
Numerical Analysis

Raphael Hauser

with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

1 / 16

Recap on Gaussian Quadrature

Theorem

Let x0 < x1 < · · · < xn be the roots of the n+ 1-st degree orthogonal

polynomial φn+1 with respect to the inner product

〈g, h〉 =

∫ b

a
w(x)g(x)h(x) dx,

then the quadrature formula∫ b

a
w(x)f(x) dx ≈

n∑
j=0

wjf(xj) (14.1)

with weights wj =
∫ b
a w(x)Ln,j(x) dx is exact whenever f ∈ Π2n+1.

2 / 16

Example ∫ 2

1

1

x
dx

2-pt Gauss-Legrendre
=

1

2

∫ 1

−1

2

t+ 3
dt

' 1

3 + 1√
3

+
1

3− 1√
3

= 0.6923077 . . . ,∫ 2

1

1

x
dx

2-pt Newton-Cotes
' 1

2

[
1

2
+ 1

]
= 0.75,∫ 2

1

1

x
d

exact
= 0.6931472 . . .

Gaussian quadrature seems to be much more accurate than Newton-Cotes

quadrature with the same number of nodes, not just for polynomials!

3 / 16

Example ∫ 2

1

1

x
dx

2-pt Gauss-Legrendre
=

1

2

∫ 1

−1

2

t+ 3
dt

' 1

3 + 1√
3

+
1

3− 1√
3

= 0.6923077 . . . ,∫ 2

1

1

x
dx

2-pt Newton-Cotes
' 1

2

[
1

2
+ 1

]
= 0.75,∫ 2

1

1

x
d

exact
= 0.6931472 . . .

Gaussian quadrature seems to be much more accurate than Newton-Cotes

quadrature with the same number of nodes, not just for polynomials!

3 / 16

Theorem (Error of Gaussian Quadrature)

Let f ∈ C2n+2(a, b), and let xj and wj be as defined above. Then,∫ b

a
w(x)f(x) dx =

n∑
j=0

wjf(xj) +
f (2n+2)(η)

(2n+ 2)!

∫ b

a
w(x)

n∏
j=0

(x− xj)2 dx

for some η ∈ (a, b).

4 / 16

Recall from Lecture 2: Given data fi = f(xi) and gi = f ′(xi) at n+ 1

distinct points

x0 < x1 < · · · < xn,

there exists a unique polynomial p ∈ Π2n+1 such that p(xi) = fi and

p′(xi) = gi for i = 0, 1, . . . , n, the Hermite interpolating polynomial

p2n+1(x) =

n∑
k=0

[fkHn,k(x) + gkKn,k(x)],

which can be constructed as follows,

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
,

Hn,k(x) = [Ln,k(x)]2(1− 2(x− xk)L′n,k(xk))

Kn,k(x) = [Ln,k(x)]2(x− xk).

5 / 16

Proof of Theorem (Error of Gaussian Quadrature). The proof is based on

the Hermite Interpolating Polynomial H2n+1 to f at x0, x1, . . . , xn.

The error in Hermite interpolation is (see Lecture 2)

f(x)−H2n+1(x) =
1

(2n+ 2)!
f (2n+2)(η(x))

n∏
j=0

(x− xj)2

for some η(x) ∈ (a, b). Now H2n+1 ∈ Π2n+1, so∫ b

a
w(x)H2n+1(x) dx =

n∑
j=0

wjH2n+1(xj) =
n∑

j=0

wjf(xj),

the first identity because Gaussian Quadrature is exact for polynomials of

this degree and the second by interpolation.

6 / 16

Proof of Theorem (Error of Gaussian Quadrature). The proof is based on

the Hermite Interpolating Polynomial H2n+1 to f at x0, x1, . . . , xn.

The error in Hermite interpolation is (see Lecture 2)

f(x)−H2n+1(x) =
1

(2n+ 2)!
f (2n+2)(η(x))

n∏
j=0

(x− xj)2

for some η(x) ∈ (a, b).

