization still exist.)
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The effect of pivoting is just a permutation (reordering) of the rows, and

hence can be represented by a permutation matrix P .

Permutation matrix: P has the same rows as the identity matrix, but in the

pivoted order. So

PA = LU

represents the factorization—equivalent to GE with partial pivoting.

For example,  0 1 0

0 0 1

1 0 0

A

just has the 2nd row of A first, the 3rd row of A second and the 1st row of

A last.
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Matlab:

% matlab

>> A = rand(5,5)

A =

0.8147 0.0975 0.1576 0.1419 0.6557

0.9058 0.2785 0.9706 0.4218 0.0357

0.1270 0.5469 0.9572 0.9157 0.8491

0.9134 0.9575 0.4854 0.7922 0.9340

0.6324 0.9649 0.8003 0.9595 0.6787

>> b = A*ones(5,1)

b =

1.8675

2.6124

3.3959

4.0825

4.0358
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>> x = A \ b

x =

1.0000

1.0000

1.0000

1.0000

1.0000

>> [L,U,P] = lu(A)
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L =

1.0000 0 0 0 0

0.8920 1.0000 0 0 0

0.1390 -0.5469 1.0000 0 0

0.9917 0.8870 0.9924 1.0000 0

0.6923 -0.3991 0.4794 0.1476 1.0000

U =

0.9134 0.9575 0.4854 0.7922 0.9340

0 -0.7565 -0.2753 -0.5648 -0.1774

0 0 0.7391 0.4967 0.6223

0 0 0 -0.3559 -1.3507

0 0 0 0 -0.1376

P =

0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1
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>> P*P’

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

>> norm(L*U-P*A)

ans =

1.6214e-16

14 / 14


	Lagrange interpolation
	Newton–Cotes quadrature
	Newton–Cotes quadrature continued
	Gaussian elimination
	LU Factorization

