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Least-Squares Approximation

Consider the problem of least-squares approximation in the inner product

space L2
w(a, b), with inner product

〈f, g〉 =

∫ b

a
w(x)f(x)g(x) dx

and norm

‖f‖2 = 〈f, f〉1/2

where w is a weight-function, defined, positive and integrable on (a, b).
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Theorem

If f ∈ L2
w(a, b) and pn ∈ Πn is such that

〈f − pn, r〉 = 0 ∀r ∈ Πn, (12.1)

then

‖f − pn‖2 ≤ ‖f − r‖2 ∀r ∈ Πn,

i.e., pn is a best (weighted) least-squares approximation to f on [a, b].
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Proof.

‖f − pn‖22

= 〈f − pn, f − pn〉
= 〈f − pn, f − r〉+ 〈f − pn, r − pn〉 ∀r ∈ Πn

Since r − pn ∈ Πn the assumption (12.1) implies

= 〈f − pn, f − r〉
≤ ‖f − pn‖2‖f − r‖2 by the Cauchy–Schwarz inequality.

Dividing both sides by ‖f − pn‖2 gives the required result. 2

Remark: the converse is true too (see Problem Sheet 6, Q9).
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This gives a direct way to calculate a best approximation:

we want to find

pn(x) =

n∑
k=0

αkx
k such that

∫ b

a
w(x)

(
f −

n∑
k=0

αkx
k

)
xi dx = 0 for i = 0, 1, . . . , n. (12.2)

[Note that (12.2) holds if, and only if,∫ b

a
w(x)

(
f −

n∑
k=0

αkx
k

)(
n∑

i=0

βix
i

)
dx = 0 ∀q =

n∑
i=0

βix
i ∈ Πn.]

However, (12.2) implies that

n∑
k=0

(∫ b

a
w(x)xk+i dx

)
αk =

∫ b

a
w(x)f(x)xi dx for i = 0, 1, . . . , n.
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This is the component-wise statement of a matrix equation

Aα = ϕ, (12.3)

to determine the coefficients α = (α0, α1, . . . , αn)T, where

A = {ai,k, i, k = 0, 1, . . . , n}, ϕ = (f0, f1, . . . , fn)T,

ai,k =

∫ b

a
w(x)xk+i dx and fi =

∫ b

a
w(x)f(x)xi dx.

The system (12.3) is called the set of normal equations.

6 / 17



This is the component-wise statement of a matrix equation

Aα = ϕ, (12.3)

to determine the coefficients α = (α0, α1, . . . , αn)T, where

A = {ai,k, i, k = 0, 1, . . . , n}, ϕ = (f0, f1, . . . , fn)T,

ai,k =

∫ b

a
w(x)xk+i dx and fi =

∫ b

a
w(x)f(x)xi dx.

The system (12.3) is called the set of normal equations.

6 / 17



Example: the best least-squares approximation to ex on [0, 1] from Π1 in

L2(0, 1), with inner product 〈f, g〉 =

∫ b

a
f(x)g(x) dx.

We want

∫ 1

0
[ex − (α01 + α1x)]1 dx = 0 and

∫ 1

0
[ex − (α01 + α1x)]xdx = 0.

⇐⇒
α0

∫ 1

0
dx+ α1

∫ 1

0
xdx =

∫ 1

0
ex dx

α0

∫ 1

0
x dx+ α1

∫ 1

0
x2 dx =

∫ 1

0
exxdx

i.e.,

(
1 1

2
1
2

1
3

)(
α0

α1

)
=

(
e− 1

1

)

=⇒

{
α0 = 4e− 10

α1 = 18− 6e

so p1(x) := (18− 6e)x+ (4e− 10) is the best approximation.
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We plot f(x) = ex and p1(x) for x ∈ [0, 1] using Maple

plot  exp x , 18 6 exp 1 x  4 exp 1 10  , x = 0 ..1

x
0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
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Proof that the coefficient matrix A is nonsingular will now establish

existence and uniqueness of (weighted) ‖ · ‖2 best-approximation.

