Numerical Analysis

Raphael Hauser with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

ヘロン 人間 とくほと 人間と

= 990

Givens Rotations

Another useful family of orthogonal matrices are the **Givens' rotation** matrices:

$$J(i,j,\theta) = \begin{pmatrix} 1 & & & \\ & \cdot & & \\ & c & s & \\ & & \cdot & \\ & & -s & c & \\ & & & \cdot & \\ & & & & 1 \end{pmatrix} \leftarrow i \text{th row}$$
$$\leftarrow j \text{th row}$$
$$\uparrow & \uparrow \\i & j$$

where $c = \cos \theta$ and $s = \sin \theta$.

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Exercise: Prove that $J(i, j, \theta)J(i, j, \theta)^{T} = I$ — obvious though, since the columns form an orthonormal basis.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Exercise: Prove that $J(i, j, \theta)J(i, j, \theta)^{T} = I$ — obvious though, since the columns form an orthonormal basis.

Note that if $x=(x_1,\ x_2,\ \ldots,x_n)^{\mathrm{T}}$ and $y=J(i,j,\theta)x$, then

$$y_k = x_k \text{ for } k \neq i, j$$

$$y_i = cx_i + sx_j$$

$$y_j = -sx_i + cx_j$$

and so we can ensure that $y_j = 0$ by choosing $x_i \sin \theta = x_j \cos \theta$, i.e.,

$$\tan \theta = \frac{x_j}{x_i} \text{ or equivalently } s = \frac{x_j}{\sqrt{x_i^2 + x_j^2}} \text{ and } c = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}.$$
 (7.1)

(ロ) (回) (E) (E) (E) (O)(

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Since (7.1) can always be satisfied, we only ever think of Givens' matrices J(i, j) for a specific vector or column with the angle chosen to make a zero in the *j*th position, e.g., J(1, 2)x tacitly implies that we choose

$$\theta = \tan^{-1} x_2 / x_1$$

so that the second entry of J(1,2)x is zero.

Since (7.1) can always be satisfied, we only ever think of Givens' matrices J(i, j) for a specific vector or column with the angle chosen to make a zero in the *j*th position, e.g., J(1, 2)x tacitly implies that we choose

$$\theta = \tan^{-1} x_2 / x_1$$

so that the second entry of J(1,2)x is zero.

Similarly, for a matrix $A \in \mathbb{R}^{m \times n}$, $J(i, j)A := J(i, j, \theta)A$, where

$$\theta = \tan^{-1} a_{ji} / a_{ii},$$

i.e., it is the ith column of A, which is used to define θ so that $(J(i,j)A)_{ji}=0.$

Since (7.1) can always be satisfied, we only ever think of Givens' matrices J(i, j) for a specific vector or column with the angle chosen to make a zero in the *j*th position, e.g., J(1, 2)x tacitly implies that we choose

$$\theta = \tan^{-1} x_2 / x_1$$

so that the second entry of J(1,2)x is zero.

Similarly, for a matrix $A \in \mathbb{R}^{m \times n}$, $J(i, j)A := J(i, j, \theta)A$, where

$$\theta = \tan^{-1} a_{ji} / a_{ii},$$

i.e., it is the *i*th column of A, which is used to define θ so that $(J(i, j)A)_{ji} = 0$. We shall return to these in a later lecture.

4 / 17

Matrix Eigenvalues

Background:

first, an important result from analysis (not proved or examinable!).

Matrix Eigenvalues

Background:

first, an important result from analysis (not proved or examinable!).

Theorem (Ostrowski)

The eigenvalues of a matrix are continuously dependent on the entries. I.e., suppose that $\{\lambda_i, i = 1, ..., n\}$ and $\{\mu_i, i = 1, ..., n\}$ are the eigenvalues of $A \in \mathbb{R}^{n \times n}$ and $A + B \in \mathbb{R}^{n \times n}$ respectively; given any $\varepsilon > 0$, there is a $\delta > 0$ such that $|\lambda_i - \mu_i| < \varepsilon$ whenever $\max_{i,j} |b_{ij}| < \delta$, where $B = \{b_{ij}\}_{1 \le i,j \le n}$. Aim: estimate the eigenvalues of a matrix.

