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Recap on Splines

1

To avoid the oscillating behaviour of interpolation by (globally defined)

Lagrange interpolation polynomials, we want to construct local models that

are patched together to form one of the following:

C0 function (linear splines, shown here),

C1 function (quadratic splines, not discussed further in this course),

C2 function (cubic splines, see below),

C3 . . . (higher order splines, not discussed in this course).
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Theorem

Let s(x) be the linear spline interpolation of a function f ∈ C2[a, b] at

nodes x0 < x1 < · · · < xn. Then,

‖f − s‖∞ ≤
1

8
h2‖f ′′‖∞

where h = max
1≤i≤n

(xi − xi−1) and ‖f ′′‖∞ = max
x∈[a,b]

|f ′′(x)|.
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For cubic spline approximations on a = x0 < x1 < · · · < xn = b, we use

degree 3 polynomials

si(x) =

{
aix

3 + bix
2 + cix+ di, x ∈ (xi−1, xi),

0 otherwise

on each of the subintervals (xi−1, xi), (i = 1, . . . , n), and we patch them

together by defining

s(x) =

{∑n
i=1 si(x) for x ∈ [a, b] \ {x0, . . . , xn},

f(xi) for x = xi, (i = 0, . . . , n).

To do this, we have to specify the 4n free parameters ai, bi, ci, di.

4 / 13



For cubic spline approximations on a = x0 < x1 < · · · < xn = b, we use

degree 3 polynomials

si(x) =

{
aix

3 + bix
2 + cix+ di, x ∈ (xi−1, xi),

0 otherwise

on each of the subintervals (xi−1, xi), (i = 1, . . . , n),

and we patch them

together by defining

s(x) =

{∑n
i=1 si(x) for x ∈ [a, b] \ {x0, . . . , xn},

f(xi) for x = xi, (i = 0, . . . , n).

To do this, we have to specify the 4n free parameters ai, bi, ci, di.

4 / 13



For cubic spline approximations on a = x0 < x1 < · · · < xn = b, we use

degree 3 polynomials

si(x) =

{
aix

3 + bix
2 + cix+ di, x ∈ (xi−1, xi),

0 otherwise

on each of the subintervals (xi−1, xi), (i = 1, . . . , n), and we patch them

together by defining

s(x) =

{∑n
i=1 si(x) for x ∈ [a, b] \ {x0, . . . , xn},

f(xi) for x = xi, (i = 0, . . . , n).

To do this, we have to specify the 4n free parameters ai, bi, ci, di.

4 / 13



For cubic spline approximations on a = x0 < x1 < · · · < xn = b, we use

degree 3 polynomials

si(x) =

{
aix

3 + bix
2 + cix+ di, x ∈ (xi−1, xi),

0 otherwise

on each of the subintervals (xi−1, xi), (i = 1, . . . , n), and we patch them

together by defining

s(x) =

{∑n
i=1 si(x) for x ∈ [a, b] \ {x0, . . . , xn},

f(xi) for x = xi, (i = 0, . . . , n).

To do this, we have to specify the 4n free parameters ai, bi, ci, di.

4 / 13



To specify the 4n parameters, we can impose 4n conditions:

(A) s(x)must interpolate f at the nodes x0, . . . , xn,

si(x
+
i−1) := lim

x↘xi−1

si(x) = f(xi), (i = 1, . . . , n)

si(x
−
i ) := lim

x↗xi

si(x) = f(xi+1), (i = 1, . . . , n),

which yields 2n conditions;

(B) first derivatives of adjacent patches must match at nodes, giving first

order smoothness,

s′i(x
−
i )− s′i+1(x

+
i ) = 0, (i = 1, . . . , n− 1),

which yields n− 1 conditions;

(C) second derivatives of adjacent patches must match at nodes, giving

second order smoothness,

s′′i (x−i )− s′′i+1(x
+
i ) = 0, (i = 1, . . . , n− 1),

which yields n− 1 conditions.
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For the final two conditions we have a choice:

(a) specify s′(x+0 ) = f ′(x0) and s′(x−n ) = f ′(xn) — this gives a Hermite

cubic spline ; or

(b) specify s′′(x+0 ) = 0 = s′′(x−n ) — this gives a natural cubic spline; or

(c) enforce continuity of s′′′ at x1 and xn−1 (which implies that the first

two pieces are the same cubic spline, i.e., on [x0, x2], and similarly for

the last two pieces, i.e., on [xn−2, xn], from which it follows that x1
and xn−1 are not knots! — this is usually described as the ‘not a

knot’ end-conditions).
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We may write Conditions (A), (B) and (C) complemented with one of (a),

(b) or (c) in matrix form as

Ay = g, (14.1)

with

y = (a1, b1, c1, d1, a2, . . . , dn−1, an, bn, cn, dn)T

and the various entries of g are f(xi), i ∈ 0, 1, . . . , n, and f ′(x0), f ′(xn)

for (a), and zeros for (b).

So if A is nonsingular, this implies that y = A−1g, that is there is a unique

set of coefficients {a1, b1, c1, d1, a2, . . . , dn−1, an, bn, cn, dn}.

We now prove that if Ay = 0 then y = 0, and thus that A is nonsingular

for cases (a) and (b) — it is also possible, but more complicated, to show

this for case (c).
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Theorem

If f(xi) = 0 at the knots xi, i = 1, . . . , n, and f ′(x0) = 0 = f ′(xn) for case

(a), then s(x) = 0 for all x ∈ [x0, xn].