Now H2n+1 ∈ Π2n+1, so∫ b

a
w(x)H2n+1(x) dx =

n∑
j=0

wjH2n+1(xj) =
n∑

j=0

wjf(xj),

the first identity because Gaussian Quadrature is exact for polynomials of

this degree and the second by interpolation.

6 / 16

Proof of Theorem (Error of Gaussian Quadrature). The proof is based on

the Hermite Interpolating Polynomial H2n+1 to f at x0, x1, . . . , xn.

The error in Hermite interpolation is (see Lecture 2)

f(x)−H2n+1(x) =
1

(2n+ 2)!
f (2n+2)(η(x))

n∏
j=0

(x− xj)2

for some η(x) ∈ (a, b). Now H2n+1 ∈ Π2n+1, so∫ b

a
w(x)H2n+1(x) dx =

n∑
j=0

wjH2n+1(xj) =

n∑
j=0

wjf(xj),

the first identity because Gaussian Quadrature is exact for polynomials of

this degree and the second by interpolation.

6 / 16

Thus∫ b

a
w(x)f(x) dx−

n∑
j=0

wjf(xj)

=

∫ b

a
w(x)[f(x)−H2n+1(x)] dx

=
1

(2n+ 2)!

∫ b

a
f (2n+2)(η(x))w(x)

n∏
j=0

(x− xj)2 dx,

and hence the required result follows from the Integral Mean Value

Theorem as w(x)
∏n

j=0(x− xj)2 ≥ 0,

∫ b

a

w(x)f(x) dx−
n∑

j=0

wjf(xj) =
f (2n+2)(η)

(2n+ 2)!

∫ b

a

w(x)

n∏
j=0

(x− xj)2 dx. 2

7 / 16

Thus∫ b

a
w(x)f(x) dx−

n∑
j=0

wjf(xj)

=

∫ b

a
w(x)[f(x)−H2n+1(x)] dx

=
1

(2n+ 2)!

∫ b

a
f (2n+2)(η(x))w(x)

n∏
j=0

(x− xj)2 dx,

and hence the required result follows from the Integral Mean Value

Theorem as w(x)
∏n

j=0(x− xj)2 ≥ 0,

∫ b

a

w(x)f(x) dx−
n∑

j=0

wjf(xj) =
f (2n+2)(η)

(2n+ 2)!

∫ b

a

w(x)

n∏
j=0

(x− xj)2 dx. 2

7 / 16

Thus∫ b

a
w(x)f(x) dx−

n∑
j=0

wjf(xj)

=

∫ b

a
w(x)[f(x)−H2n+1(x)] dx

=
1

(2n+ 2)!

∫ b

a
f (2n+2)(η(x))w(x)

n∏
j=0

(x− xj)2 dx,

and hence the required result follows from the Integral Mean Value

Theorem as w(x)
∏n

j=0(x− xj)2 ≥ 0,

∫ b

a

w(x)f(x) dx−
n∑

j=0

wjf(xj) =
f (2n+2)(η)

(2n+ 2)!

∫ b

a

w(x)

n∏
j=0

(x− xj)2 dx. 2

7 / 16

Remark: the “direct” approach of finding Gaussian Quadrature formulae

sometimes works for small n, but is usually hard.

Example. To find the two-point Gauss–Legendre rule w0f(x0) + w1f(x1)

on (−1, 1) with weight function w(x) ≡ 1, we need to be able to integrate

any cubic polynomial exactly, so

2 =

∫ 1

−1
1 dx = w0 + w1 (14.2)

0 =

∫ 1

−1
xdx = w0x0 + w1x1 (14.3)

2
3

=

∫ 1

−1
x2 dx = w0x

2
0 + w1x

2
1 (14.4)

0 =

∫ 1

−1
x3 dx = w0x

3
0 + w1x

3
1. (14.5)

8 / 16

Remark: the “direct” approach of finding Gaussian Quadrature formulae

sometimes works for small n, but is usually hard.

