Numerical Analysis

Raphael Hauser with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

イロトメ 御 トメミトメミト ニミーのんび

Gaussian Quadrature

Suppose that w is a weight-function, defined, positive and integrable on the open interval (a, b) of \mathbb{R} .

Lemma

Let $\{\phi_0, \phi_1, \ldots, \phi_n, \ldots\}$ be orthogonal polynomials for the inner product

$$
\langle f, g \rangle = \int_a^b w(x) f(x) g(x) \, \mathrm{d}x.
$$

Then, for each $k = 0, 1, \ldots, \phi_k$ has k distinct roots in the interval (a, b) .

Proof. Since $\phi_0(x) \equiv \text{const.} \neq 0$, the result is trivially true for $k = 0$. Suppose that $k \geq 1$. Then,

$$
\langle \phi_k, \phi_0 \rangle = \int_a^b w(x) \phi_k(x) \phi_0(x) \, dx = 0
$$

with ϕ_0 constant implies that

$$
\int_a^b w(x)\phi_k(x) \, \mathrm{d}x = 0
$$

KO K K @ K K & K K & K & B K Y Q Q Q

with $w(x) > 0$, $x \in (a, b)$;

Proof. Since $\phi_0(x) \equiv$ const. $\neq 0$, the result is trivially true for $k = 0$. Suppose that $k \geq 1$. Then,

$$
\langle \phi_k, \phi_0 \rangle = \int_a^b w(x) \phi_k(x) \phi_0(x) \, dx = 0
$$

with ϕ_0 constant implies that

$$
\int_a^b w(x)\phi_k(x) \, \mathrm{d}x = 0
$$

with $w(x) > 0$, $x \in (a, b)$; thus $\phi_k(x)$ must change sign in (a, b) , i.e., ϕ_k has at least one root in (a, b) .

KO K K (D K L E K L E K V K K K K K K K K K K

Suppose that there are ℓ points $a < r_1 < r_2 < \cdots < r_\ell < b$ where ϕ_k changes sign for some $1 \leq \ell \leq k$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q*

Suppose that there are ℓ points $a < r_1 < r_2 < \cdots < r_\ell < b$ where ϕ_k changes sign for some $1 \leq \ell \leq k$. Then,

$$
q(x) = \prod_{j=1}^{\ell} (x - r_j) \times \text{the sign of } \phi_k \text{ on } (r_{\ell}, b)
$$

4 / 11

KO K K (D K L E K L E K V K K K K K K K K K K

has the same sign as ϕ_k on (a, b) .

Suppose that there are ℓ points $a < r_1 < r_2 < \cdots < r_\ell < b$ where ϕ_k changes sign for some $1 \leq \ell \leq k$. Then,

$$
q(x) = \prod_{j=1}^{\ell} (x - r_j) \times \text{the sign of } \phi_k \text{ on } (r_{\ell}, b)
$$

has the same sign as ϕ_k on (a, b) .

Hence $\langle \phi_k, q \rangle =$ \int^b a $w(x)\phi_k(x)q(x)\,\mathrm{d}x>0.$ Thus, from the previous lemma, q (which is of degree ℓ) must be of degree $\geq k$, i.e., $\ell \geq k$.

 $(1 + 4\theta) (4\theta)$

Suppose that there are ℓ points $a < r_1 < r_2 < \cdots < r_\ell < b$ where ϕ_k changes sign for some $1 \leq \ell \leq k$. Then,

$$
q(x) = \prod_{j=1}^{\ell} (x - r_j) \times \text{the sign of } \phi_k \text{ on } (r_{\ell}, b)
$$

has the same sign as ϕ_k on (a, b) .

Hence $\langle \phi_k, q \rangle =$ \int^b a $w(x)\phi_k(x)q(x)\,\mathrm{d}x>0.$ Thus, from the previous lemma, q (which is of degree ℓ) must be of degree $\geq k$, i.e., $\ell \geq k$.

Therefore $\ell = k$, and ϕ_k has k distinct roots in (a, b) .

Quadrature revisited. The above lemma leads to very efficient quadrature rules since it answers the question: how should we choose the quadrature points x_0, x_1, \ldots, x_n in the quadrature rule

$$
\int_a^b w(x)f(x) dx \approx \sum_{j=0}^n w_j f(x_j)
$$

5 / 11

KO K K (D K L E K L E K V K K K K K K K K K K

so that the rule is exact for polynomials of degree as high as possible? (The case $w(x) \equiv 1$ is the most common.)

Recall that the Lagrange interpolating polynomial

$$
p_n = \sum_{j=0}^n f(x_j) L_{n,j} \in \Pi_n
$$

KOX KOX KEX KEX LE LORO

is unique, so if $f \in \Pi_n \Longrightarrow p_n \equiv f$ whatever interpolation points are used.

