Numerical Analysis

Raphael Hauser with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

イロトメ 御 トメミトメミト ニミーのんび

Least-Squares Approximation

Consider the problem of least-squares approximation in the inner product space $\mathrm{L}^2_w(a,b)$, with inner product

$$
\langle f, g \rangle = \int_a^b w(x) f(x) g(x) \, dx
$$

and norm

$$
||f||_2 = \langle f, f \rangle^{1/2}
$$

2 / 17

KO > KO > K E > K E > E + 9 Q O

where w is a weight-function, defined, positive and integrable on (a, b) .

Theorem

If $f \in \mathrm{L}^2_w(a,b)$ and $p_n \in \Pi_n$ is such that

$$
\langle f - p_n, r \rangle = 0 \qquad \forall r \in \Pi_n,\tag{12.1}
$$

イロメ イ団メ イモメ イモメー

€.

 2990

then

$$
||f - p_n||_2 \le ||f - r||_2 \qquad \forall r \in \Pi_n,
$$

i.e., p_n is a best (weighted) least-squares approximation to f on $[a, b]$.

 $||f - p_n||_2^2$

KOX KOX KEX KEX E 1990 4 / 17

$$
||f - p_n||_2^2 = \langle f - p_n, f - p_n \rangle
$$

KOX KOX KEX KEX E 1990 $4 / 17$

$$
||f - p_n||_2^2 = \langle f - p_n, f - p_n \rangle
$$

= $\langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle$ $\forall r \in \Pi_n$

$$
||f - p_n||_2^2 = \langle f - p_n, f - p_n \rangle
$$

= $\langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle$ $\forall r \in \Pi_n$
Since $r - p_n \in \Pi_n$ the assumption (12.1) implies

 $4 / 17$

KOX KOX KEX KEX E 1990

$$
||f - p_n||_2^2 = \langle f - p_n, f - p_n \rangle
$$

= $\langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle$ $\forall r \in \Pi_n$
Since $r - p_n \in \Pi_n$ the assumption (12.1) implies
= $\langle f - p_n, f - r \rangle$

 $4 / 17$

KOX KOX KEX KEX E 1990

$$
||f - p_n||_2^2 = \langle f - p_n, f - p_n \rangle
$$

= $\langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle$ $\forall r \in \Pi_n$
Since $r - p_n \in \Pi_n$ the assumption (12.1) implies
= $\langle f - p_n, f - r \rangle$
 $\leq ||f - p_n||_2 ||f - r||_2$ by the Cauchy-Schwarz inequality.

 $4 / 17$

KOX KOX KEX KEX E 1990

$$
||f - p_n||_2^2 = \langle f - p_n, f - p_n \rangle
$$

= $\langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle$ $\forall r \in \Pi_n$
Since $r - p_n \in \Pi_n$ the assumption (12.1) implies
= $\langle f - p_n, f - r \rangle$
 $\leq ||f - p_n||_2 ||f - r||_2$ by the Cauchy-Schwarz inequality.

K ロ X (日) X (日)

Dividing both sides by $||f - p_n||_2$ gives the required result.

$$
||f - p_n||_2^2 = \langle f - p_n, f - p_n \rangle
$$

= $\langle f - p_n, f - r \rangle + \langle f - p_n, r - p_n \rangle$ $\forall r \in \Pi_n$
Since $r - p_n \in \Pi_n$ the assumption (12.1) implies
= $\langle f - p_n, f - r \rangle$
 $\leq ||f - p_n||_2 ||f - r||_2$ by the Cauchy-Schwarz inequality.

イロトメ 御 トメミトメミト ニミーのんび

Dividing both sides by $||f - p_n||_2$ gives the required result.

Remark: the converse is true too (see Problem Sheet 6, Q9).

