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Gaussian Quadrature

Suppose that w is a weight-function, defined, positive and integrable on the
open interval (a,b) of R.

Lemma
Let {¢o, P1,...,Pn,...} be orthogonal polynomials for the inner product

b
(f,9) =/ w(z)f(z)g(x)dz.

Then, for each k = 0,1,..., ¢ has k distinct roots in the interval (a,b).
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Proof. Since ¢o(x) = const. # 0, the result is trivially true for k = 0.

Suppose that £ > 1. Then,

b
(Dr, ¢0) —/ w(z)pr(x)po(r)dr =0

with ¢y constant implies that

b
/ w(z)pr(z)dz =0

with w(z) >0, z € (a,b);



Proof. Since ¢o(x) = const. # 0, the result is trivially true for k = 0.

Suppose that £ > 1. Then,

b
(6r.60) = [ w@)on()onfa) do =0

with ¢y constant implies that

b
[ w@inta =0

with w(z) > 0, = € (a,b); thus ¢i(x) must change sign in (a,b), i.e., dp
has at least one root in (a,b).



Suppose that there are £ points a < r| <719 < -+ < 1y < b where ¢y,
changes sign for some 1 < /¢ < k.



Suppose that there are £ points a < r| <719 < -+ < 1y < b where ¢y,
changes sign for some 1 </ < k. Then,

¢
q(x) = H(l’ — r;) % the sign of ¢, on (r4,b)
j=1

has the same sign as ¢ on (a,b).



Suppose that there are £ points a < r| <719 < -+ < 1y < b where ¢y,
changes sign for some 1 </ < k. Then,

¢
q(x) = H(m — r;) % the sign of ¢, on (r4,b)
j=1

has the same sign as ¢ on (a,b).
b

Hence (¢k, q) = / w(z)r(z)q(x) dx > 0. Thus, from the previous
lemma, ¢ (which is of degree £) must be of degree >k, i.e., £ > k.



Suppose that there are £ points a < r| <719 < -+ < 1y < b where ¢y,
changes sign for some 1 </ < k. Then,

¢
q(x) = H(m — r;) % the sign of ¢, on (r4,b)
j=1

has the same sign as ¢ on (a,b).
b

Hence (¢k, q) = / w(z)r(z)q(x) dx > 0. Thus, from the previous

lemma, ¢ (which is of degree £) must be of degree >k, i.e., £ > k.

Therefore ¢ = k, and ¢y has k distinct roots in (a,b).



Quadrature revisited. The above lemma leads to very efficient quadrature
rules since it answers the question: how should we choose the quadrature
points xg, x1,...,x, in the quadrature rule

b n
/ w(e) f(@)de = 3wy f(;)
a =0

so that the rule is exact for polynomials of degree as high as possible?
(The case w(z) =1 is the most common.)



Recall that the Lagrange interpolating polynomial

Pn = Zf(xj)Ln,j € Hn

Jj=0

is unique, so if f € II,, = p,, = f whatever interpolation points are used.



Recall that the Lagrange interpolating polynomial
Pn = Zf(xj)Ln,j € Hn
j=0

is unique, so if f € II,, = p,, = f whatever interpolation points are used.
Moreover, we have

where w; = f:w(m)Ln] (x) dx exactly!



Theorem

Suppose that xg < x1 < --- < x,, are the roots of the n + 1-st degree
orthogonal polynomial ¢,,+1 with respect to the inner product

b
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then the quadrature formula
b n
[ w@i@ e~ Y wifa) (13.1)
a j=0

with weights wj = f;w(x)Ln](x) dz is exact whenever f € Il 1.




Proof. Let p € Tlg, 1.



Proof. Let p € Ilz, 1. Then, by the Division Algorithm,

p(x) = q(x)ppt1(z) + () with ¢,r € IL,,.



Proof. Let p € Ilz, 1. Then, by the Division Algorithm,

p(x) = q(x)ppt1(z) + () with ¢, 7 € IL,,.