Recall that the Lagrange interpolating polynomial

$$
p_n = \sum_{j=0}^n f(x_j) L_{n,j} \in \Pi_n
$$

is unique, so if $f \in \Pi_n \Longrightarrow p_n \equiv f$ whatever interpolation points are used. Moreover, we have

$$
\int_a^b w(x)f(x) dx = \int_a^b w(x)p_n(x) dx
$$

=
$$
\int_a^b w(x) \sum_{j=0}^n f(x_j)L_{n,j}(x) dx
$$

=
$$
\sum_{j=0}^n f(x_j) \int_a^b w(x)L_{n,j}(x) dx
$$

=
$$
\sum_{j=0}^n w_j f(x_j),
$$

where $w_j = \int_a^b w(x) L_{n,j}(x) \,\mathrm{d} x$ exactly!

Theorem

Suppose that $x_0 < x_1 < \cdots < x_n$ are the roots of the $n + 1$ -st degree orthogonal polynomial ϕ_{n+1} with respect to the inner product

$$
\langle g, h \rangle = \int_a^b w(x) g(x) h(x) \, \mathrm{d}x,
$$

then the quadrature formula

$$
\int_{a}^{b} w(x)f(x) dx \approx \sum_{j=0}^{n} w_j f(x_j)
$$
 (13.1)

7 / 11

K ロ X K @ X K ミ X K ミ X 「 ミ

with weights $w_j = \int_a^b w(x) L_{n,j}(x) dx$ is exact whenever $f \in \Pi_{2n+1}$.

Proof. Let $p \in \Pi_{2n+1}$.

KOX KOX KEX KEX E 1990

Proof. Let $p \in \Pi_{2n+1}$. Then, by the Division Algorithm,

$$
p(x) = q(x)\phi_{n+1}(x) + r(x) \quad \text{with } q, r \in \Pi_n.
$$

$$
\begin{array}{c}\n\left(\Box\ \rightarrow\ \langle\ \Box\ \rangle\ \langle\ \Xi\ \rangle\ \langle\ \Xi\ \rangle\ \langle\ \Xi\ \rangle\ \langle\ \Xi\ \rangle\ \end{array}\n\right) = \begin{array}{c}\n\Box\ \Diamond\ \Diamond\ (\Box\ \Box\ \Box\ \Box\ \end{array}
$$

Proof. Let $p \in \Pi_{2n+1}$. Then, by the Division Algorithm,

$$
p(x) = q(x)\phi_{n+1}(x) + r(x) \quad \text{with } q, r \in \Pi_n.
$$

So

$$
\int_{a}^{b} w(x)p(x) dx = \int_{a}^{b} w(x)q(x)\phi_{n+1}(x) dx + \int_{a}^{b} w(x)r(x) dx
$$

$$
= \sum_{j=0}^{n} w_{j}r(x_{j})
$$
(13.2)

KOX KØX KEX KEX I EL IDAQI

since the integral involving $q \in \Pi_n$ is zero by the lemma above and the other is integrated exactly since $r \in \Pi_n$.

Proof. Let $p \in \Pi_{2n+1}$. Then, by the Division Algorithm,

$$
p(x) = q(x)\phi_{n+1}(x) + r(x) \quad \text{with } q, r \in \Pi_n.
$$

So

$$
\int_{a}^{b} w(x)p(x) dx = \int_{a}^{b} w(x)q(x)\phi_{n+1}(x) dx + \int_{a}^{b} w(x)r(x) dx
$$

$$
= \sum_{j=0}^{n} w_{j}r(x_{j})
$$
(13.2)

since the integral involving $q \in \Pi_n$ is zero by the lemma above and the other is integrated exactly since $r \in \Pi_n$. Finally, for all $p \in \Pi_{2n+1}$ we have

$$
p(x_j) = q(x_j)\phi_{n+1}(x_j) + r(x_j) = r(x_j), \quad (j = 0, ..., n),
$$

for as the x_i are the roots of ϕ_{n+1} , hence [\(13.2\)](#page-12-0) yields

$$
\int_a^b w(x)p(x) dx = \sum_{j=0}^n w_j p(x_j) \Box
$$

/ 11

These quadrature rules are called Gaussian Quadratures.

These quadrature rules are called Gaussian Quadratures.

\n- • For
$$
w(x) \equiv 1
$$
, $(a, b) = (-1, 1)$, we have Gauss–Legendre Quadrature.
\n- • For $w(x) = (1 - x^2)^{-1/2}$ and $(a, b) = (-1, 1)$, we have Gauss–Chebyshev Quadrature.
\n- • For $w(x) = e^{-x}$ and $(a, b) = (0, \infty)$.
\n

we have Gauss–Laguerre Quadrature.