This gives a direct way to calculate a best approximation:

KOKK@KKEKKEK E DAG

This gives a direct way to calculate a best approximation: we want to find $p_n(x) = \sum_{k=1}^n \alpha_k x^k$ such that $k=0$

$$
\int_{a}^{b} w(x) \left(f - \sum_{k=0}^{n} \alpha_k x^{k} \right) x^{i} dx = 0 \text{ for } i = 0, 1, ..., n. \quad (12.2)
$$

KORK (DRA SERA ER DA ORO)

This gives a direct way to calculate a best approximation: we want to find $p_n(x) = \sum_{k=1}^n \alpha_k x^k$ such that $k=0$ \int^b a $w(x)$ $\sqrt{ }$ $f-\sum_{n=1}^{\infty}$ $_{k=0}$ $\alpha_k x^k$ $x^{i} dx = 0$ for $i = 0, 1, ..., n.$ (12.2)

[Note that [\(12.2\)](#page-11-0) holds if, and only if,

$$
\int_a^b w(x) \left(f - \sum_{k=0}^n \alpha_k x^k \right) \left(\sum_{i=0}^n \beta_i x^i \right) dx = 0 \qquad \forall q = \sum_{i=0}^n \beta_i x^i \in \Pi_n.
$$

$$
4 \Box \rightarrow 4 \Box \rightarrow 4 \Xi \rightarrow 4 \Xi \rightarrow \Xi \rightarrow 9 \%
$$

This gives a direct way to calculate a best approximation: we want to find $p_n(x) = \sum_{k=1}^n \alpha_k x^k$ such that $k=0$ \int^b a $w(x)$ $\sqrt{ }$ $f-\sum_{n=1}^{\infty}$ $_{k=0}$ $\alpha_k x^k$ $x^{i} dx = 0$ for $i = 0, 1, ..., n.$ (12.2)

[Note that [\(12.2\)](#page-11-0) holds if, and only if,

$$
\int_a^b w(x) \left(f - \sum_{k=0}^n \alpha_k x^k \right) \left(\sum_{i=0}^n \beta_i x^i \right) dx = 0 \qquad \forall q = \sum_{i=0}^n \beta_i x^i \in \Pi_n.
$$

However, [\(12.2\)](#page-11-0) implies that

$$
\sum_{k=0}^{n} \left(\int_{a}^{b} w(x) x^{k+i} dx \right) \alpha_k = \int_{a}^{b} w(x) f(x) x^i dx \text{ for } i = 0, 1, \dots, n.
$$

This is the component-wise statement of a matrix equation

$$
A\alpha = \varphi,\tag{12.3}
$$

KO K K (D K L E K L E K V K K K K K K K K K K

to determine the coefficients $\alpha=(\alpha_0,\alpha_1,\ldots,\alpha_n)^{\rm T}$, where $A = \{a_{i,k}, i, k = 0, 1, \ldots, n\}, \varphi = (f_0, f_1, \ldots, f_n)^{\mathrm{T}}$

$$
a_{i,k} = \int_a^b w(x)x^{k+i} \, \mathrm{d}x \text{ and } f_i = \int_a^b w(x)f(x)x^i \, \mathrm{d}x.
$$

This is the component-wise statement of a matrix equation

$$
A\alpha = \varphi,\tag{12.3}
$$

KO K K (D K L E K L E K V K K K K K K K K K K

to determine the coefficients $\alpha=(\alpha_0,\alpha_1,\ldots,\alpha_n)^{\rm T}$, where $A = \{a_{i,k}, i, k = 0, 1, \ldots, n\}, \varphi = (f_0, f_1, \ldots, f_n)^{\mathrm{T}}$

$$
a_{i,k} = \int_a^b w(x)x^{k+i} \, \mathrm{d}x \text{ and } f_i = \int_a^b w(x)f(x)x^i \, \mathrm{d}x.
$$

The system [\(12.3\)](#page-15-0) is called the set of **normal equations**.

