Numerical Analysis

Raphael Hauser with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

QR Factorization

Definition

A square real matrix Q is **orthogonal** if $Q^{\mathrm{T}} = Q^{-1}$.

QR Factorization

Definition

A square real matrix Q is **orthogonal** if $Q^{\mathrm{T}} = Q^{-1}$.

Q is orthogonal if, and only if, $Q^{\mathrm{T}}Q=I=QQ^{\mathrm{T}}.$

QR Factorization

Definition

A square real matrix Q is **orthogonal** if $Q^{\mathrm{T}} = Q^{-1}$.

Q is orthogonal if, and only if, $Q^{\mathrm{T}}Q=I=QQ^{\mathrm{T}}.$

Example: the permutation matrices P in LU factorization with partial pivoting are orthogonal.

Proposition

The product of orthogonal matrices is an orthogonal matrix.

Proposition

The product of orthogonal matrices is an orthogonal matrix.

Proof. Note that $(ST)^{\rm T}=T^{\rm T}S^{\rm T}.$ Further, as S and T are orthogonal matrices,

$$(ST)^{\mathrm{T}}(ST) = T^{\mathrm{T}}S^{\mathrm{T}}ST = T^{\mathrm{T}}(S^{\mathrm{T}}S)T = T^{\mathrm{T}}T = I.$$

The scalar (dot) (inner) product of two vectors

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ and } y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

in \mathbb{R}^n is

$$x^{\mathrm{T}}y = y^{\mathrm{T}}x = \sum_{i=1}^{n} x_i y_i \in \mathbb{R}$$

The scalar (dot) (inner) product of two vectors

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ and } y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

in \mathbb{R}^n is

$$x^{\mathrm{T}}y = y^{\mathrm{T}}x = \sum_{i=1}^{n} x_i y_i \in \mathbb{R}$$

Definition

Two vectors $x, y \in \mathbb{R}^n$ are **orthogonal** (perpendicular) if $x^T y = 0$.

A set of vectors $\{u_1, u_2, \dots, u_r\}$ is an **orthogonal set** if $u_i^T u_j = 0$ for all $i, j \in \{1, 2, \dots, r\}$ such that $i \neq j$.

The columns of an $n \times n$ orthogonal matrix Q form an orthogonal set, which is moreover an orthogonal basis for \mathbb{R}^n .

The columns of an $n \times n$ orthogonal matrix Q form an orthogonal set, which is moreover an orthogonal basis for \mathbb{R}^n .

Proof. Suppose that $Q=[q_1 \ q_2 \ \vdots \ q_n]$, i.e., q_j is the jth column of Q. Then

$$Q^{\mathrm{T}}Q = I = \begin{pmatrix} q_1^{\mathrm{T}} \\ q_2^{\mathrm{T}} \\ \dots \\ q_n^{\mathrm{T}} \end{pmatrix} [q_1 \ q_2 \ \vdots \ q_n] = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

The columns of an $n \times n$ orthogonal matrix Q form an orthogonal set, which is moreover an orthogonal basis for \mathbb{R}^n .

Proof. Suppose that $Q=[q_1 \ q_2 \ \vdots \ q_n]$, i.e., q_j is the jth column of Q. Then

$$Q^{\mathrm{T}}Q = I = \begin{pmatrix} q_1^{\mathrm{T}} \\ q_2^{\mathrm{T}} \\ \dots \\ q_n^{\mathrm{T}} \end{pmatrix} [q_1 \ q_2 \ \vdots \ q_n] = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Comparing the (i, j)th entries yields

$$q_i^{\mathrm{T}} q_j = \begin{cases} 0 & i \neq j \\ 1 & i = j. \end{cases}$$

Note that the columns of an orthogonal matrix are of length 1 as $q_i^{\rm T}q_i=1$, so they form an orthonormal set \Longrightarrow they are linearly independent (check!)

 \implies they form an orthonormal basis for \mathbb{R}^n as there are n of them.