• For
$$
w(x) = e^{-x^2}
$$
 and $(a, b) = (-\infty, \infty)$
we have Gauss-Hermite Quadrature.

9 / 11

K ロ X (日) X (日)

These quadrature rules are called Gaussian Quadratures.

\n- For
$$
w(x) \equiv 1
$$
, $(a, b) = (-1, 1)$, we have Gauss–Legendre Quadrature.
\n- For $w(x) = (1 - x^2)^{-1/2}$ and $(a, b) = (-1, 1)$, we have Gauss–Chebyshev Quadrature.
\n- For $w(x) = e^{-x}$ and $(a, b) = (0, \infty)$, we have Gauss–Laguerre Quadrature.
\n

• For
$$
w(x) = e^{-x^2}
$$
 and $(a, b) = (-\infty, \infty)$
we have Gauss-Hermite Quadrature.

Gaussian Quadrature gives better accuracy than Newton–Cotes Quadrature for the same number of function evaluations.

9 / 11

KO K KØ K K E K K E K DA OKO

Note that by the simple linear change of variable $t = (2x - a - b)/(b - a)$, which maps $[a, b] \rightarrow [-1, 1]$, we can evaluate for example

$$
\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{(b-a)t + b + a}{2}\right) \frac{b-a}{2} dt
$$

$$
b-a \frac{n}{2} + (b-a-b+c)
$$

$$
\simeq \frac{b-a}{2} \sum_{j=0}^{n} w_j f\left(\frac{b-a}{2}t_j + \frac{b+a}{2}\right),
$$

KO K K (DIK K E K K E K K K K K K K K K K K K

where \simeq denotes "quadrature" and the t_j , $j = 0, 1, \ldots, n$, are the roots of the $n + 1$ -st degree Legendre polynomial on $(-1, 1)$.

Example. 2-point Gauss–Legendre Quadrature:

$$
\phi_2 = x^2 - \frac{1}{3} \implies t_0 = -\frac{1}{\sqrt{3}}, \quad t_1 = \frac{1}{\sqrt{3}},
$$

and

$$
w_0 = \int_{-1}^{1} \frac{x - \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}}} dx = -\int_{-1}^{1} \left(\frac{\sqrt{3}}{2}x - \frac{1}{2}\right) dx = 1
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 900

with $w_1 = 1$, similarly.

Example. 2-point Gauss–Legendre Quadrature:

$$
\phi_2 = x^2 - \frac{1}{3} \implies t_0 = -\frac{1}{\sqrt{3}}, \quad t_1 = \frac{1}{\sqrt{3}},
$$

and

$$
w_0 = \int_{-1}^{1} \frac{x - \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}}} dx = -\int_{-1}^{1} \left(\frac{\sqrt{3}}{2}x - \frac{1}{2}\right) dx = 1
$$

with $w_1 = 1$, similarly. So e.g., changing variables $x = (t + 3)/2$,

$$
\int_{1}^{2} \frac{1}{x} dx = \frac{1}{2} \int_{-1}^{1} \frac{2}{t+3} dt \simeq \frac{1}{3 + \frac{1}{\sqrt{3}}} + \frac{1}{3 - \frac{1}{\sqrt{3}}} = 0.6923077\dots
$$

KO K K @ K K & K K & K & B K Y Q Q Q

Example. 2-point Gauss–Legendre Quadrature:

$$
\phi_2 = x^2 - \frac{1}{3} \implies t_0 = -\frac{1}{\sqrt{3}}, \quad t_1 = \frac{1}{\sqrt{3}},
$$

and

$$
w_0 = \int_{-1}^{1} \frac{x - \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}}} dx = -\int_{-1}^{1} \left(\frac{\sqrt{3}}{2}x - \frac{1}{2}\right) dx = 1
$$

with $w_1 = 1$, similarly. So e.g., changing variables $x = (t + 3)/2$,

$$
\int_{1}^{2} \frac{1}{x} dx = \frac{1}{2} \int_{-1}^{1} \frac{2}{t+3} dt \simeq \frac{1}{3 + \frac{1}{\sqrt{3}}} + \frac{1}{3 - \frac{1}{\sqrt{3}}} = 0.6923077\dots
$$

Note that with the Trapezium Rule (i.e., also with two evaluations of the integrand):

$$
\int_{1}^{2} \frac{1}{x} dx \simeq \frac{1}{2} \left[\frac{1}{2} + 1 \right] = 0.75,
$$

whereas \int^2 1 1 $\frac{1}{x}$ dx = ln 2 = 0.6931472 $\begin{picture}(130,10) \put(0,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}}$