Gerschgorin Theorems

Theorem (Gerschgorin's theorem)

Suppose that $A = \{a_{ij}\}_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$, and λ is an eigenvalue of A. Then, λ lies in the union of the **Gerschgorin discs**

$$D_i = \left\{ z \in \mathbb{C} \left| |a_{ii} - z| \le \sum_{\substack{j \neq i \\ j=1}}^n |a_{ij}| \right\}, \quad i = 1, \dots, n.$$

Proof. If λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then there exists an eigenvector $x \in \mathbb{C}^n$ with $Ax = \lambda x$, $x \neq 0$, i.e.,

$$\sum_{j=1}^{n} a_{ij} x_j = \lambda x_i, \quad i = 1, \dots, n.$$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Proof. If λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then there exists an eigenvector $x \in \mathbb{C}^n$ with $Ax = \lambda x$, $x \neq 0$, i.e.,

$$\sum_{j=1}^{n} a_{ij} x_j = \lambda x_i, \quad i = 1, \dots, n.$$

Suppose that $|x_k| \geq |x_\ell|$, $\ell = 1, \ldots, n$, i.e.,

"
$$x_k$$
 is the largest entry". (7.2)

Proof. If λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then there exists an eigenvector $x \in \mathbb{C}^n$ with $Ax = \lambda x$, $x \neq 0$, i.e.,

$$\sum_{j=1}^{n} a_{ij} x_j = \lambda x_i, \quad i = 1, \dots, n.$$

Suppose that $|x_k| \geq |x_\ell|$, $\ell=1,\ldots,n$, i.e.,

"
$$x_k$$
 is the largest entry". (7.2)

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Since $x \neq 0$, it follows that $x_k \neq 0$.

Then certainly
$$\sum_{j=1}^{n} a_{kj} x_j = \lambda x_k$$
, or

$$(a_{kk} - \lambda)x_k = -\sum_{\substack{j \neq k\\j=1}}^n a_{kj}x_j.$$

Then certainly
$$\sum_{j=1}^n a_{kj} x_j = \lambda x_k$$
, or $(a_{kk} - \lambda) x_k = -\sum_{\substack{j \neq k \\ j=1}}^n a_{kj} x_j.$

Dividing by x_k , (which, we know, is $\neq 0$) and taking absolute values,

$$|a_{kk} - \lambda| = \left| \sum_{\substack{j \neq k \\ j=1}}^{n} a_{kj} \frac{x_j}{x_k} \right| \le \sum_{\substack{j \neq k \\ j=1}}^{n} |a_{kj}| \left| \frac{x_j}{x_k} \right| \le \sum_{\substack{j \neq k \\ j=1}}^{n} |a_{kj}|$$

by (7.2).

・ロト ・回ト ・ヨト ・ヨト

Example.

$$A = \left(\begin{array}{rrrr} 9 & 1 & 2 \\ -3 & 1 & 1 \\ 1 & 2 & -1 \end{array}\right)$$

Example.

$$A = \left(\begin{array}{rrr} 9 & 1 & 2 \\ -3 & 1 & 1 \\ 1 & 2 & -1 \end{array}\right)$$

Example.

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066

Theorem (Gerschgorin's 2nd theorem)

If any union of ℓ Gerschgorin discs is disjoint from the other Gerschgorin discs, then this union contains ℓ eigenvalues.

(ロ) (同) (E) (E) (E) (O)(C)

Hence the eigenvalues $\lambda(\theta)$ vary continuously by Ostrowski's theorem.

Hence the eigenvalues $\lambda(\theta)$ vary continuously by Ostrowski's theorem.

The Gerschgorin discs of B(0) = D are points (the diagonal entries), which are clearly the eigenvalues of D.

Hence the eigenvalues $\lambda(\theta)$ vary continuously by Ostrowski's theorem.

The Gerschgorin discs of B(0) = D are points (the diagonal entries), which are clearly the eigenvalues of D.

As θ increases the Gerschgorin discs of $B(\theta)$ increase in radius about these same points as centres.

Hence the eigenvalues $\lambda(\theta)$ vary continuously by Ostrowski's theorem.

The Gerschgorin discs of B(0) = D are points (the diagonal entries), which are clearly the eigenvalues of D.

As θ increases the Gerschgorin discs of $B(\theta)$ increase in radius about these same points as centres.

Thus if A = B(1) has a disjoint set of ℓ Gerschgorin discs by continuity of the eigenvalues it must contain exactly ℓ eigenvalues (as they can't jump!).

Notation: for $x \in \mathbb{R}^n$, $||x|| = \sqrt{x^{\mathrm{T}}x}$ is the (Euclidean) length of x.

Power Method/Iteration is a simple method for calculating a single (largest) eigenvalue of a square matrix A:

Power Method/Iteration is a simple method for calculating a single (largest) eigenvalue of a square matrix A:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへぐ

choose arbitrary $y \in \mathbb{R}^n$ set $x_0 = y/||y||$ to calculate an initial vector; then, for $k = 0, 1, \ldots$ compute $y_k = Ax_k$ and set $x_{k+1} = y_k/||y_k||$.

Power Method/Iteration is a simple method for calculating a single (largest) eigenvalue of a square matrix A:

choose arbitrary $y \in \mathbb{R}^n$ set $x_0 = y/||y||$ to calculate an initial vector; then, for k = 0, 1, ...compute $y_k = Ax_k$ and set $x_{k+1} = y_k/||y_k||$.