$$
\int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] 1 dx = 0 \text{ and } \int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] x dx = 0.
$$

$$
\int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] 1 dx = 0 \text{ and } \int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] x dx = 0.
$$

$$
\alpha_0 \int_0^1 dx + \alpha_1 \int_0^1 x dx = \int_0^1 e^x dx
$$

$$
\alpha_0 \int_0^1 x dx + \alpha_1 \int_0^1 x^2 dx = \int_0^1 e^x x dx
$$

⇐⇒

$$
\int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] 1 dx = 0 \text{ and } \int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] x dx = 0.
$$

$$
\iff \alpha_0 \int_0^1 dx + \alpha_1 \int_0^1 x dx = \int_0^1 e^x dx
$$

$$
\alpha_0 \int_0^1 x dx + \alpha_1 \int_0^1 x^2 dx = \int_0^1 e^x x dx
$$

i.e.,
$$
\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} e-1 \\ 1 \end{pmatrix}
$$

$$
\int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] 1 dx = 0 \text{ and } \int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] x dx = 0.
$$

$$
\Leftrightarrow \qquad \alpha_0 \int_0^1 dx + \alpha_1 \int_0^1 x dx = \int_0^1 e^x dx
$$

$$
\alpha_0 \int_0^1 x dx + \alpha_1 \int_0^1 x^2 dx = \int_0^1 e^x x dx
$$

$$
\text{i.e., } \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} e-1 \\ 1 \end{pmatrix} \implies \begin{cases} \alpha_0 = 4e - 10 \\ \alpha_1 = 18 - 6e \end{cases}
$$

$$
\int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] 1 dx = 0 \text{ and } \int_0^1 [e^x - (\alpha_0 1 + \alpha_1 x)] x dx = 0.
$$

$$
\Leftrightarrow \alpha_0 \int_0^1 dx + \alpha_1 \int_0^1 x dx = \int_0^1 e^x dx
$$

\n
$$
\alpha_0 \int_0^1 x dx + \alpha_1 \int_0^1 x^2 dx = \int_0^1 e^x x dx
$$

\ni.e., $\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix} e-1 \\ 1 \end{pmatrix} \implies \begin{cases} \alpha_0 = 4e - 10 \\ \alpha_1 = 18 - 6e \end{cases}$
\nso $p_1(x) := (18 - 6e)x + (4e - 10)$ is the best approximation.

We plot $f(x) = e^x$ and $p_1(x)$ for $x \in [0,1]$ using Maple

Proof that the coefficient matrix A is nonsingular will now establish existence and uniqueness of (weighted) $\|\cdot\|_2$ best-approximation.

Theorem

The coefficient matrix A is nonsingular.

Proof. Suppose not

KOX KØX KEX KEX I EL IDAQI

Proof. Suppose not $\implies \exists \alpha \neq 0$ with $A\alpha = 0$

K ロ X (日) X (日)

K ロ X (日) X (日)

$$
\iff \sum_{i=0}^{n} \alpha_i (A\alpha)_i = 0
$$

$$
\iff \sum_{i=0}^{n} \alpha_i (A\alpha)_i = 0 \iff \sum_{i=0}^{n} \alpha_i \sum_{k=0}^{n} a_{ik} \alpha_k = 0,
$$

$$
\iff \sum_{i=0}^{n} \alpha_i (A\alpha)_i = 0 \iff \sum_{i=0}^{n} \alpha_i \sum_{k=0}^{n} a_{ik} \alpha_k = 0,
$$

KORKØRKERKER E DAG

and using the definition $a_{ik}=$ \int^b a $w(x)x^kx^i dx$,

$$
\iff \sum_{i=0}^n \alpha_i (A\alpha)_i = 0 \iff \sum_{i=0}^n \alpha_i \sum_{k=0}^n a_{ik} \alpha_k = 0,
$$

and using the definition $a_{ik}=$ \int^b a $w(x)x^kx^i dx$,

$$
\iff \sum_{i=0}^n \alpha_i \sum_{k=0}^n \left(\int_a^b w(x) x^k x^i dx \right) \alpha_k = 0.
$$