If $u \in \mathbb{R}^n$, Q is an $n \times n$ orthogonal matrix and v = Qu, then $u^{\mathrm{T}}u = v^{\mathrm{T}}v$.

Proof. See problem sheet.

The **outer product** of two vectors x and $y \in \mathbb{R}^n$ is

$$xy^{\mathrm{T}} = \begin{pmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_ny_n \end{pmatrix},$$

an n by n matrix (notation: $xy^{\mathrm{T}} \in \mathbb{R}^{n \times n}$). More usefully, if $z \in \mathbb{R}^n$, then

$$(xy^{\mathrm{T}})z = xy^{\mathrm{T}}z = x(y^{\mathrm{T}}z) = \left(\sum_{i=1}^{n} y_i z_i\right)x.$$

For $w \in \mathbb{R}^n$, $w \neq 0$, the **Householder** matrix $H(w) \in \mathbb{R}^{n \times n}$ is the matrix

$$H(w) = I - \frac{2}{w^{\mathrm{T}}w}ww^{\mathrm{T}}.$$

For $w \in \mathbb{R}^n$, $w \neq 0$, the **Householder** matrix $H(w) \in \mathbb{R}^{n \times n}$ is the matrix

$$H(w) = I - \frac{2}{w^{\mathrm{T}}w}ww^{\mathrm{T}}.$$

Proposition

H(w) is an orthogonal matrix.

For $w \in \mathbb{R}^n$, $w \neq 0$, the **Householder** matrix $H(w) \in \mathbb{R}^{n \times n}$ is the matrix

$$H(w) = I - \frac{2}{w^{\mathrm{T}}w}ww^{\mathrm{T}}.$$

Proposition

H(w) is an orthogonal matrix.

Proof.

$$H(w)H(w)^{T} = \left(I - \frac{2}{w^{T}w}ww^{T}\right)\left(I - \frac{2}{w^{T}w}ww^{T}\right)$$

$$= I - \frac{4}{w^{T}w}ww^{T} + \frac{4}{(w^{T}w)^{2}}w(w^{T}w)w^{T}$$

$$= I$$

Given $u \in \mathbb{R}^n$, there exists a $w \in \mathbb{R}^n$ such that

$$H(w)u = \begin{pmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{pmatrix} \equiv v,$$

say, where $\alpha = \pm \sqrt{u^{\mathrm{T}}u}$.

Proof. Take $w = \gamma(u - v)$, where $\gamma \neq 0$.

Proof. Take $w=\gamma(u-v)$, where $\gamma\neq 0$. Recall that since H(w) is orthogonal, $u^{\rm T}u=v^{\rm T}v$.

Proof. Take $w = \gamma(u - v)$, where $\gamma \neq 0$. Recall that since H(w) is orthogonal, $u^{\mathrm{T}}u = v^{\mathrm{T}}v$. Then

$$w^{\mathrm{T}}w = \gamma^{2}(u-v)^{\mathrm{T}}(u-v) = \gamma^{2}(u^{\mathrm{T}}u - 2u^{\mathrm{T}}v + v^{\mathrm{T}}v)$$

= $\gamma^{2}(u^{\mathrm{T}}u - 2u^{\mathrm{T}}v + u^{\mathrm{T}}u) = 2\gamma u^{\mathrm{T}}(\gamma(u-v))$
= $2\gamma w^{\mathrm{T}}u$.

Proof. Take $w=\gamma(u-v)$, where $\gamma\neq 0$. Recall that since H(w) is orthogonal, $u^{\rm T}u=v^{\rm T}v$. Then

$$w^{\mathrm{T}}w = \gamma^{2}(u-v)^{\mathrm{T}}(u-v) = \gamma^{2}(u^{\mathrm{T}}u - 2u^{\mathrm{T}}v + v^{\mathrm{T}}v)$$

= $\gamma^{2}(u^{\mathrm{T}}u - 2u^{\mathrm{T}}v + u^{\mathrm{T}}u) = 2\gamma u^{\mathrm{T}}(\gamma(u-v))$
= $2\gamma w^{\mathrm{T}}u$.