So
b

/abw(z)p(f”) do = / bW(I)Q(I)%H(I) da + / w(z)r(z) do

a a

= wjr(z) (13.2)
j=0

since the integral involving ¢ € I1,, is zero by the lemma above and the other is
integrated exactly since r € II,,.



Proof. Let p € Ilz, 1. Then, by the Division Algorithm,

p(x) = q(x)ppt1(z) + () with ¢, 7 € IL,,.

So
b

bw(l‘)p(w)dx: bw(w)Q(I)¢n+1(x)dx+ w(a)r(r)dz
J

a a

= 3 wyrlay) (13.2)
=0

since the integral involving ¢ € I1,, is zero by the lemma above and the other is
integrated exactly since r € II,,. Finally, for all p € 11,41 we have

p(xj) = q(x)pnt1(xs) +r(z;) =r(z;), (G =0,...,n),

for as the z; are the roots of ¢,, 11, hence (13.2) yields

b n
/ w(z)p(z)de = ijp(zj).lj
a )



These quadrature rules are called Gaussian Quadratures.



These quadrature rules are called Gaussian Quadratures.

Q Forw(z) =1, (a,b) =(—1,1)
we have Gauss—Legendre Quadrature.
Q For w(z) = (1 —22)~Y2 and (a,b) = (-1,1)
we have Gauss—Chebyshev Quadrature.
@ For w(z) =e " and (a,b) = (0,00)
we have Gauss—Laguerre Quadrature.
Q@ For w(z) = e and (a,b) = (—o0, )
we have Gauss—Hermite Quadrature.



These quadrature rules are called Gaussian Quadratures.

Q Forw(z) =1, (a,b) =(—1,1)
we have Gauss—Legendre Quadrature.
Q For w(z) = (1 —22)~Y2 and (a,b) = (-1,1)
we have Gauss—Chebyshev Quadrature.
@ For w(z) =e " and (a,b) = (0,00)
we have Gauss—Laguerre Quadrature.
Q@ For w(z) = e and (a,b) = (—o0, )
we have Gauss—Hermite Quadrature.

Gaussian Quadrature gives better accuracy than Newton—Cotes Quadrature
for the same number of function evaluations.



Note that by the simple linear change of variable t = (20 —a — b)/(b — a),
which maps [a,b] — [—1, 1], we can evaluate for example

/abf(:n)dxz /11f<(b—a)t2+b+a> b;adt

b— a — b—a b+a
. ;wjf( 4 2 )

where ~ denotes “quadrature” and the ¢;, j = 0,1,...,n, are the roots of
the n + 1-st degree Legendre polynomial on (—1,1).

~
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Example. 2-point Gauss—Legendre Quadrature:

and
w():/ ‘/gldx:—/_ (?w—2>d$:1

-1 —

S

with wy; = 1, similarly.
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Example. 2-point Gauss—Legendre Quadrature:

¢2:x2—%:>t0:—

1 r— L 1 3 1
w():/ 1‘/§1dx:—/ (\[1‘—>d$:1
11 2 2

-1 -1

and
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Example. 2-point Gauss—Legendre Quadrature:

<Z>2::c2—%:>t0:—

1 r— L 1 3 1
wO:/ 1‘/§1d:z::—/ (\[:L‘—>d:r:1
11 2 2

-1 -1

and

Note that with the Trapezium Rule (i.e., also with two evaluations of the

21 11
—dr~=-|=-+4+1| =0.
/1 T 2[2 } 0.75,

2
whereas / l dr =In2 =0.6931472... .
1

x

integrand):

11 / 11



	Lagrange interpolation
	Newton–Cotes quadrature
	Newton–Cotes quadrature continued
	Gaussian elimination
	LU Factorization
	QR Factorization
	Matrix Eigenvalues
	The Symmetric QR Algorithm
	The Symmetric QR Algorithm
	Best Approximation in Inner-Product Spaces
	Least-Squares Approximation
	Orthogonal Polynomials
	Gaussian Quadrature