KORKØRKERKER E DAG

KO K K Ø K K E K K E K E K Y S K K K K K K

$$
\int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right) \left(\sum_{k=0}^n \alpha_k x^k\right) dx = 0
$$

$$
\int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right) \left(\sum_{k=0}^n \alpha_k x^k\right) dx = 0 \text{ or } \int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right)^2 dx = 0
$$

$$
\int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right) \left(\sum_{k=0}^n \alpha_k x^k\right) dx = 0 \text{ or } \int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right)^2 dx = 0
$$

KOX KØX KEX KEX I EL IDAQI

$$
\text{which implies that } \sum_{i=0}^n \alpha_i x^i \equiv 0
$$

$$
\int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right) \left(\sum_{k=0}^n \alpha_k x^k\right) dx = 0 \text{ or } \int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right)^2 dx = 0
$$

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ _→ 글 → 9 Q <mark>아</mark>

which implies that \sum^{n}_{n} $i=0$ $\alpha_i x^i \equiv 0$ and thus $\alpha_i = 0$ for $i = 0, 1, \ldots, n$.

$$
\int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right) \left(\sum_{k=0}^n \alpha_k x^k\right) dx = 0 \text{ or } \int_a^b w(x) \left(\sum_{i=0}^n \alpha_i x^i\right)^2 dx = 0
$$

KORKØRKERKER E DAG

which implies that \sum^{n}_{n} $i=0$ $\alpha_i x^i \equiv 0$ and thus $\alpha_i = 0$ for $i = 0, 1, \ldots, n$.

This contradicts the initial supposition, and thus A is nonsingular.

Gram–Schmidt orthogonalization procedure:

Gram–Schmidt orthogonalization procedure: the solution of the normal equations $A\alpha = \varphi$ for best least-squares polynomial approximation would be easy if A were diagonal.

 299

Gram–Schmidt orthogonalization procedure: the solution of the normal equations $A\alpha = \varphi$ for best least-squares polynomial approximation would be easy if A were diagonal.

Idea: Instead of

$$
\{1, x, x^2, \ldots, x^n\}
$$

as a basis for Π_n , suppose we have a basis

$$
\{\phi_0,\phi_1,\ldots,\phi_n\}.
$$

12 / 17

 QQ

Gram–Schmidt orthogonalization procedure: the solution of the normal equations $A\alpha = \varphi$ for best least-squares polynomial approximation would be easy if A were diagonal.

Idea: Instead of

$$
\{1, x, x^2, \ldots, x^n\}
$$

as a basis for Π_n , suppose we have a basis

$$
\{\phi_0,\phi_1,\ldots,\phi_n\}.
$$

We shall choose the basis $\{\phi_0, \phi_1, \ldots, \phi_n\}$ so as to ensure that the matrix A in the normal equations is diagonal.

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결 ○

With this choice of basis, we seek the polynomial of best approximation $p_n(x) = \sum_{n=1}^{n}$ $k=0$ $\beta_k\phi_k(x)$. The normal equations then become

$$
\int_a^b w(x) \left(f(x) - \sum_{k=0}^n \beta_k \phi_k(x) \right) \phi_i(x) dx = 0, \quad i = 0, 1, \dots, n,
$$

 (13.11)

With this choice of basis, we seek the polynomial of best approximation $p_n(x) = \sum_{n=1}^{n}$ $k=0$ $\beta_k\phi_k(x)$. The normal equations then become

$$
\int_a^b w(x) \left(f(x) - \sum_{k=0}^n \beta_k \phi_k(x) \right) \phi_i(x) dx = 0, \quad i = 0, 1, \dots, n,
$$

or equivalently

$$
\sum_{k=0}^n \left(\int_a^b w(x) \phi_k(x) \phi_i(x) dx \right) \beta_k = \int_a^b w(x) f(x) \phi_i(x) dx, \quad i = 0, 1, \dots, n,
$$