So

$$H(w)u = \left(I - \frac{2}{w^{\mathrm{T}}w}ww^{\mathrm{T}}\right)u = u - \frac{2w^{\mathrm{T}}u}{w^{\mathrm{T}}w}w = u - \frac{1}{\gamma}w = u - (u - v) = v.$$

Now if u is the first column of the n by n matrix A,

$$H(w)A = \begin{pmatrix} \begin{array}{c|c} \alpha & \times & \cdots & \times \\ \hline 0 & & & \\ \vdots & & B & \\ \hline 0 & & & \\ \end{pmatrix}, \text{ where } \times = \text{general entry}.$$

Now if u is the first column of the n by n matrix A,

$$H(w)A = \begin{pmatrix} \begin{array}{c|c} \alpha & \times & \cdots & \times \\ \hline 0 & & & \\ \vdots & & B & \\ \hline 0 & & & \\ \end{pmatrix}, \ \ \text{where} \ \times = \text{general entry}.$$

Similarly for B, we can find $\hat{w} \in \mathbb{R}^{n-1}$ such that

$$H(\hat{w})B = \begin{pmatrix} \beta & \times & \cdots & \times \\ \hline 0 & & & \\ \vdots & & C & \\ 0 & & & \end{pmatrix}.$$

Thus,

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & H(\hat{w}) \\ 0 & & & \end{pmatrix} H(w)A = \begin{pmatrix} \alpha & \times & \times & \cdots & \times \\ 0 & \beta & \times & \cdots & \times \\ 0 & 0 & & & \\ 0 & 0 & & & \\ \vdots & \vdots & & & C \\ 0 & 0 & & & \end{pmatrix}.$$

Thus,

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & H(\hat{w}) \\ 0 & & & \end{pmatrix} H(w)A = \begin{pmatrix} \alpha & \times & \times & \cdots & \times \\ 0 & \beta & \times & \cdots & \times \\ 0 & 0 & & & \\ 0 & 0 & & & \\ \vdots & \vdots & & & C \\ 0 & 0 & & & \end{pmatrix}.$$

Note that

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & H(\hat{w}) \end{array}\right) = H(w_2), \text{ where } w_2 = \left(\begin{array}{c} 0 \\ \hat{w} \end{array}\right).$$

$$\underbrace{H(w_{n-1})\cdots H(w_3)H(w_2)H(w)}_{Q^{\mathrm{T}}} A = \begin{pmatrix} \alpha & \times & \cdots & \times \\ 0 & \beta & \cdots & \times \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma \end{pmatrix} = ().$$

$$\underbrace{H(w_{n-1})\cdots H(w_3)H(w_2)H(w)}_{Q^{\mathrm{T}}} A = \begin{pmatrix} \alpha & \times & \cdots & \times \\ 0 & \beta & \cdots & \times \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma \end{pmatrix} = ().$$

The matrix Q^{T} is orthogonal as it is the product of orthogonal (Householder) matrices.

$$\underbrace{H(w_{n-1})\cdots H(w_3)H(w_2)H(w)}_{Q^{\mathrm{T}}} A = \begin{pmatrix} \alpha & \times & \cdots & \times \\ 0 & \beta & \cdots & \times \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma \end{pmatrix} = (\nabla).$$

The matrix Q^{T} is orthogonal as it is the product of orthogonal (Householder) matrices.

So we have constructively proved the following result.

The matrix Q^{T} is orthogonal as it is the product of orthogonal (Householder) matrices.

So we have constructively proved the following result.

Theorem

Given any square matrix A, there exists an orthogonal matrix Q and an upper triangular matrix R such that

$$A = QR$$

This could also be established using the Gram-Schmidt Process.

- This could also be established using the Gram-Schmidt Process.
- ② If u is already of the form $(\alpha, 0, \dots, 0)^T$, we just take H = I.

