
Numerical Analysis

Raphael Hauser

with thanks to Endre Süli
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Best Approximation in Inner-Product Spaces

Best approximation of functions:

given a function f defined on [a, b], find the “closest”

polynomial, or

piecewise polynomial (see later sections), or

trigonometric polynomial (truncated Fourier series).

What do we mean by “closest”?
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Norms are used to measure the size of/distance between elements of a

vector space.

Given a vector space V over the field R of real numbers, the mapping

‖ · ‖ : V → R is a norm on V if it satisfies the following axioms:

1 ‖f‖ ≥ 0 for all f ∈ V , with ‖f‖ = 0 if, and only if, f = 0 ∈ V ;

2 ‖λf‖ = |λ|‖f‖ for all λ ∈ R and all f ∈ V ; and

3 ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ V (the triangle inequality).
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Examples of norms on Rn

1 For vectors x ∈ Rn, with x = (x1, x2, . . . , xn)T,

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|

is the `1- or vector one-norm.

2 For vectors x ∈ Rn, with x = (x1, x2, . . . , xn)T,

‖x‖2 = (x21 + x22 + · · ·+ x2n)1/2 =
√
xTx

is the `2- or vector two-norm.

3 For vectors x ∈ Rn, with x = (x1, x2, . . . , xn)T,

‖x‖∞ = max
1≤i≤n

|xi|

is the `∞- or vector infinity-norm.
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Examples of norms on function spaces

1 For integrable functions on (a, b),

‖f‖1 =

∫ b

a
|f(x)| dx

is the L1- or one-norm.
2 For functions in

V = L2(a, b) ≡ {f : (a, b)→ R |
∫ b

a
[f(x)]2 dx <∞}

we define

‖f‖2 =

(∫ b

a
[f(x)]2 dx

)1/2

,

the L2- or two-norm.
3 For continuous functions on [a, b],

‖f‖∞ = max
x∈[a,b]

|f(x)|

is the L∞- or ∞-norm.
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Weighted L2 norm

Suppose that w is a real-valued function, defined, positive and integrable

on (a, b). Consider the vector space

V = L2
w(a, b) ≡ {f : (a, b)→ R |

∫ b

a
w(x)[f(x)]2 dx <∞}

(this certainly includes continuous functions on [a, b], and piecewise

continuous functions on [a, b] with finitely many jump-discontinuities),

equipped with the (weighted) L2- or (weighted) two-norm

‖f‖ ≡ ‖f‖2 =

(∫ b

a
w(x)[f(x)]2 dx

)1/2

.

Special case: If w(x) ≡ 1, then L2
w(a, b) = L2(a, b).
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Least-squares polynomial approximation: aim to find the best polynomial

approximation to f ∈ L2
w(a, b), i.e., find pn ∈ Πn for which

‖f − pn‖2 ≤ ‖f − q‖2 ∀q ∈ Πn.

Seeking pn in the form pn(x) =

n∑
k=0

αkx
k then results in the minimization

problem

min
(α0,...,αn)

∫ b

a
w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx.

The unique minimizer can be found from the (linear) system

∂

∂αj

∫ b

a
w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx = 0 for each j = 0, 1, . . . , n.

[Exercise: Why? How?] But there is important additional structure here.
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Inner-product spaces: a real inner-product space is a vector space V over

R with a mapping 〈·, ·〉 : V × V → R (the inner product) for which

1 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0 if, and only if, v = 0;

2 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ; and

3 〈αu+ βv, z〉 = α〈u, z〉+ β〈v, z〉 for all u, v, z ∈ V and all α, β ∈ R.
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Examples:

1 V = Rn,

〈x, y〉 = xTy =

n∑
i=1

xiyi,

where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T.

2 V = L2
w(a, b) = {f : (a, b)→ R |

∫ b

a
w(x)[f(x)]2 dx <∞},

〈f, g〉 =

∫ b

a
w(x)f(x)g(x) dx,

where f, g ∈ L2
w(a, b), and where w is a weight-function, defined,

positive and integrable on (a, b).
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Notes:

1 Suppose that V is an inner-product space with inner product 〈·, ·〉.
Then, v ∈ V 7→ 〈v, v〉1/2 ∈ R defines a norm on V (see below for

a proof): in Example 2 above, it is the (weighted) L2-norm.

2 Suppose that V is an inner-product space with inner product 〈·, ·〉
and norm ‖ · ‖ defined by this inner product via ‖v‖ := 〈v, v〉1/2.

The angle θ between u, v ∈ V is

θ = cos−1
(
〈u, v〉
‖u‖‖v‖

)
.

Thus, u and v are orthogonal in V ⇐⇒ 〈u, v〉 = 0.
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Example:

x2 and 3
4 − x are orthogonal in L2(0, 1) with 〈f, g〉 :=

∫ 1

0
f(x)g(x) dx as

∫ 1

0
x2(34 − x) dx = 1

4 −
1
4 = 0.

Exercise:

Find f ∈ Π2 such that f is orthogonal to each g ∈ Π1 in the inner product

〈f, g〉 :=

∫ 1

−1
x4f(x) g(x) dx

and f(1) = 2
7 .
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Pythagoras Theorem

Suppose that V is an inner-product space with inner product 〈·, ·〉 and

norm ‖ · ‖ defined by this inner product. For any u, v ∈ V such that

〈u, v〉 = 0 we have

‖u± v‖2 = ‖u‖2 + ‖v‖2.

Proof.

‖u± v‖2 = 〈u± v, u± v〉 = 〈u, u± v〉 ± 〈v, u± v〉 [axiom (iii)]

= 〈u, u± v〉 ± 〈u± v, v〉 [axiom (ii)]

= 〈u, u〉 ± 〈u, v〉 ± 〈u, v〉+ 〈v, v〉
= 〈u, u〉+ 〈v, v〉 [orthogonality]

= ‖u‖2 + ‖v‖2. 2
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Cauchy–Schwarz inequality

Suppose that V is an inner-product space with inner product 〈·, ·〉 and

norm ‖ · ‖ defined by this inner product. For any u, v ∈ V ,

|〈u, v〉| ≤ ‖u‖‖v‖.

Proof. For every λ ∈ R,

0 ≤ 〈u− λv, u− λv〉 = ‖u‖2 − 2λ〈u, v〉+ λ2‖v‖2 = φ(λ),

which is a quadratic in λ. The minimizer of φ is at λ∗ = 〈u, v〉/‖v‖2, and

thus since φ(λ∗) ≥ 0, ‖u‖2 − 〈u, v〉2/‖v‖2 ≥ 0, which gives the required

inequality. 2
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Triangle inequality

Suppose that V is an inner-product space with inner product 〈·, ·〉 and

norm ‖ · ‖ defined by this inner product. For any u, v ∈ V ,

‖u+ v‖ ≤ ‖u‖+ ‖v‖. (10.1)

Proof. Note that

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + 2〈u, v〉+ ‖v‖2.

Hence, by the Cauchy–Schwarz inequality,

‖u+ v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2 .

Taking square-roots yields (10.1). 2
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Note: The function ‖ · ‖ : V → R defined by ‖v‖ := 〈v, v〉1/2 on the

inner-product space V , with inner product 〈·, ·〉, trivially satisfies the first

two axioms of norm on V ; this is a consequence of 〈·, ·〉 being an inner

product on V . Result (10.1) above implies that ‖ · ‖ also satisfies the third

axiom of norm, the triangle inequality.
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