KORKØRKERKER E DAG

With this choice of basis, we seek the polynomial of best approximation $p_n(x) = \sum^n \beta_k \phi_k(x).$ The normal equations then become $k=0$

$$
\int_a^b w(x) \left(f(x) - \sum_{k=0}^n \beta_k \phi_k(x) \right) \phi_i(x) dx = 0, \quad i = 0, 1, \dots, n,
$$

or equivalently

$$
\sum_{k=0}^n \left(\int_a^b w(x) \phi_k(x) \phi_i(x) dx \right) \beta_k = \int_a^b w(x) f(x) \phi_i(x) dx, \quad i = 0, 1, \dots, n,
$$

i.e.,

$$
A\beta = \varphi,\tag{12.4}
$$

where $\beta=(\beta_0,\beta_1,\ldots,\beta_n)^{\rm T}$, $\varphi=(f_1,f_2,\ldots,f_n)^{\rm T}$ and now

$$
a_{i,k} = \int_a^b w(x)\phi_k(x)\phi_i(x) dx \quad \text{and} \quad f_i = \int_a^b w(x)f(x)\phi_i(x) dx.
$$

So A is diagonal if

$$
\langle \phi_i, \phi_k \rangle = \int_a^b w(x) \phi_i(x) \phi_k(x) \, dx \begin{cases} =0 & i \neq k \text{ and} \\ \neq 0 & i = k. \end{cases}
$$

So A is diagonal if

$$
\langle \phi_i, \phi_k \rangle = \int_a^b w(x) \phi_i(x) \phi_k(x) \, dx \begin{cases} =0 & i \neq k \text{ and} \\ \neq 0 & i = k. \end{cases}
$$

We can create such a set of **orthogonal polynomials**

$$
\{\phi_0,\phi_1,\ldots,\phi_n,\ldots\},\
$$

with $\phi_i \in \Pi_i$ for each i, by the Gram–Schmidt procedure, which is based on the following lemma.

メロメ メタメ メミメ メミメー

€.

 299

Lemma

Suppose that $\{\phi_0, \phi_1, \ldots, \phi_k\}$, with $\phi_i \in \Pi_i$ for each i , are orthogonal with respect to the inner product $\langle f, g \rangle = \int^b$ a $w(x)f(x)g(x)\,\mathrm{d} x.$ Then,

$$
\phi_{k+1}(x) = x^{k+1} - \sum_{i=0}^{k} \lambda_i \phi_i(x)
$$

satisfies

$$
\langle \phi_{k+1}, \phi_j \rangle = \int_a^b w(x) \phi_{k+1}(x) \phi_j(x) \, dx = 0, \qquad j = 0, 1, \dots, k,
$$

when

$$
\lambda_j = \frac{\langle x^{k+1}, \phi_j \rangle}{\langle \phi_j, \phi_j \rangle}, \qquad j = 0, 1, \dots, k.
$$

K ロ メ イ 団 メ ス ミ メ ス ミ メ ニ ミ

Proof. For any $j, 0 \le j \le k$,

$$
\langle \phi_{k+1}, \phi_j \rangle = \langle x^{k+1}, \phi_j \rangle - \sum_{i=0}^k \lambda_i \langle \phi_i, \phi_j \rangle
$$

$$
= \langle x^{k+1}, \phi_j \rangle - \lambda_j \langle \phi_j, \phi_j \rangle
$$

by the orthogonality of ϕ_i and ϕ_j , $i \neq j$,

イロト イ団ト イミト イミト ニミー つんぺ

$$
= 0
$$
 by definition of λ_j .

Notes:

- **1** The Gram–Schmidt procedure does the above for $k = 0, 1, ..., n$ successively.
- $\bullet \phi_k$ is always of exact degree k, so $\{\phi_0, \phi_1, \ldots, \phi_\ell\}$ is a basis for Π_ℓ for every $\ell \geq 0$.
- $\bullet \phi_k$ can be normalised/scaled to satisfy $\langle \phi_k, \phi_k \rangle = 1$ or to be monic.

K ロ X K @ X K 할 X K 할 X (할)

 299