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The Symmetric QR Algorithm

We consider only the case where A is symmetric.

Recall: a symmetric matrix A is said to be similar to B if there is a

nonsingular matrix P for which A = P−1BP .

Similar matrices have the same eigenvalues. Indeed: if A = P−1BP , then

0 = det(A− λI) = det(P−1(B − λI)P ) = det(P−1) det(P ) det(B − λI),

so

det(A− λI) = 0 if, and only if, det(B − λI) = 0.
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The basic QR algorithm is:

Set A1 = A.

for k = 1, 2, . . .

form the QR factorization Ak = QkRk

and set Ak+1 = RkQk

end
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Proposition

The symmetric matrices A1, A2, . . . , Ak, . . . generated by the QR algorithm

are all similar and thus have the same eigenvalues.

Proof. Since

Ak+1 = RkQk = (Q−1k Qk)RkQk = Q−1k (QkRk)Qk = Q−1k AkQk,

Ak+1 is similar to Ak.

Furthermore, since Q−1k = QT
k , the matrix Ak+1 is symmetric if Ak is.

By hypothesis, A1 := A is symmetric; therefore each of the matrices Ak,

k = 1, 2, . . . , is symmetric. 2
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This basic QR algorithm works since Ak → a diagonal matrix as k →∞,

the diagonal entries of which are the eigenvalues.

However, a really practical, fast algorithm is based on some refinements.
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Reduction to tridiagonal form:

the idea is to apply explicit similarity transformations QAQ−1 = QAQT,

with Q orthogonal, so that QAQT is tridiagonal.

Note: direct reduction to triangular form would reveal the eigenvalues, but

is not possible.

Indeed, if

H(w)A =


× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×


then H(w)AH(w)T is generally full, i.e., all zeros created by

pre-multiplication are destroyed by the post-multiplication.
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However, if

A =

(
γ uT

u C

)
(as A = AT)

and

w =

(
0

ŵ

)
where H(ŵ)u =


α

0
...

0

 ,

it follows that

H(w)A =


γ uT

α ×
... ×

...
...

...
...

0 ×
... ×

 ,
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i.e., the uT part of the first row of A is unchanged.

However, then

H(w)AH(w)−1 = H(w)AH(w)T = H(w)AH(w)

=


γ α 0 · · · 0

α

0
...

0

B

 ,

where B = H(ŵ)CHT(ŵ), as uTH(ŵ)T = (α, 0, · · · , 0).

Note that H(w)AH(w)T is symmetric as A is.
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Now we inductively apply this to the smaller matrix B, as described for the

QR factorization but using post- as well as pre-multiplications.

The result of n− 2 such Householder similarity transformations is the matrix

H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),

which is tridiagonal.
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The QR factorization of a tridiagonal matrix can now easily be achieved

with n− 1 Givens rotations:

if A is tridiagonal

J(n− 1, n) · · · J(2, 3)J(1, 2)︸ ︷︷ ︸
QT

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =



× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0
...

...
...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 ×


(exercise: check!).

In the QR algorithm, the next matrix in the sequence is RQ.
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Lemma

In the QR algorithm applied to a tridiagonal matrix, the tridiagonal form is

preserved when Givens rotations are used.

Proof. If

Ak = QR = J(1, 2)TJ(2, 3)T · · · J(n− 1, n)TR

is tridiagonal, then

Ak+1 = RQ = RJ(1, 2)TJ(2, 3)T · · · J(n− 1, n)T.

Recall that:

post-multiplication of a matrix by J(i, i+ 1)T replaces

columns i and i+ 1 by linear combinations of the pair

of columns, while leaving columns j 6= i, i+ 1 alone.
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Thus, since R is upper triangular, the only subdiagonal entry in RJ(1, 2)T

is in position (2, 1).

Similarly, the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T = (RJ(1, 2)T)J(2, 3)T

are in positions (2, 1) and (3, 2).

Inductively, the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)TJ(i− 1, i)T

= (RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)T)J(i− 1, i)T

are in positions (j, j − 1), j = 2, . . . i.
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So, the lower triangular part of Ak+1 only has nonzeros on its first

subdiagonal.

However, then since Ak+1 is symmetric, it must be tridiagonal. 2

13 / 17



So, the lower triangular part of Ak+1 only has nonzeros on its first

subdiagonal.

However, then since Ak+1 is symmetric, it must be tridiagonal. 2

13 / 17



Using shifts.

One further and final step in making an efficient algorithm is the use of

shifts:

for k = 1, 2, . . .

form the QR factorization of Ak − µkI = QkRk

and set Ak+1 = RkQk + µkI

end

14 / 17



For any chosen sequence of values of µk ∈ R, {Ak}∞k=1 are symmetric and

tridiagonal if A1 has these properties, and similar to A1:

A2 = R1Q1 + µ1I

= QT1 (Q1R1)Q1 + µ1Q
T
1 Q1

= QT1 (A1 − µ1I)Q1 + µ1Q
T
1 Q1

= QT1 A1Q1,

A3 = R2Q2 + µ2I

= QT2 (Q2R2)Q2 + µ2Q
T
2 Q2

= QT2 A2Q2 = QT2 Q
T
1 A1Q1Q2,

and similarly for A4, A5, . . .
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The simplest shift to use is µk = an,n for all k, which leads rapidly in

almost all cases to

Ak =

(
Tk 0

0T λ

)
,

where Tk is n− 1 by n− 1 and tridiagonal, and λ is an eigenvalue of A1.

Inductively, once this form has been found, the QR algorithm with shift

an−1,n−1 can be concentrated only on the (n− 1)× (n− 1) leading

submatrix Tk.

This process is called deflation.
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The overall algorithm

for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

for m = n, n− 1, . . . , 2

while am−1,m > tol

[Q,R] = qr(A− am,m ∗ I)
A = R ∗Q+ am,m ∗ I

end while

record eigenvalue λm = am,m

A← leading m− 1 by m− 1 submatrix of A

end

record eigenvalue λ1 = a1,1

17 / 17
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