Example. To find the two-point Gauss–Legendre rule w0f(x0) + w1f(x1)

on (−1, 1) with weight function w(x) ≡ 1, we need to be able to integrate

any cubic polynomial exactly, so

2 =

∫ 1

−1
1 dx = w0 + w1 (14.2)

0 =

∫ 1

−1
x dx = w0x0 + w1x1 (14.3)

2
3

=

∫ 1

−1
x2 dx = w0x

2
0 + w1x

2
1 (14.4)

0 =

∫ 1

−1
x3 dx = w0x

3
0 + w1x

3
1. (14.5)

8 / 16

Solution: These are four nonlinear equations in four unknowns w0, w1, x0
and x1.

Equations (14.3) and (14.5) give(
x0 x1
x30 x31

)(
w0

w1

)
=

(
0

0

)
,

which implies that

x0x
3
1 − x1x30 = 0

for w1, w2 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (14.3), either of which

contradicts (14.4). Thus x0 6= 0, and similarly x1 6= 0. If x1 = x0, (14.3)

implies w1 = −w0, which contradicts (14.2). So x1 = −x0, and hence

(14.3) implies w1 = w0. Then (14.2) yields w0 = w1 = 1 and (14.4) gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

9 / 16

Solution: These are four nonlinear equations in four unknowns w0, w1, x0
and x1. Equations (14.3) and (14.5) give(

x0 x1
x30 x31

)(
w0

w1

)
=

(
0

0

)
,

which implies that

x0x
3
1 − x1x30 = 0

for w1, w2 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (14.3), either of which

contradicts (14.4). Thus x0 6= 0, and similarly x1 6= 0. If x1 = x0, (14.3)

implies w1 = −w0, which contradicts (14.2). So x1 = −x0, and hence

(14.3) implies w1 = w0. Then (14.2) yields w0 = w1 = 1 and (14.4) gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

9 / 16

Solution: These are four nonlinear equations in four unknowns w0, w1, x0
and x1. Equations (14.3) and (14.5) give(

x0 x1
x30 x31

)(
w0

w1

)
=

(
0

0

)
,

which implies that

x0x
3
1 − x1x30 = 0

for w1, w2 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (14.3), either of which

contradicts (14.4).

Thus x0 6= 0, and similarly x1 6= 0. If x1 = x0, (14.3)

implies w1 = −w0, which contradicts (14.2). So x1 = −x0, and hence

(14.3) implies w1 = w0. Then (14.2) yields w0 = w1 = 1 and (14.4) gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

9 / 16

Solution: These are four nonlinear equations in four unknowns w0, w1, x0
and x1. Equations (14.3) and (14.5) give(

x0 x1
x30 x31

)(
w0

w1

)
=

(
0

0

)
,

which implies that

x0x
3
1 − x1x30 = 0

for w1, w2 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (14.3), either of which

contradicts (14.4). Thus x0 6= 0, and similarly x1 6= 0.

If x1 = x0, (14.3)

implies w1 = −w0, which contradicts (14.2). So x1 = −x0, and hence

(14.3) implies w1 = w0. Then (14.2) yields w0 = w1 = 1 and (14.4) gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

9 / 16

Solution: These are four nonlinear equations in four unknowns w0, w1, x0
and x1. Equations (14.3) and (14.5) give(

x0 x1
x30 x31

)(
w0

w1

)
=

(
0

0

)
,

which implies that

x0x
3
1 − x1x30 = 0

for w1, w2 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (14.3), either of which

contradicts (14.4). Thus x0 6= 0, and similarly x1 6= 0. If x1 = x0, (14.3)

implies w1 = −w0, which contradicts (14.2).

So x1 = −x0, and hence

(14.3) implies w1 = w0. Then (14.2) yields w0 = w1 = 1 and (14.4) gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

9 / 16

Solution: These are four nonlinear equations in four unknowns w0, w1, x0
and x1. Equations (14.3) and (14.5) give(

x0 x1
x30 x31

)(
w0

w1

)
=

(
0

0

)
,

which implies that

x0x
3
1 − x1x30 = 0

for w1, w2 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (14.3), either of which

contradicts (14.4). Thus x0 6= 0, and similarly x1 6= 0. If x1 = x0, (14.3)

implies w1 = −w0, which contradicts (14.2). So x1 = −x0, and hence

(14.3) implies w1 = w0.

