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Orthogonal Polynomials

Gram—-Schmidt orthogonalization procedure: the solution of the normal
equations Aa = ¢ for best least-squares polynomial approximation would
be easy if A were diagonal.

Idea: Instead of
{1,z,2%,..., 2"}

as a basis for II,,, suppose we have a basis

{00, 01,..., 00}

We shall choose the basis {¢¢, ¢1,-..,dn} so as to ensure that the matrix
A in the normal equations is diagonal.
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With this choice of basis, we seek the polynomial of best approximation

n
pn(x) = Zﬁkqbk(a:). The normal equations then become
k=0

b n
/w(w) (f(x)—Zquﬁk(x)) bi(@)dr =0, i=0,1,....n,
a k=0

or equivalently

n

3 (/abw(x)¢k($)¢i($) d:c) By = /:w(az)f(x)qbi(az)dx, i=0.1,...m,

k=0

i.e.,
AB = ¢, (12.1)
where /8 = (507/317 cee 75R)Tv Y= (f17f27 e 7fn)T and now

b b
on= [ w@a@ads  ad fi= [ @il do
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So A is diagonal if

b
<¢i7¢k>:/ w(w)¢z($)¢k($)d3} {

=0 i#k and
£0 i=k.



So A is diagonal if

=0 i#k and

b
<¢i»¢k>:/ w(@)gi(x)pr(r) do {#O ik

We can create such a set of orthogonal polynomials

{¢0a¢1a"'7¢n7---}7

with ¢; € I1; for each i, by the Gram—Schmidt procedure, which is based on
the following lemma.



Lemma
Suppose that {¢o, ¢1, ..., ¢k}, with ¢; € I1; for each i, are orthogonal with
b

respect to the inner product (f,g) = / w(z) f(x)g(x)dz. Then,

a

D1 (@ Zm
satisfies

b
<¢k+17 d)j) = / W($)¢k+1(l‘)¢3($) dr = Oa ] = 07 ]-7 e akv

when

<:1:k+1, ¢]>

N =
! <¢]7¢]> ’

i=0,1,... k.




Proof. For any j, 0 < j <k,

M»

(Gps1,05) = (2" ¢5) —

<$k+17 bj) — /\J

ANi{bi, d5)
b5, ;)

-
|

—~~ O

by the orthogonality of ¢; and ¢;, i # j,

=0 by definition of ;. O



Notes:

@ The Gram-Schmidt procedure does the above for Kk =0,1,...,n
successively.

@ ¢ is always of exact degree k, so {¢o, ¢1,..., ¢} is a basis for I,
for every £ > 0.

© ¢y can be normalised/scaled to satisfy (¢, ¢r) = 1 or to be monic.



Examples:

Hao



Examples:

1. The inner product .
()= | f@()ds

has orthogonal polynomials called the Legendre polynomials,

do(z) =1, ¢1(z) =2, ¢afx) =2°— 13, d3(z) =2%—2a,...



Examples:

1. The inner product .
()= | f@()ds

has orthogonal polynomials called the Legendre polynomials,

do(z) =1, ¢1(z) =2, ¢afx) =2°— 13, d3(z) =2%—2a,...

2. The inner product

1
f(z)g(x
)= [ D01,
1 V1l—=z
gives orthogonal polynomials, which are the Chebyshev polynomials,

go(z) =1, ¢1(z) =z, ¢ow) = 22" =1, ¢s(x) = 4a® =3, ...



3. The inner product

()= [ pwgte) da
gives orthogonal polynomials, which are the Laguerre polynomials,
d)O(l‘) = 1) d)l(x) =1- x, ¢2(I‘) =2—4dz+ 127

p3(z) =6 — 18z + 9z — 23, ...
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Lemma
Suppose that {¢o, 1, ..., bn,...} are orthogonal polynomials for a given
inner product (-,-). Then, (¢x,q) = 0 whenever q € T1j_;.

Proof. This follows since if ¢ € II;_1, then ¢(z ZUZ@ ) for some

o, €R, i=0,1,...,k—1, so

T
I

<¢k7q> = Uz<¢k7¢z> == U. O

s
Il
=)

10 / 16



Remark: note from the above argument that if ¢(z Z oi¢i(x) is of

exact degree k (so oy, # 0), then (¢, ¢) = ok (dk, ox) # 0.
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Theorem

Suppose that {¢o, ¢1,...,¢n,...} is a set of orthogonal polynomials.
Then, there exist sequences of real numbers (ou,)721, (Br)iey, (Vk)724

such that a three-term recurrence relation of the form

Prt1(z) = ag(z — Br)dr(x) — Yrdr—1(),

holds.

k=1,2,..

*
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Proof. The polynomial ¢, € II;;1, so there exist o1 0,0%.1,...,0% k+1 IN

R such that
k+1

vor(x) = oridi(x)
i=0

as {do, @1, .., Pr41} is a basis for Iy ;.
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Proof. The polynomial ¢, € II;;1, so there exist o1 0,0%.1,...,0% k+1 IN

R such that
k+1

rop(x) = opidi(x)
i=0

as {bo, 41, ..., 0k+1} is a basis for II11. Now take the inner product on
both sides with ¢;, and note that x¢; € I, if j <k — 2. Note that

b b
(k) = / w(@)edn(2) () du= / () ()25 () dr = (@, ) =0

by the above lemma for j < k — 2. In addition,

k1 k1
<Z Ok,iPis ¢j> = okilbi, 8) = ok (b, b5)
i=0 i=0

by the linearity of (-,-) and orthogonality of ¢, and ¢; for k # j.
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Hence o, ; = 0 for j <k — 2, and so

20 (x) = Ok kr10k+1(2) + Ok Ok (x) + O p—1Pk—1(2).
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Hence o, ; = 0 for j <k — 2, and so
Op(x) = Of pr1Pk41(2) + ok kOk(2) + O p—108—1(2).
Taking the inner product with ¢ reveals that

(O, Prt1) = Ok kt1{Pht1, Pht1),

so 0y k+1 7 0 by the above remark as ¢y, is of exact degree k£ + 1. Thus,

1 Okk—1
Prr1(z) = (= op ) Pr(v) — ———dr_1(x),
Ok k41 Ok k41
which is of the given form, with
1 Okk—1
ap = ) /Bk:(jk,kn Ve = —, k:1727 t
Ok k+1 Ok k+1

14 / 16



Example. The inner product

(f,q) = / e f(a)g(x) da

—0o0

has orthogonal polynomials called the Hermite polynomials,

do(x) =1, ¢1(x) =2z, ¢p1(x) = 2xdK(x) — 2kep—_1(z) for k> 1.
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Matlab:

% cat hermite_polys.m

x=linspace(-2.2,2.2,200);
0ldH=ones(1,200); plot(x,0ldH), hold on
newH=2*x; plot(x,newH)
for n=1:2,...
newnewH=2%x . *newH-2*n*0ldH; plot(x,newnewH),...
oldH=newH ;newH=newnewH;
end

% matlab
>> hermite_polys
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