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Gaussian Quadrature

Suppose that w is a weight-function, defined, positive and integrable on the

open interval (a, b) of R.

Lemma

Let {φ0, φ1, . . . , φn, . . .} be orthogonal polynomials for the inner product

〈f, g〉 =

∫ b

a
w(x)f(x)g(x) dx.

Then, for each k = 0, 1, . . ., φk has k distinct roots in the interval (a, b).
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Proof. Since φ0(x) ≡ const. 6= 0, the result is trivially true for k = 0.

Suppose that k ≥ 1. Then,

〈φk, φ0〉 =

∫ b

a
w(x)φk(x)φ0(x) dx = 0

with φ0 constant implies that∫ b

a
w(x)φk(x) dx = 0

with w(x) > 0, x ∈ (a, b);

thus φk(x) must change sign in (a, b), i.e., φk
has at least one root in (a, b).
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Suppose that there are ` points a < r1 < r2 < · · · < r` < b where φk
changes sign for some 1 ≤ ` ≤ k.

Then,

q(x) =
∏̀
j=1

(x− rj)× the sign of φk on (r`, b)

has the same sign as φk on (a, b).

Hence 〈φk, q〉 =

∫ b

a
w(x)φk(x)q(x) dx > 0. Thus, from the previous

lemma, q (which is of degree `) must be of degree ≥ k, i.e., ` ≥ k.

Therefore ` = k, and φk has k distinct roots in (a, b). 2
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Quadrature revisited. The above lemma leads to very efficient quadrature

rules since it answers the question: how should we choose the quadrature

points x0, x1, . . . , xn in the quadrature rule∫ b

a
w(x)f(x) dx ≈

n∑
j=0

wjf(xj)

so that the rule is exact for polynomials of degree as high as possible?

(The case w(x) ≡ 1 is the most common.)
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Recall that the Lagrange interpolating polynomial

pn =

n∑
j=0

f(xj)Ln,j ∈ Πn

is unique, so if f ∈ Πn =⇒ pn ≡ f whatever interpolation points are used.

Moreover, we have∫ b

a

w(x)f(x) dx =

∫ b

a

w(x)pn(x) dx

=

∫ b

a

w(x)

n∑
j=0

f(xj)Ln,j(x) dx

=

n∑
j=0

f(xj)

∫ b

a

w(x)Ln,j(x) dx

=
n∑

j=0

wjf(xj),

where wj =
∫ b

a
w(x)Ln,j(x) dx exactly!
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Theorem

Suppose that x0 < x1 < · · · < xn are the roots of the n+ 1-st degree

orthogonal polynomial φn+1 with respect to the inner product

〈g, h〉 =

∫ b

a
w(x)g(x)h(x) dx,

then the quadrature formula∫ b

a
w(x)f(x) dx ≈

n∑
j=0

wjf(xj) (13.1)

with weights wj =
∫ b
a w(x)Ln,j(x) dx is exact whenever f ∈ Π2n+1.
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Proof. Let p ∈ Π2n+1.

Then, by the Division Algorithm,

p(x) = q(x)φn+1(x) + r(x) with q, r ∈ Πn.

So ∫ b

a

w(x)p(x) dx =

∫ b

a

w(x)q(x)φn+1(x) dx+

∫ b

a

w(x)r(x) dx

=
n∑

j=0

wjr(xj) (13.2)

since the integral involving q ∈ Πn is zero by the lemma above and the other is

integrated exactly since r ∈ Πn. Finally, for all p ∈ Π2n+1 we have

p(xj) = q(xj)φn+1(xj) + r(xj) = r(xj), (j = 0, . . . , n),

for as the xj are the roots of φn+1, hence (13.2) yields∫ b

a

w(x)p(x) dx =

n∑
j=0

wjp(xj).2
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These quadrature rules are called Gaussian Quadratures.

1 For w(x) ≡ 1, (a, b) = (−1, 1)

we have Gauss–Legendre Quadrature.

2 For w(x) = (1− x2)−1/2 and (a, b) = (−1, 1)

we have Gauss–Chebyshev Quadrature.

3 For w(x) = e−x and (a, b) = (0,∞)

we have Gauss–Laguerre Quadrature.

4 For w(x) = e−x2
and (a, b) = (−∞,∞)

we have Gauss–Hermite Quadrature.

Gaussian Quadrature gives better accuracy than Newton–Cotes Quadrature

for the same number of function evaluations.
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Note that by the simple linear change of variable t = (2x− a− b)/(b− a),

which maps [a, b]→ [−1, 1], we can evaluate for example∫ b

a
f(x) dx =

∫ 1

−1
f

(
(b− a)t+ b+ a

2

)
b− a

2
dt

' b− a
2

n∑
j=0

wjf

(
b− a

2
tj +

b+ a

2

)
,

where ' denotes “quadrature” and the tj , j = 0, 1, . . . , n, are the roots of

the n+ 1-st degree Legendre polynomial on (−1, 1).
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Example. 2-point Gauss–Legendre Quadrature:

φ2 = x2 − 1
3

=⇒ t0 = − 1√
3
, t1 = 1√

3
,

and

w0 =

∫ 1

−1

x− 1√
3

− 1√
3
− 1√

3

dx = −
∫ 1

−1

(√
3

2
x− 1

2

)
dx = 1

with w1 = 1, similarly.

So e.g., changing variables x = (t+ 3)/2,∫ 2

1

1

x
dx =

1

2

∫ 1

−1

2

t+ 3
dt ' 1

3 + 1√
3

+
1

3− 1√
3

= 0.6923077 . . . .

Note that with the Trapezium Rule (i.e., also with two evaluations of the

integrand): ∫ 2

1

1

x
dx ' 1

2

[
1

2
+ 1

]
= 0.75,

whereas

∫ 2

1

1

x
dx = ln 2 = 0.6931472 . . . .
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