Then (14.2) yields w0 = w1 = 1 and (14.4) gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

9 / 16

Solution: These are four nonlinear equations in four unknowns w0, w1, x0
and x1. Equations (14.3) and (14.5) give(

x0 x1
x30 x31

)(
w0

w1

)
=

(
0

0

)
,

which implies that

x0x
3
1 − x1x30 = 0

for w1, w2 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (14.3), either of which

contradicts (14.4). Thus x0 6= 0, and similarly x1 6= 0. If x1 = x0, (14.3)

implies w1 = −w0, which contradicts (14.2). So x1 = −x0, and hence

(14.3) implies w1 = w0. Then (14.2) yields w0 = w1 = 1 and (14.4) gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

9 / 16

Piecewise Polynomial Interpolation: Splines

Sometimes a ‘global’ approximation like Lagrange Interpolation is not

appropriate, e.g., for ’rough’ data.

1

On the left the Lagrange Interpolant p7 ‘wiggles’ through the points, while

on the right a piecewise linear interpolant (‘join the dots’), or linear spline

interpolant, s appears to represent the data better.

10 / 16

Piecewise Polynomial Interpolation: Splines

Sometimes a ‘global’ approximation like Lagrange Interpolation is not

appropriate, e.g., for ’rough’ data.

1

On the left the Lagrange Interpolant p7 ‘wiggles’ through the points, while

on the right a piecewise linear interpolant (‘join the dots’), or linear spline

interpolant, s appears to represent the data better.

10 / 16

Remark: for any given data s clearly exists and is unique.

Suppose that a = x0 < x1 < · · · < xn = b. Then, s is linear on each

interval [xi−1, xi] for i = 1, . . . , n and continuous on [a, b].

The xi, i = 0, 1, . . . , n, are called the knots of the linear spline.

Notation: f ∈ Ck[a, b] if f, f ′, . . . , fk exist and are continuous on [a, b].

11 / 16

Remark: for any given data s clearly exists and is unique.

Suppose that a = x0 < x1 < · · · < xn = b. Then, s is linear on each

interval [xi−1, xi] for i = 1, . . . , n and continuous on [a, b].

The xi, i = 0, 1, . . . , n, are called the knots of the linear spline.

Notation: f ∈ Ck[a, b] if f, f ′, . . . , fk exist and are continuous on [a, b].

11 / 16

Remark: for any given data s clearly exists and is unique.

Suppose that a = x0 < x1 < · · · < xn = b. Then, s is linear on each

interval [xi−1, xi] for i = 1, . . . , n and continuous on [a, b].

The xi, i = 0, 1, . . . , n, are called the knots of the linear spline.

Notation: f ∈ Ck[a, b] if f, f ′, . . . , fk exist and are continuous on [a, b].

11 / 16

Remark: for any given data s clearly exists and is unique.

Suppose that a = x0 < x1 < · · · < xn = b. Then, s is linear on each

interval [xi−1, xi] for i = 1, . . . , n and continuous on [a, b].

The xi, i = 0, 1, . . . , n, are called the knots of the linear spline.

Notation: f ∈ Ck[a, b] if f, f ′, . . . , fk exist and are continuous on [a, b].

11 / 16

Theorem

Let s be the linear spline interpolation of a function f ∈ C2[a, b] at nodes

x0 < x1 < · · · < xn. Then,

‖f − s‖∞ ≤
1

8
h2‖f ′′‖∞

where h = max
1≤i≤n

(xi − xi−1) and ‖f ′′‖∞ = max
x∈[a,b]

|f ′′(x)|.

12 / 16

Proof. For x ∈ [xi−1, xi], the error from linear interpolation is

f(x)− s(x) =
1

2
f ′′(η(x))(x− xi−1)(x− xi)

where η(x) ∈ (xi−1, xi), by the error formula of the Lagrange interpolating

polynomial p1 that interpolates f at xi−1 and xi (see Lecture 1).

However,

|(x− xi−1)(x− xi)| = (x− xi−1)(xi − x) = −x2 + x(xi−1 + xi)− xi−1xi,

which has its maximum value when 2x = xi + xi−1, i.e., when

x− xi−1 = xi − x = 1
2 (xi − xi−1).