This is the **Power Method** or **Power Iteration**.

Power Method/Iteration is a simple method for calculating a single (largest) eigenvalue of a square matrix A:

choose arbitrary $y \in \mathbb{R}^n$ set $x_0 = y/||y||$ to calculate an initial vector; then, for k = 0, 1, ...compute $y_k = Ax_k$ and set $x_{k+1} = y_k/||y_k||$.

This is the **Power Method** or **Power Iteration**.

It computes unit vectors in the direction of $x_0, Ax_0, A^2x_0, A^3x_0, \ldots, A^kx_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Suppose A is diagonalizable so that there is a basis of eigenvectors of A:

$$\{v_1, v_2, \ldots, v_n\}$$

with $Av_i = \lambda_i v_i$ and $||v_i|| = 1$, i = 1, 2, ..., n, and assume that

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$
.

◆□ → ◆□ → ◆ □ → ◆ □ → ● ● ● ● ●

Suppose A is diagonalizable so that there is a basis of eigenvectors of A:

$$\{v_1, v_2, \ldots, v_n\}$$

with $Av_i = \lambda_i v_i$ and $||v_i|| = 1$, i = 1, 2, ..., n, and assume that

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$
.

Then we can write

$$x_0 = \sum_{i=1}^n \alpha_i v_i$$

for some $\alpha_i \in \mathbb{R}$, $i = 1, 2, \ldots, n$. Hence

$$A^k x_0 = A^k \sum_{i=1}^n \alpha_i v_i = \sum_{i=1}^n \alpha_i A^k v_i.$$

◆□ → ◆□ → ◆ = → ◆ = → のへぐ

$$Av_i=\lambda_iv_i \qquad \Longrightarrow \qquad A^2v_i=A(Av_i)=\lambda_iAv_i=\lambda_i^2v_i,$$
 inductively

$$A^k v_i = \lambda_i^k v_i.$$

$$Av_i = \lambda_i v_i \implies A^2 v_i = A(Av_i) = \lambda_i Av_i = \lambda_i^2 v_i,$$

inductively

$$A^k v_i = \lambda_i^k v_i.$$

So

$$A^{k}x_{0} = \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}v_{i} = \lambda_{1}^{k} \left[\alpha_{1}v_{1} + \sum_{i=2}^{n} \alpha_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}v_{i} \right].$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

16 / 17

$$Av_i=\lambda_iv_i \qquad \Longrightarrow \qquad A^2v_i=A(Av_i)=\lambda_iAv_i=\lambda_i^2v_i,$$
 inductively

$$A^k v_i = \lambda_i^k v_i.$$

So

$$A^{k}x_{0} = \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}v_{i} = \lambda_{1}^{k} \left[\alpha_{1}v_{1} + \sum_{i=2}^{n} \alpha_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}v_{i} \right].$$

Since $(\lambda_i/\lambda_1)^k \to 0$ as $k \to \infty$, $A^k x_0$ tends to look like $\lambda_1^k \alpha_1 v_1$ as $k \to \infty$.

$$Av_i = \lambda_i v_i \implies A^2 v_i = A(Av_i) = \lambda_i Av_i = \lambda_i^2 v_i,$$

inductively

$$A^k v_i = \lambda_i^k v_i.$$

So

$$A^{k}x_{0} = \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}v_{i} = \lambda_{1}^{k} \left[\alpha_{1}v_{1} + \sum_{i=2}^{n} \alpha_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}v_{i} \right]$$

Since $(\lambda_i/\lambda_1)^k \to 0$ as $k \to \infty$, $A^k x_0$ tends to look like $\lambda_1^k \alpha_1 v_1$ as $k \to \infty$. The result is that by normalizing to be a unit vector

$$\frac{A^k x_0}{\|A^k x_0\|} \to \pm v_1 \text{ and } \frac{\|A^k x_0\|}{\|A^{k-1} x_0\|} \approx \left|\frac{\lambda_1^k \alpha_1}{\lambda_1^{k-1} \alpha_1}\right| = |\lambda_1| \qquad \text{as } k \to \infty.$$

The sign is identified by looking at, e.g., $(A^k x_0)_1/(A^{k-1}x_0)_1$.

Note:

it is possible for a chosen vector x_0 that $\alpha_1 = 0$, but rounding errors in the computation generally introduce a small component in v_1 , so that in practice this is not a concern!

(ロ) (同) (E) (E) (E) (O)(O)

Note:

it is possible for a chosen vector x_0 that $\alpha_1 = 0$, but rounding errors in the computation generally introduce a small component in v_1 , so that in practice this is not a concern!

This simplified method for eigenvalue computation is the basis for effective methods, but the current state of the art is the **QR Algorithm**, which we consider only in the case when A is symmetric (see next lecture).