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Least-Squares Approximation
Consider the problem of least-squares approximation in the inner product

space L2 (a,b), with inner product

b
(fq) = / w(z) f(2)g(x) da

and norm

Ifll2 = (f, £)/?

where w is a weight-function, defined, positive and integrable on (a,b).



Theorem
If f € 12(a,b) and p, € I1,, is such that

(f=pn,r) =0 Vrell, (12.1)

then
If =pallze <|f=7l2  Vrell,

i.e., pn is a best (weighted) least-squares approximation to f on [a,b].
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|f = pull2llf — rll2 by the Cauchy—-Schwarz inequality.
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Proof.

||f_pn||% = <f_pn7f_pn>

<f_pn7f_r>+<f_pn>r_pn> VTGHTL

Since r — p,, € II,, the assumption (12.1) implies
<f—pn,f—7">

Ilf — pnll2llf — rll2 by the Cauchy—Schwarz inequality.

IN

Dividing both sides by ||f — pn||2 gives the required result.

Remark: the converse is true too (see Problem Sheet 6, Q9).
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This gives a direct way to calculate a best approximation: we want to find

n
pn(z) = Zakxk such that
k=0

b n
/ w(z) (f—Zakxk> z'de =0 for i =0,1,...,n. (12.2)
@ k=0
[Note that (12.2) holds if, and only if,
b n n , " .
/ w(z) | f— Z apx” Z Giz' | dx =0 Vg = Z Biz' € I1,,.]
@ k=0 i=0 i=0

However, (12.2) implies that

n

Z (/ab?fj(ﬂc)ilfkH dx) ap = /abw(x)f(x)a:i dz for i =0,1,...,n.

k=0



This is the component-wise statement of a matrix equation
Aa = o, (12.3)

to determine the coefficients a = (g, g, ..., )T, where
A= {a’i,kaivkzo717--'7n}v Y = (f()?fl’"‘?fn)Tv

b b
a@k:/ w(z)z*dz and fZ:/ w(z) f(x)z' dz.



This is the component-wise statement of a matrix equation
Aa = o, (12.3)

to determine the coefficients a = (g, g, ..., )T, where
A= {aijk,i,k:O,l,...,n}, @Y = (f(),fl,...,fn>T,

b b
az‘,k:/ w(z)z*dz and fZ:/ w(z) f(x)z' dz.

The system (12.3) is called the set of normal equations.
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Example: the best least-squares approximation to e on [0, 1] from II; in

L2(0,1), with inner product (f, g) / f(x)g(x) dz. We want

1
/ [e” — (apl + aqz)]ldz =0 and / [ — (apl + aqz)]xdx = 0.
0 0

1
ao/ dz + a1 zdx :/ e’ dx
0 0

1
/mdm+a1/ 22 dz /exdx
0
- e—l ag =4e — 10
a1 = 18 — Ge

so p1(x) := (18 — 6e)x + (4e — 10) is the best approximation.
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We plot f(x) = e” and py(x) for = € [0, 1] using Maple

plot( [exp(x), (18 —6-exp(1))-x + (4-exp(1) —10) ], x=0..1)
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Proof that the coefficient matrix A is nonsingular will now establish
existence and uniqueness of (weighted) || - |2 best-approximation.

Theorem
The coefficient matrix A is nonsingular.
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n

n n
— Zai(Aa)i =0 <= Za@-Zaikak =0,
i=0 k=0

1=0
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Proof. Suppose not = Jar # 0 with Aa =0 = aTAa =0

b
and using the definition a;; = / w(x)zFzt de,
a

- Zg;azz(/ da:)ak:O.
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Rearranging gives

b n ' n b n ' 2
/ w(zx) (Z aix’) (Z akxk> dz =0 or / w(x) (Z aixﬁ) dzr =0
a i=0 k=0 @

=0

n
which implies that Zaimi =
i=0
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Rearranging gives

b n ' n b n A 2
/ w(zx) (Z aiw’) (Z akazk> dz =0 or / w(x) (Z qu’) dzr =0
a i=0 k=0 @ i=0

n
which implies that Zaimi =0 and thus a; =0 fori=0,1,...,n.
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Rearranging gives

b n ' n b n A 2
/ w(zx) (Z aix’) (Z akg;k> dz =0 or / w(x) (Z Oémc”) dzr =0
a i=0 k=0 @ i=0

n
which implies that Zaixi =0 and thus a; =0 fori=0,1,...,n.
i=0

This contradicts the initial supposition, and thus A is nonsingular. O
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Gram-Schmidt orthogonalization procedure:
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Orthogonal Polynomials

Gram—-Schmidt orthogonalization procedure: the solution of the normal
equations Aa = ¢ for best least-squares polynomial approximation would
be easy if A were diagonal.

Idea: Instead of
{1,z,2%,..., 2"}

as a basis for II,,, suppose we have a basis

{00, 01,..., 00}

We shall choose the basis {¢¢, ¢1,-..,dn} so as to ensure that the matrix
A in the normal equations is diagonal.
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With this choice of basis, we seek the polynomial of best approximation

n
pn(x) = Zﬁkqbk(a:). The normal equations then become
k=0

b n
/w(m) (f(x)—Zquﬁk(x)) bi(@)dr =0, i=0,1,....n,
a k=0
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With this choice of basis, we seek the polynomial of best approximation

n
pn(x) = Zﬁkqbk(a:). The normal equations then become
k=0

b n
/w(w) (f(x)—Zquﬁk(x)) bi(@)dr =0, i=0,1,....n,
a k=0

or equivalently

n

3 (/abw(x)¢k($)¢i($) d:c) By = /:w(az)f(x)qbi(az)dx, i=0.1,...m,

k=0

i.e.,
AB = o, (12.4)
where /8 = (507/317 cee 75R)Tv Y= (f17f27 e 7fn)T and now

b b
on= [ w@a@ads  ad fi= [ @il do
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So A is diagonal if

=0 i#k and

b
(dh',d)k):/ w(@)pi(z)or(z) dr {#0 ik
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So A is diagonal if

=0 i#k and

b
<¢i»¢k>:/ w(@)gi(x)pr(r) do {#O ik

We can create such a set of orthogonal polynomials

{¢0a¢1a"'7¢n7---}7

with ¢; € I1; for each i, by the Gram—Schmidt procedure, which is based on
the following lemma.
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Lemma
Suppose that {¢o, ¢1, ..., ¢k}, with ¢; € I1; for each i, are orthogonal with
b

respect to the inner product (f,g) = / w(z) f(x)g(x)dz. Then,

a

D1 (@ Zm
satisfies

b
<¢k+17 d)j) = / W($)¢k+1(l‘)¢3($) dr = Oa ] = 07 ]-7 e akv

when

<:1:k+1, ¢]>

N =
! <¢]7¢]> ’

i=0,1,... k.
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Proof. For any j, 0 < j <k,

M»

(Gps1,05) = (2" ¢5) —

<$k+17 bj) — /\J

ANi{bi, d5)
b5, ;)

-
|

—~~ O

by the orthogonality of ¢; and ¢;, i # j,

=0 by definition of ;. O

16 / 17



Notes:

@ The Gram-Schmidt procedure does the above for Kk =0,1,...,n
successively.

@ ¢ is always of exact degree k, so {¢o, ¢1,..., ¢} is a basis for I,
for every £ > 0.

© ¢y can be normalised/scaled to satisfy (¢, ¢r) = 1 or to be monic.
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