Thus for any x ∈ [xi−1, xi], i = 1, 2, . . . , n,

|f(x)− s(x)| ≤ 1

2
‖f ′′‖∞ max

x∈[xi−1,xi]
|(x− xi−1)(x− xi)| ≤

1

8
h2‖f ′′‖∞. 2

13 / 16

Proof. For x ∈ [xi−1, xi], the error from linear interpolation is

f(x)− s(x) =
1

2
f ′′(η(x))(x− xi−1)(x− xi)

where η(x) ∈ (xi−1, xi), by the error formula of the Lagrange interpolating

polynomial p1 that interpolates f at xi−1 and xi (see Lecture 1).

However,

|(x− xi−1)(x− xi)| = (x− xi−1)(xi − x) = −x2 + x(xi−1 + xi)− xi−1xi,

which has its maximum value when 2x = xi + xi−1, i.e., when

x− xi−1 = xi − x = 1
2 (xi − xi−1).

Thus for any x ∈ [xi−1, xi], i = 1, 2, . . . , n,

|f(x)− s(x)| ≤ 1

2
‖f ′′‖∞ max

x∈[xi−1,xi]
|(x− xi−1)(x− xi)| ≤

1

8
h2‖f ′′‖∞. 2

13 / 16

Proof. For x ∈ [xi−1, xi], the error from linear interpolation is

f(x)− s(x) =
1

2
f ′′(η(x))(x− xi−1)(x− xi)

where η(x) ∈ (xi−1, xi), by the error formula of the Lagrange interpolating

polynomial p1 that interpolates f at xi−1 and xi (see Lecture 1).

However,

|(x− xi−1)(x− xi)| = (x− xi−1)(xi − x) = −x2 + x(xi−1 + xi)− xi−1xi,

which has its maximum value when 2x = xi + xi−1, i.e., when

x− xi−1 = xi − x = 1
2 (xi − xi−1).

Thus for any x ∈ [xi−1, xi], i = 1, 2, . . . , n,

|f(x)− s(x)| ≤ 1

2
‖f ′′‖∞ max

x∈[xi−1,xi]
|(x− xi−1)(x− xi)| ≤

1

8
h2‖f ′′‖∞. 2

13 / 16

Note that s may have discontinuous derivatives, but it is a locally defined

approximation, since changing the value of one data point affects the

approximation in only two intervals.

To get greater smoothness but retain some ‘locality’, we can define cubic

splines s ∈ C2[a, b]. For a given ‘partition’,

a = x0 < x1 < · · · < xn = b,

there are (generally different!) cubic polynomials in each interval (xi−1, xi),

i = 1, . . . , n, which are ’joined’ at each knot to have continuity and

continuity of s′ and s′′.

Interpolating cubic splines also satisfy s(xi) = fi for given data fi,

i = 0, 1, . . . , n.

14 / 16

Note that s may have discontinuous derivatives, but it is a locally defined

approximation, since changing the value of one data point affects the

approximation in only two intervals.

To get greater smoothness but retain some ‘locality’, we can define cubic

splines s ∈ C2[a, b]. For a given ‘partition’,

a = x0 < x1 < · · · < xn = b,

there are (generally different!) cubic polynomials in each interval (xi−1, xi),

i = 1, . . . , n, which are ’joined’ at each knot to have continuity and

continuity of s′ and s′′.

Interpolating cubic splines also satisfy s(xi) = fi for given data fi,

i = 0, 1, . . . , n.

14 / 16

Note that s may have discontinuous derivatives, but it is a locally defined

approximation, since changing the value of one data point affects the

approximation in only two intervals.

To get greater smoothness but retain some ‘locality’, we can define cubic

splines s ∈ C2[a, b]. For a given ‘partition’,

a = x0 < x1 < · · · < xn = b,

there are (generally different!) cubic polynomials in each interval (xi−1, xi),

i = 1, . . . , n, which are ’joined’ at each knot to have continuity and

continuity of s′ and s′′.

Interpolating cubic splines also satisfy s(xi) = fi for given data fi,

i = 0, 1, . . . , n.

