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Givens Rotations

Another useful family of orthogonal matrices are the Givens’ rotation

matrices:

J(i, j, θ) =



1

·
c s

·
−s c

·
1


↑ ↑
i j

← ith row

← jth row

where c = cos θ and s = sin θ.
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Exercise: Prove that J(i, j, θ)J(i, j, θ)T = I— obvious though, since the

columns form an orthonormal basis.

Note that if x = (x1, x2, . . . , xn)
T and y = J(i, j, θ)x, then

yk = xk for k 6= i, j

yi = cxi + sxj
yj = −sxi + cxj

and so we can ensure that yj = 0 by choosing xi sin θ = xj cos θ, i.e.,

tan θ =
xj
xi

or equivalently s =
xj√
x2i + x2j

and c =
xi√

x2i + x2j

. (7.1)
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Thus, unlike the Householder matrices, which introduce lots of zeros by

pre-multiplication, the Givens’ matrices introduce a single zero in a chosen

position by pre-multiplication.

Since (7.1) can always be satisfied, we only ever think of Givens’ matrices

J(i, j) for a specific vector or column with the angle chosen to make a zero

in the jth position, e.g., J(1, 2)x tacitly implies that we choose

θ = tan−1 x2/x1

so that the second entry of J(1, 2)x is zero.

Similarly, for a matrix A ∈ Rm×n, J(i, j)A := J(i, j, θ)A, where

θ = tan−1 aji/aii,

i.e., it is the ith column of A, which is used to define θ so that

(J(i, j)A)ji = 0. We shall return to these in a later lecture.
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Matrix Eigenvalues

Background:

first, an important result from analysis (not proved or examinable!).

Theorem (Ostrowski)

The eigenvalues of a matrix are continuously dependent on the entries.

I.e., suppose that {λi, i = 1, . . . , n} and {µi, i = 1, . . . , n} are the

eigenvalues of A ∈ Rn×n and A+B ∈ Rn×n respectively; given any ε > 0,

there is a δ > 0 such that |λi − µi| < ε whenever maxi,j |bij | < δ, where

B = {bij}1≤i,j≤n.
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Aim: estimate the eigenvalues of a matrix.
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Gerschgorin Theorems

Theorem (Gerschgorin’s theorem)

Suppose that A = {aij}1≤i,j≤n ∈ Rn×n, and λ is an eigenvalue of A.

Then, λ lies in the union of the Gerschgorin discs

Di =

z ∈ C |aii − z| ≤
n∑

j 6=i
j=1

|aij |

 , i = 1, . . . , n.
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Proof. If λ is an eigenvalue of A ∈ Rn×n, then there exists an eigenvector

x ∈ Cn with Ax = λx, x 6= 0, i.e.,

n∑
j=1

aijxj = λxi, i = 1, . . . , n.

Suppose that |xk| ≥ |x`|, ` = 1, . . . , n, i.e.,

“xk is the largest entry”. (7.2)

Since x 6= 0, it follows that xk 6= 0.
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Then certainly
n∑

j=1

akjxj = λxk, or

(akk − λ)xk = −
n∑

j 6=k
j=1

akjxj .

Dividing by xk, (which, we know, is 6= 0) and taking absolute values,

|akk − λ| =

∣∣∣∣∣∣∣∣
n∑

j 6=k
j=1

akj
xj
xk

∣∣∣∣∣∣∣∣ ≤
n∑

j 6=k
j=1

|akj |
∣∣∣∣xjxk

∣∣∣∣ ≤ n∑
j 6=k
j=1

|akj |

by (7.2). 2
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Example.

A =

 9 1 2

−3 1 1

1 2 −1



9−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

1

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066
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Theorem (Gerschgorin’s 2nd theorem)

If any union of ` Gerschgorin discs is disjoint from the other Gerschgorin

discs, then this union contains ` eigenvalues.
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Proof. Consider B(θ) = θA+ (1− θ)D, where D = diag(A), the diagonal

matrix whose diagonal entries are those from A. As θ varies from 0 to 1,

B(θ) has entries that vary continuously from B(0) = D to B(1) = A.

Hence the eigenvalues λ(θ) vary continuously by Ostrowski’s theorem.

The Gerschgorin discs of B(0) = D are points (the diagonal entries), which

are clearly the eigenvalues of D.

As θ increases the Gerschgorin discs of B(θ) increase in radius about these

same points as centres.

Thus if A = B(1) has a disjoint set of ` Gerschgorin discs by continuity of

the eigenvalues it must contain exactly ` eigenvalues (as they can’t jump!).

2
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Notation: for x ∈ Rn, ‖x‖ =
√
xTx is the (Euclidean) length of x.
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Power Method/Iteration

Power Method/Iteration is a simple method for calculating a single (largest)

eigenvalue of a square matrix A:

choose arbitrary y ∈ Rn

set x0 = y/‖y‖ to calculate an initial vector;

then, for k = 0, 1, . . .

compute yk = Axk
and set xk+1 = yk/‖yk‖.

This is the Power Method or Power Iteration.

It computes unit vectors in the direction of x0, Ax0, A
2x0, A

3x0, . . . , A
kx0.
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Suppose A is diagonalizable so that there is a basis of eigenvectors of A:

{v1, v2, . . . , vn}

with Avi = λivi and ‖vi‖ = 1, i = 1, 2, . . . , n, and assume that

|λ1| > |λ2| ≥ · · · ≥ |λn| .

Then we can write

x0 =
n∑

i=1

αivi

for some αi ∈ R, i = 1, 2, . . . , n. Hence

Akx0 = Ak
n∑

i=1

αivi =
n∑

i=1

αiA
kvi.
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However, since

Avi = λivi =⇒ A2vi = A(Avi) = λiAvi = λ2i vi,

inductively

Akvi = λki vi.

So

Akx0 =

n∑
i=1

αiλ
k
i vi = λk1

[
α1v1 +

n∑
i=2

αi

(
λi
λ1

)k

vi

]
.

Since (λi/λ1)
k → 0 as k →∞, Akx0 tends to look like λk1α1v1 as k →∞.

The result is that by normalizing to be a unit vector

Akx0
‖Akx0‖

→ ±v1 and
‖Akx0‖
‖Ak−1x0‖

≈

∣∣∣∣∣ λk1α1

λk−11 α1

∣∣∣∣∣ = |λ1| as k →∞.

The sign is identified by looking at, e.g., (Akx0)1/(A
k−1x0)1.
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Note:

it is possible for a chosen vector x0 that α1 = 0, but rounding errors in the

computation generally introduce a small component in v1, so that in

practice this is not a concern!

This simplified method for eigenvalue computation is the basis for effective

methods, but the current state of the art is the QR Algorithm, which we

consider only in the case when A is symmetric (see next lecture).
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