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QR Factorization

Definition

A square real matrix Q is orthogonal if QT = Q−1.

Q is orthogonal if, and only if, QTQ = I = QQT.

Example: the permutation matrices P in LU factorization with partial

pivoting are orthogonal.
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Proposition

The product of orthogonal matrices is an orthogonal matrix.

Proof. Note that (ST )T = TTST. Further, as S and T are orthogonal

matrices,

(ST )T(ST ) = TTSTST = TT(STS)T = TTT = I. �
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Definition

The scalar (dot) (inner) product of two vectors

x =


x1
x2
...

xn

 and y =


y1
y2
...

yn


in Rn is

xTy = yTx =

n∑
i=1

xiyi ∈ R

Definition

Two vectors x, y ∈ Rn are orthogonal (perpendicular) if xTy = 0.

A set of vectors {u1, u2, . . . , ur} is an orthogonal set if uTi uj = 0

for all i, j ∈ {1, 2, . . . , r} such that i 6= j.
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Lemma

The columns of an n× n orthogonal matrix Q form an orthogonal set,

which is moreover an orthogonal basis for Rn.

Proof. Suppose that Q = [q1 q2
... qn], i.e., qj is the jth column of Q.

Then

QTQ = I =


qT1
qT2
· · ·
qTn

 [q1 q2
... qn] =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Comparing the (i, j)th entries yields

qTi qj =

{
0 i 6= j

1 i = j.
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Note that the columns of an orthogonal matrix are of length 1 as qTi qi = 1,

so they form an orthonormal set =⇒ they are linearly independent (check!)

=⇒ they form an orthonormal basis for Rn as there are n of them. �
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Lemma

If u ∈ Rn, Q is an n× n orthogonal matrix and v = Qu, then uTu = vTv.

Proof. See problem sheet. �
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Definition

The outer product of two vectors x and y ∈ Rn is

xyT =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn

...
...

. . .
...

xny1 xny2 · · · xnyn

 ,

an n by n matrix (notation: xyT ∈ Rn×n). More usefully, if z ∈ Rn, then

(xyT)z = xyTz = x(yTz) =

(
n∑

i=1

yizi

)
x.
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Definition

For w ∈ Rn, w 6= 0, the Householder matrix H(w) ∈ Rn×n is the matrix

H(w) = I − 2

wTw
wwT.

Proposition

H(w) is an orthogonal matrix.

Proof.

H(w)H(w)T =

(
I − 2

wTw
wwT

)(
I − 2

wTw
wwT

)
= I − 4

wTw
wwT +

4

(wTw)2
w(wTw)wT

= I

.

�
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Lemma

Given u ∈ Rn, there exists a w ∈ Rn such that

H(w)u =


α

0
...

0

 ≡ v,

say, where α = ±
√
uTu.
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Proof. Take w = γ(u− v), where γ 6= 0.

Recall that since H(w) is

orthogonal, uTu = vTv. Then

wTw = γ2(u− v)T(u− v) = γ2(uTu− 2uTv + vTv)

= γ2(uTu− 2uTv + uTu) = 2γuT(γ(u− v))
= 2γwTu.

So

H(w)u =

(
I − 2

wTw
wwT

)
u = u− 2wTu

wTw
w = u− 1

γ
w = u− (u− v) = v.

�
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Now if u is the first column of the n by n matrix A,

H(w)A =


α × · · · ×
0
...

0

B

 , where × = general entry.

Similarly for B, we can find ŵ ∈ Rn−1 such that

H(ŵ)B =


β × · · · ×
0
...

0

C

 .
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Thus,


1 0 · · · 0

0
...

0

H(ŵ)

H(w)A =



α × × · · · ×
0 β × · · · ×
0

0
...

0

0

0
...

0

C


.

Note that (
1 0

0 H(ŵ)

)
= H(w2), where w2 =

(
0

ŵ

)
.
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Thus if we continue in this manner for the n− 1 steps, we obtain

H(wn−1) · · ·H(w3)H(w2)H(w)︸ ︷︷ ︸
QT

A =


α × · · · ×
0 β · · · ×
...

...
. . .

...

0 0 · · · γ

 = ( )@@ .

The matrix QT is orthogonal as it is the product of orthogonal

(Householder) matrices.

So we have constructively proved the following result.

Theorem

Given any square matrix A, there exists an orthogonal matrix Q and an

upper triangular matrix R such that

A = QR
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Notes:

1 This could also be established using the Gram–Schmidt Process.

2 If u is already of the form (α, 0, · · · , 0)T, we just take H = I.

3 It is not necessary that A is square: if A ∈ Rm×n, then we need the

product of (a) m− 1 Householder matrices if m ≤ n =⇒

( ) = A = QR = ( ) ( )@@

or (b) n Householder matrices if m > n =⇒

( )
= A = QR =

( )( )
@@ .
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Another useful family of orthogonal matrices are the Givens’ rotation

matrices:

J(i, j, θ) =



1

·
c s

·
−s c

·
1


↑ ↑
i j

← ith row

← jth row

where c = cos θ and s = sin θ.
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Exercise: Prove that J(i, j, θ)J(i, j, θ)T = I— obvious though, since the

columns form an orthonormal basis.

Note that if x = (x1, x2, . . . , xn)
T and y = J(i, j, θ)x, then

yk = xk for k 6= i, j

yi = cxi + sxj
yj = −sxi + cxj

and so we can ensure that yj = 0 by choosing xi sin θ = xj cos θ, i.e.,

tan θ =
xj
xi

or equivalently s =
xj√
x2i + x2j

and c =
xi√

x2i + x2j

. (6.1)
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Thus, unlike the Householder matrices, which introduce lots of zeros by

pre-multiplication, the Givens’ matrices introduce a single zero in a chosen

position by pre-multiplication.

Since (6.1) can always be satisfied, we only ever think of Givens’ matrices

J(i, j) for a specific vector or column with the angle chosen to make a zero

in the jth position, e.g., J(1, 2)x tacitly implies that we choose

θ = tan−1 x2/x1

so that the second entry of J(1, 2)x is zero.

Similarly, for a matrix A ∈ Rm×n, J(i, j)A := J(i, j, θ)A, where

θ = tan−1 aji/aii,

i.e., it is the ith column of A, which is used to define θ so that

(J(i, j)A)ji = 0. We shall return to these in a later lecture.
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