14 / 16

Remark: if there are n intervals, there are 4n free coefficients (four for each

cubic ‘piece’), but 2n interpolation conditions (one each at the ends of each

interval), n− 1 derivative continuity conditions (at x1, . . . , xn−1) and n− 1

second derivative continuity conditions (at the same points), giving a total

of 4n− 2 conditions (which are linear in the free coefficients).

Thus the spline is not unique.

So we need to add two extra conditions to generate a spline that might be

unique.

15 / 16

Remark: if there are n intervals, there are 4n free coefficients (four for each

cubic ‘piece’), but 2n interpolation conditions (one each at the ends of each

interval), n− 1 derivative continuity conditions (at x1, . . . , xn−1) and n− 1

second derivative continuity conditions (at the same points), giving a total

of 4n− 2 conditions (which are linear in the free coefficients).

Thus the spline is not unique.

So we need to add two extra conditions to generate a spline that might be

unique.

15 / 16

Remark: if there are n intervals, there are 4n free coefficients (four for each

cubic ‘piece’), but 2n interpolation conditions (one each at the ends of each

interval), n− 1 derivative continuity conditions (at x1, . . . , xn−1) and n− 1

second derivative continuity conditions (at the same points), giving a total

of 4n− 2 conditions (which are linear in the free coefficients).

Thus the spline is not unique.

So we need to add two extra conditions to generate a spline that might be

unique.

15 / 16

There are three common ways of doings this:

(a) specify s′(x0) = f ′(x0) and s′(xn) = f ′(xn); or

(b) specify s′′(x0) = 0 = s′′(xn) — this gives a natural cubic spline; or

(c) enforce continuity of s′′′ at x1 and xn−1 (which implies that the first

two pieces are the same cubic spline, i.e., on [x0, x2], and similarly for

the last two pieces, i.e., on [xn−2, xn], from which it follows that x1
and xn−1 are not knots! — this is usually described as the ‘not a knot’

end-conditions).

16 / 16

There are three common ways of doings this:

(a) specify s′(x0) = f ′(x0) and s′(xn) = f ′(xn); or

(b) specify s′′(x0) = 0 = s′′(xn) — this gives a natural cubic spline; or

(c) enforce continuity of s′′′ at x1 and xn−1 (which implies that the first

two pieces are the same cubic spline, i.e., on [x0, x2], and similarly for

the last two pieces, i.e., on [xn−2, xn], from which it follows that x1
and xn−1 are not knots! — this is usually described as the ‘not a knot’

end-conditions).

16 / 16

There are three common ways of doings this:

(a) specify s′(x0) = f ′(x0) and s′(xn) = f ′(xn); or

(b) specify s′′(x0) = 0 = s′′(xn) — this gives a natural cubic spline; or

(c) enforce continuity of s′′′ at x1 and xn−1 (which implies that the first

two pieces are the same cubic spline, i.e., on [x0, x2], and similarly for

the last two pieces, i.e., on [xn−2, xn], from which it follows that x1
and xn−1 are not knots! — this is usually described as the ‘not a knot’

end-conditions).

16 / 16

There are three common ways of doings this:

(a) specify s′(x0) = f ′(x0) and s′(xn) = f ′(xn); or

(b) specify s′′(x0) = 0 = s′′(xn) — this gives a natural cubic spline; or

(c) enforce continuity of s′′′ at x1 and xn−1 (which implies that the first

two pieces are the same cubic spline, i.e., on [x0, x2], and similarly for

the last two pieces, i.e., on [xn−2, xn], from which it follows that x1
and xn−1 are not knots! — this is usually described as the ‘not a knot’

end-conditions).

16 / 16

	Lagrange interpolation
	Newton–Cotes quadrature
	Newton–Cotes quadrature continued
	Gaussian elimination
	LU Factorization
	QR Factorization
	Matrix Eigenvalues
	The Symmetric QR Algorithm
	The Symmetric QR Algorithm
	Best Approximation in Inner-Product Spaces
	Least-Squares Approximation
	Orthogonal Polynomials
	Gaussian Quadrature
	Piecewise Polynomial Interpolation: Splines

