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The Symmetric QR Algorithm

We consider only the case where A is symmetric.

Recall: a symmetric matrix A is said to be similar to B if there is a
nonsingular matrix P for which A = P~'BP.

Similar matrices have the same eigenvalues. Indeed: if A = P~'BP, then
0 = det(A — M) = det(P~'(B — M\I)P) = det(P ") det(P) det(B — \I),

so
det(A—XI)=0 if, and only if, det(B — AXI) = 0.



The basic QR algorithm is:

Set A1 =A.

for k=1,2,...
form the QR factorization A, = QLR
and set Api1 = RipQk

end
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Proposition
The symmetric matrices A, A, ..., A, ... generated by the QR algorithm
are all similar and thus have the same eigenvalues.

Proof. Since

Ay = RyQp = (Qp Q) RiQr = Q1 (QrRy) Q) = Q1 A Q

Ap+1 is similar to Ay.

Furthermore, since Q,;l = E the matrix Agy1 is symmetric if Ay is.
By hypothesis, A1 := A is symmetric; therefore each of the matrices Ay,
k=1,2,..., is symmetric. O



This basic QR algorithm works since A;, — a diagonal matrix as k — oo,
the diagonal entries of which are the eigenvalues.



This basic QR algorithm works since A;, — a diagonal matrix as k — oo,
the diagonal entries of which are the eigenvalues.

However, a really practical, fast algorithm is based on some refinements.
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Reduction to tridiagonal form:
the idea is to apply explicit similarity transformations QAQ ' = QAQ™,
with Q orthogonal, so that QAQT is tridiagonal.

Note: direct reduction to triangular form would reveal the eigenvalues, but
is not possible.

Indeed, if
X X X
0 x X
H(w)A = .
0 x X

then H(w)AH (w)T is generally full, i.e., all zeros created by
pre-multiplication are destroyed by the post-multiplication.
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i.e., the uT part of the first row of A is unchanged.

However, then

H(w)AH(w)™' = Hw)AH(w)' = H(w)AH (w) =

5

aO PN

Q




i.e., the uT part of the first row of A is unchanged.

However, then

v a0
H(w)AH(w)™" = H(w)AH(w)" = H(w)AH (w) = g
;
where B = H(w)CHT (), as u" H(w)" = (o, 0, ---, 0).

Note that H(w)AH (w)T is symmetric as A is.
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Now we inductively apply this to the smaller matrix B, as described for the
QR factorization but using post- as well as pre-multiplications.

The result of n — 2 such Householder similarity transformations is the matrix
H(wp—9) -+ H(w2)H(w)AH (w)H (ws) - - - H(wp—2),

which is tridiagonal.
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The QR factorization of a tridiagonal matrix can now easily be achieved

with n — 1 Givens rotations: if A is tridiagonal

Jn—1,n)---J(2,3)J(1,2) A=R,

(exercise: check!).

QT

Precisely, R has a diagonal and 2 super-diagonals,

X
0
0

o X

X X

o O O O

0

X X

o O O O

0
0
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o O

o © X X

o X X X

upper triangular.

o O

X X X O ---
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The QR factorization of a tridiagonal matrix can now easily be achieved
with n — 1 Givens rotations: if A is tridiagonal

Jn—1,n)---J(2,3)J(1,2) A= R, upper triangular.
QT

Precisely, R has a diagonal and 2 super-diagonals,

X X X 0 0 o --- 0
0 x x X 0 o --- 0
0 0 x X 0 0
R = : :
0 0 O 0 X X x 0
0 0 0 0 0 X X X
0 0 O 0 0 0 X X
0 0 O 0 0 0 0 x

(exercise: check!).
In the QR algorithm, the next matrix in the sequence is RQ).
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Lemma
In the QR algorithm applied to a tridiagonal matrix, the tridiagonal form is
preserved when Givens rotations are used.

Proof. If

A, =QR=J1,2YJ2,3T---J(n—-1,n)"R

is tridiagonal, then

AkJFl - RQ = RJ(17 2>T‘](27 3)T e '](n - 17 n)T‘

Recall that:

post-multiplication of a matrix by J(4,i 4+ 1)T replaces
columns ¢ and ¢ + 1 by linear combinations of the pair
of columns, while leaving columns j # 4,7 + 1 alone.
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Thus, since R is upper triangular, the only subdiagonal entry in R.J(1,2)"
is in position (2,1).
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Thus, since R is upper triangular, the only subdiagonal entry in R.J(1,2)"
is in position (2,1).

Similarly, the only subdiagonal entries in
RJ(1,2)YJ(2,3)T = (RJ(1,2)T)J(2,3)T

are in positions (2,1) and (3, 2).
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Thus, since R is upper triangular, the only subdiagonal entry in R.J(1,2)"

is in position (2,1).

Similarly, the only subdiagonal entries in
RJ(1,2)YJ(2,3)T = (RJ(1,2)1)J(2,3)"

are in positions (2,1) and (3, 2).

Inductively, the only subdiagonal entries in

RI, 2 72,31 g —2,i—1)TJG —1,)T
1

= (RJ(1,2)TJ2, 3T J6i—-2,i — )N JGE - 1,07

are in positions (j,j — 1), 7 =2,...14.
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So, the lower triangular part of Axy1 only has nonzeros on its first
subdiagonal.
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So, the lower triangular part of Axy1 only has nonzeros on its first
subdiagonal.

However, then since Ay is symmetric, it must be tridiagonal. O
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Using shifts.
One further and final step in making an efficient algorithm is the use of
shifts:

for k=1,2,...
form the QR factorization of A — url = QrRy
and set Api1 = RpQp + ppl

end
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For any chosen sequence of values of j;, € R, {A}7°, are symmetric and
tridiagonal if A1 has these properties, and similar to A;:
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For any chosen sequence of values of j;, € R, {A}7°, are symmetric and
tridiagonal if A1 has these properties, and similar to A;:

As = RQ1 +ml
= QT (Q1R1)Q1 + mQT
= QT (41 — mD)Q1 + mQ O
= QT A:1Q1,

Az = RoQ2 + pal
= QJ (Q2R2)Q2 + 112Q7 Q2
= Q7 A:Q> = Q1 QT A1Q:1Qs,

and similarly for Ay, As, ...

15 / 17



The simplest shift to use is uy = ay,, for all k, which leads rapidly in
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where T}, is n — 1 by n — 1 and tridiagonal, and X is an eigenvalue of A;.

almost all cases to

16 / 17



The simplest shift to use is uy = ay,, for all k, which leads rapidly in

T | O
Al =
k (0’1" )\>,

where T}, is n — 1 by n — 1 and tridiagonal, and X is an eigenvalue of A;.

almost all cases to

Inductively, once this form has been found, the QR algorithm with shift
an—1,—1 can be concentrated only on the (n — 1) x (n — 1) leading
submatrix T}.

16 / 17



The simplest shift to use is uy = ay,, for all k, which leads rapidly in

T | O
Al =
k (0’1" )\>,

where T}, is n — 1 by n — 1 and tridiagonal, and X is an eigenvalue of A;.

almost all cases to

Inductively, once this form has been found, the QR algorithm with shift
an—1,—1 can be concentrated only on the (n — 1) x (n — 1) leading
submatrix T}.

This process is called deflation.
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The overall algorithm
for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal
(Householder) similarity transformations.
for m=n,n—1,...,2
while am—1,m > tol
[Q, R] = qr(A — amm * I)
A=R*xQ+amm*1
end while
record eigenvalue A, = Gm,m
A < leading m —1 by m — 1 submatrix of A
end

record eigenvalue A\ = ai,1
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