Proof. Consider∫ xn

x0

(s′′(x))2 dx =
n∑

i=1

∫ xi

xi−1

(s′′i (x))2 dx

=
n∑

i=1

[
s′i(x)s′′i (x)

]xi

xi−1
−

n∑
i=1

∫ xi

xi−1

s′i(x)s′′′i (x) dx

using integration by parts. However,∫ xi

xi−1

s′i(x)s′′′i (x) dx = s′′′i (x)

∫ xi

xi−1

s′i(x) dx = s′′′i (x) [si(x)]xi
xi−1

= 0

since s′′′i (x) is constant on the interval (xi−1, xi) and si(xi−1) = 0 = si(xi).
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Thus, matching first and second derivatives at the knots, telescopic

cancellation gives∫ xn

x0

(s′′(x))2 dx =

n∑
i=1

[
s′i(x)s′′i (x)

]xi

xi−1

= s′1(x1)s
′′
1(x1)− s′1(x0)s′′1(x0)

+ s′2(x2)s
′′
2(x2)− s′2(x1)s′′2(x1) + · · ·

+ s′n−1(xn−1)s
′′
n−1(xn−1)− s′n−1(xn−2)s′′n−1(xn−2)

+ s′n(xn)s′′n(xn)− s′n(xn−1)s
′′
n(xn−1)

= s′n(xn)s′′n(xn)− s′1(x0)s′′1(x0).

However, in case (a), f ′(x0) = 0 = f ′(xn) =⇒ s′1(x0) = 0 = s′n(xn), while

in case (b) s′′1(x0) = 0 = s′′n(xn). Thus∫ xn

x0

(s′′(x))2 dx = 0,

which implies that s′′i (x) = 0 and thus si(x) = cix+ di. Since however

s(xi−1) = 0 = s(xi), s(x) is identically zero on [x0, xn]. 2
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Constructing cubic splines. Note that (14.1) provides a constructive

method for finding an interpolating spline, but generally this is not used.

Motivated by the next result, it is better to find a good basis.

Proposition

The set of natural cubic splines on a given set of knots x0 < x1 < · · · < xn
is a vector space.

Proof. If p, q ∈ C2[a, b] then αp+ βq ∈ C2[a, b]; also p, q ∈ Π3 implies that

αp+ βq ∈ Π3 for every α, β ∈ R.

Finally, the natural end-conditions (b) imply that

(αp+ βq)′′(x0) = 0 = (αp+ βq)′′(xn)

whenever p′′ and q′′ are zero at x0 and xn. 2
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is a vector space.

Proof. If p, q ∈ C2[a, b] then αp+ βq ∈ C2[a, b]; also p, q ∈ Π3 implies that

αp+ βq ∈ Π3 for every α, β ∈ R.

Finally, the natural end-conditions (b) imply that

(αp+ βq)′′(x0) = 0 = (αp+ βq)′′(xn)

whenever p′′ and q′′ are zero at x0 and xn. 2
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Best spline bases: the Cardinal splines, Ci, i = 0, 1, . . . , n, defined as the

interpolatory natural cubic splines satisfying

Ci(xj) = δij =

{
1 i = j

0 i 6= j,

are a basis for which

s(x) =

n∑
i=0

f(xi)Ci(x)

is the interpolatory natural cubic spline to f .

Preferred are the B-splines (locally) defined by

Bi(xi) = 1 for i = 2, 3, . . . , n− 2,

Bi(x) ≡ 0 for x /∈ (xi−2, xi+2), Bi a cubic spline with knots xj ,

j = 0, 1, . . . , n, with special definitions for B0, B1, Bn−1 and Bn.
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Example/construction: Cubic B-spline with knots 0, 1, 2, 3, 4. On [0, 1],

B(x) = ax3

for some a in order that B, B′ and B′′ are continuous at x = 0 (recall that

B(x) is required to be identically zero for x < 0). So

B(1) = a, B′(1) = 3a, and B′′(1) = 6a.

On [1, 2], since B is a cubic polynomial, using Taylor’s Theorem,

B(x) = B(1) +B′(1)(x− 1) +
B′′(1)

2
(x− 1)2 + β(x− 1)3

= a+ 3a(x− 1) + 3a(x− 1)2 + β(x− 1)3

for some β, and since we require B(2) = 1, then β = 1− 7a. Now, in

order to continue, by symmetry, we must have B′(2) = 0, i.e.,

3a+ 6a(x− 1)x=2 + 3(1− 7a)(x− 1)2x=2 = 3− 12a = 0

and hence a = 1
4
.
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So

B(x) =



0 for x < 0
1
4
x3 for x ∈ [0, 1]

− 3
4
(x− 1)3 + 3

4
(x− 1)2 + 3

4
(x− 1) + 1

4
for x ∈ [1, 2]

− 3
4
(3− x)3 + 3

4
(3− x)2 + 3

4
(3− x) + 1

4
for x ∈ [2, 3]

1
4
(4− x)3 for x ∈ [3, 4]

0 for x > 4.

More generally: B-spline on xi = a+ hi, where h = (b− a)/n.

Bi(x) =



0 for x < xi−2

(x− xi−2)
3

4h3
for x ∈ [xi−2, xi−1]

−3(x− xi−1)
3

4h3
+

3(x− xi−1)
2

4h2
+

3(x− xi−1)

4h
+

1

4
for x ∈ [xi−1, xi]

−3(xi+1 − x)3

4h3
+

3(xi+1 − x)2

4h2
+

3(xi+1 − x)

4h
+

1

4
for x ∈ [xi, xi+1]

(xi+2 − x)3

4h3
for x ∈ [xi+1, xi+2]

0 for x > xi+2.
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