- This could also be established using the Gram-Schmidt Process.
- ② If u is already of the form $(\alpha, 0, \dots, 0)^T$, we just take H = I.
- **9** It is not necessary that A is square: if $A \in \mathbb{R}^{m \times n}$, then we need the product of (a) m-1 Householder matrices if $m \leq n \Longrightarrow$

$$(\square) = A = QR = (\square)(\square)$$

- This could also be established using the Gram-Schmidt Process.
- ② If u is already of the form $(\alpha, 0, \dots, 0)^T$, we just take H = I.
- **9** It is not necessary that A is square: if $A \in \mathbb{R}^{m \times n}$, then we need the product of (a) m-1 Householder matrices if $m \leq n \Longrightarrow$

$$(\square) = A = QR = (\square)(\square)$$

or (b) n Householder matrices if $m > n \Longrightarrow$

$$\left(\square \right) = A = QR = \left(\square \right) \left(\bigcap \right).$$

Another useful family of orthogonal matrices are the **Givens' rotation** matrices:

$$J(i,j,\theta) = \left(\begin{array}{cccc} 1 & & & & \\ & \cdot & & & \\ & & c & s & \\ & & & \cdot & \\ & & & \cdot & \\ & & -s & c & \\ & & & \cdot & \\ & & & & \cdot \\ & & & & 1 \end{array} \right) \begin{array}{c} \leftarrow i \text{th row} \\ \leftarrow j \text{th row} \\ \\ \leftarrow i \text{th row} \\ \leftarrow i \text{th row} \\ \\ \leftarrow i \text{th row} \\$$

where $c = \cos \theta$ and $s = \sin \theta$.

Exercise: Prove that $J(i, j, \theta)J(i, j, \theta)^T = I$ — obvious though, since the columns form an orthonormal basis.

Exercise: Prove that $J(i, j, \theta)J(i, j, \theta)^{T} = I$ — obvious though, since the columns form an orthonormal basis.

Note that if $x=(x_1,\ x_2,\ \dots,x_n)^{\mathrm{T}}$ and $y=J(i,j,\theta)x$, then

$$y_k = x_k \text{ for } k \neq i, j$$

$$y_i = cx_i + sx_j$$

$$y_j = -sx_i + cx_j$$

and so we can ensure that $y_j=0$ by choosing $x_i\sin\theta=x_j\cos\theta$, i.e.,

$$\tan \theta = \frac{x_j}{x_i}$$
 or equivalently $s = \frac{x_j}{\sqrt{x_i^2 + x_j^2}}$ and $c = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}$. (6.1)

Since (6.1) can always be satisfied, we only ever think of Givens' matrices J(i,j) for a specific vector or column with the angle chosen to make a zero in the jth position, e.g., J(1,2)x tacitly implies that we choose

$$\theta = \tan^{-1} x_2 / x_1$$

so that the second entry of J(1,2)x is zero.

Since (6.1) can always be satisfied, we only ever think of Givens' matrices J(i,j) for a specific vector or column with the angle chosen to make a zero in the jth position, e.g., J(1,2)x tacitly implies that we choose

$$\theta = \tan^{-1} x_2 / x_1$$

so that the second entry of J(1,2)x is zero.

Similarly, for a matrix $A \in \mathbb{R}^{m \times n}$, $J(i,j)A := J(i,j,\theta)A$, where

$$\theta = \tan^{-1} a_{ji}/a_{ii},$$

i.e., it is the ith column of A, which is used to define θ so that $(J(i,j)A)_{ii}=0$.

Since (6.1) can always be satisfied, we only ever think of Givens' matrices J(i,j) for a specific vector or column with the angle chosen to make a zero in the jth position, e.g., J(1,2)x tacitly implies that we choose

$$\theta = \tan^{-1} x_2 / x_1$$

so that the second entry of J(1,2)x is zero.

Similarly, for a matrix $A \in \mathbb{R}^{m \times n}$, $J(i,j)A := J(i,j,\theta)A$, where

$$\theta = \tan^{-1} a_{ji}/a_{ii},$$

i.e., it is the ith column of A, which is used to define θ so that $(J(i,j)A)_{ji}=0$. We shall return to these in a later lecture.