Theorem

The coefficient matrix A is nonsingular.
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Proof. Suppose not

=⇒ ∃α 6= 0 with Aα = 0 =⇒ αTAα = 0

⇐⇒
n∑

i=0

αi(Aα)i = 0 ⇐⇒
n∑

i=0

αi

n∑
k=0

aikαk = 0,

and using the definition aik =

∫ b

a
w(x)xkxi dx,

⇐⇒
n∑

i=0

αi

n∑
k=0

(∫ b

a
w(x)xkxi dx

)
αk = 0.
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Rearranging gives

∫ b

a
w(x)

(
n∑

i=0

αix
i

)(
n∑

k=0

αkx
k

)
dx = 0 or

∫ b

a
w(x)

(
n∑

i=0

αix
i

)2

dx = 0

which implies that
n∑

i=0

αix
i ≡ 0 and thus αi = 0 for i = 0, 1, . . . , n.

This contradicts the initial supposition, and thus A is nonsingular. 2
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Orthogonal Polynomials

Gram–Schmidt orthogonalization procedure:

the solution of the normal

equations Aα = ϕ for best least-squares polynomial approximation would

be easy if A were diagonal.

Idea: Instead of

{1, x, x2, . . . , xn}

as a basis for Πn, suppose we have a basis

{φ0, φ1, . . . , φn}.

We shall choose the basis {φ0, φ1, . . . , φn} so as to ensure that the matrix

A in the normal equations is diagonal.
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as a basis for Πn, suppose we have a basis

{φ0, φ1, . . . , φn}.

We shall choose the basis {φ0, φ1, . . . , φn} so as to ensure that the matrix

A in the normal equations is diagonal.
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With this choice of basis, we seek the polynomial of best approximation

pn(x) =

n∑
k=0

βkφk(x). The normal equations then become

∫ b

a
w(x)

(
f(x)−

n∑
k=0

βkφk(x)

)
φi(x) dx = 0, i = 0, 1, . . . , n,

or equivalently

n∑
k=0

(∫ b

a
w(x)φk(x)φi(x) dx

)
βk =

∫ b

a
w(x)f(x)φi(x)dx, i = 0, 1, . . . , n,

i.e.,

Aβ = ϕ, (12.4)

where β = (β0, β1, . . . , βn)T, ϕ = (f1, f2, . . . , fn)T and now

ai,k =

∫ b

a
w(x)φk(x)φi(x) dx and fi =

∫ b

a
w(x)f(x)φi(x) dx.
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So A is diagonal if

〈φi, φk〉 =

∫ b

a
w(x)φi(x)φk(x) dx

{
= 0 i 6= k and

6= 0 i = k.

We can create such a set of orthogonal polynomials

{φ0, φ1, . . . , φn, . . .},

with φi ∈ Πi for each i, by the Gram–Schmidt procedure, which is based on

the following lemma.
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Lemma

Suppose that {φ0, φ1, . . . , φk}, with φi ∈ Πi for each i, are orthogonal with

respect to the inner product 〈f, g〉 =

∫ b

a
w(x)f(x)g(x) dx. Then,

φk+1(x) = xk+1 −
k∑

i=0

λiφi(x)

satisfies

〈φk+1, φj〉 =

∫ b

a
w(x)φk+1(x)φj(x) dx = 0, j = 0, 1, . . . , k,

when

λj =
〈xk+1, φj〉
〈φj , φj〉

, j = 0, 1, . . . , k.
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Proof. For any j, 0 ≤ j ≤ k,

〈φk+1, φj〉 = 〈xk+1, φj〉 −
k∑

i=0

λi〈φi, φj〉

= 〈xk+1, φj〉 − λj〈φj , φj〉

by the orthogonality of φi and φj , i 6= j,

= 0 by definition of λj . 2
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Notes:

1 The Gram–Schmidt procedure does the above for k = 0, 1, . . . , n

successively.

2 φk is always of exact degree k, so {φ0, φ1, . . . , φ`} is a basis for Π`

for every ` ≥ 0.

3 φk can be normalised/scaled to satisfy 〈φk, φk〉 = 1 or to be monic.
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