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Orthogonal Polynomials

Gram–Schmidt orthogonalization procedure:

the solution of the normal

equations Aα = ϕ for best least-squares polynomial approximation would

be easy if A were diagonal.

Idea: Instead of

{1, x, x2, . . . , xn}

as a basis for Πn, suppose we have a basis

{φ0, φ1, . . . , φn}.

We shall choose the basis {φ0, φ1, . . . , φn} so as to ensure that the matrix

A in the normal equations is diagonal.
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With this choice of basis, we seek the polynomial of best approximation

pn(x) =

n∑
k=0

βkφk(x). The normal equations then become

∫ b

a
w(x)

(
f(x)−

n∑
k=0

βkφk(x)

)
φi(x) dx = 0, i = 0, 1, . . . , n,

or equivalently

n∑
k=0

(∫ b

a
w(x)φk(x)φi(x) dx

)
βk =

∫ b

a
w(x)f(x)φi(x)dx, i = 0, 1, . . . , n,

i.e.,

Aβ = ϕ, (12.1)

where β = (β0, β1, . . . , βn)T, ϕ = (f1, f2, . . . , fn)T and now

ai,k =

∫ b

a
w(x)φk(x)φi(x) dx and fi =

∫ b

a
w(x)f(x)φi(x) dx.
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So A is diagonal if

〈φi, φk〉 =

∫ b

a
w(x)φi(x)φk(x) dx

{
= 0 i 6= k and

6= 0 i = k.

We can create such a set of orthogonal polynomials

{φ0, φ1, . . . , φn, . . .},

with φi ∈ Πi for each i, by the Gram–Schmidt procedure, which is based on

the following lemma.
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Lemma

Suppose that {φ0, φ1, . . . , φk}, with φi ∈ Πi for each i, are orthogonal with

respect to the inner product 〈f, g〉 =

∫ b

a
w(x)f(x)g(x) dx. Then,

φk+1(x) = xk+1 −
k∑

i=0

λiφi(x)

satisfies

〈φk+1, φj〉 =

∫ b

a
w(x)φk+1(x)φj(x) dx = 0, j = 0, 1, . . . , k,

when

λj =
〈xk+1, φj〉
〈φj , φj〉

, j = 0, 1, . . . , k.
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Proof. For any j, 0 ≤ j ≤ k,

〈φk+1, φj〉 = 〈xk+1, φj〉 −
k∑

i=0

λi〈φi, φj〉

= 〈xk+1, φj〉 − λj〈φj , φj〉

by the orthogonality of φi and φj , i 6= j,

= 0 by definition of λj . 2
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Notes:

1 The Gram–Schmidt procedure does the above for k = 0, 1, . . . , n

successively.

2 φk is always of exact degree k, so {φ0, φ1, . . . , φ`} is a basis for Π`

for every ` ≥ 0.

3 φk can be normalised/scaled to satisfy 〈φk, φk〉 = 1 or to be monic.
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Examples:

1. The inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx

has orthogonal polynomials called the Legendre polynomials,

φ0(x) ≡ 1, φ1(x) = x, φ2(x) = x2 − 1
3 , φ3(x) = x3 − 3

5x, . . .

2. The inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x)√
1− x2

dx

gives orthogonal polynomials, which are the Chebyshev polynomials,

φ0(x) ≡ 1, φ1(x) = x, φ2(x) = 2x2 − 1, φ3(x) = 4x3 − 3x, . . .
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3. The inner product

〈f, g〉 =

∫ ∞
0

e−xf(x)g(x) dx

gives orthogonal polynomials, which are the Laguerre polynomials,

φ0(x) ≡ 1, φ1(x) = 1− x, φ2(x) = 2− 4x+ x2,

φ3(x) = 6− 18x+ 9x2 − x3, . . .
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Lemma

Suppose that {φ0, φ1, . . . , φn, . . .} are orthogonal polynomials for a given

inner product 〈·, ·〉. Then, 〈φk, q〉 = 0 whenever q ∈ Πk−1.

Proof. This follows since if q ∈ Πk−1, then q(x) =

k−1∑
i=0

σiφi(x) for some

σi ∈ R, i = 0, 1, . . . , k − 1, so

〈φk, q〉 =
k−1∑
i=0

σi〈φk, φi〉 = 0. 2
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Remark: note from the above argument that if q(x) =
k∑

i=0

σiφi(x) is of

exact degree k (so σk 6= 0), then 〈φk, q〉 = σk〈φk, φk〉 6= 0.
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Theorem

Suppose that {φ0, φ1, . . . , φn, . . . } is a set of orthogonal polynomials.

Then, there exist sequences of real numbers (αk)∞k=1, (βk)∞k=1, (γk)∞k=1

such that a three-term recurrence relation of the form

φk+1(x) = αk(x− βk)φk(x)− γkφk−1(x), k = 1, 2, . . . ,

holds.
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Proof. The polynomial xφk ∈ Πk+1, so there exist σk,0, σk,1, . . . , σk,k+1 in

R such that

xφk(x) =

k+1∑
i=0

σk,iφi(x)

as {φ0, φ1, . . . , φk+1} is a basis for Πk+1.

Now take the inner product on

both sides with φj , and note that xφj ∈ Πk−1 if j ≤ k − 2. Note that

〈xφk, φj〉=
∫ b

a
w(x)xφk(x)φj(x) dx=

∫ b

a
w(x)φk(x)xφj(x) dx=〈φk, xφj〉=0

by the above lemma for j ≤ k − 2. In addition,〈
k+1∑
i=0

σk,iφi, φj

〉
=

k+1∑
i=0

σk,i〈φi, φj〉 = σk,j〈φj , φj〉

by the linearity of 〈·, ·〉 and orthogonality of φk and φj for k 6= j.
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Hence σk,j = 0 for j ≤ k − 2, and so

xφk(x) = σk,k+1φk+1(x) + σk,kφk(x) + σk,k−1φk−1(x).

Taking the inner product with φk+1 reveals that

〈xφk, φk+1〉 = σk,k+1〈φk+1, φk+1〉,

so σk,k+1 6= 0 by the above remark as xφk is of exact degree k + 1. Thus,

φk+1(x) =
1

σk,k+1
(x− σk,k)φk(x)−

σk,k−1
σk,k+1

φk−1(x),

which is of the given form, with

αk =
1

σk,k+1
, βk = σk,k, γk =

σk,k−1
σk,k+1

, k = 1, 2, . . . . 2
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Example. The inner product

〈f, g〉 =

∫ ∞
−∞

e−x
2
f(x)g(x) dx

has orthogonal polynomials called the Hermite polynomials,

φ0(x) ≡ 1, φ1(x) = 2x, φk+1(x) = 2xφk(x)− 2kφk−1(x) for k ≥ 1.
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Matlab:

% cat hermite_polys.m

x=linspace(-2.2,2.2,200);

oldH=ones(1,200); plot(x,oldH), hold on

newH=2*x; plot(x,newH)

for n=1:2,...

newnewH=2*x.*newH-2*n*oldH; plot(x,newnewH),...

oldH=newH;newH=newnewH;

end

% matlab

>> hermite_polys

16 / 16



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−60

−40

−20

0

20

40

60

16 / 16


	Lagrange interpolation
	Newton–Cotes quadrature
	Newton–Cotes quadrature continued
	Gaussian elimination
	LU Factorization
	QR Factorization
	Matrix Eigenvalues
	The Symmetric QR Algorithm
	The Symmetric QR Algorithm
	Best Approximation in Inner-Product Spaces
	Least-Squares Approximation
	Orthogonal Polynomials

