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Recap on Splines
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To avoid the oscillating behaviour of interpolation by (globally defined)
Lagrange interpolation polynomials, we want to construct local models that
are patched together to form one of the following:

e C° function (linear splines, shown here),
e (! function (quadratic splines, not discussed further in this course),
e C? function (cubic splines, see below),

e O3 .. (higher order splines, not discussed in this course).



Theorem

Let s(z) be the linear spline interpolation of a function f € C?[a,b] at
nodes xp < x1 < --- < x,. Then,

1
1f = slloo < G271 lloo

where h = max (x; — x;—1) and || f"]|cc = max |f"(z)].
1<i<n z€[a,b]




For cubic spline approximations on a = z¢p < 1 < --- < x,, = b, we use
degree 3 polynomials



For cubic spline approximations on a = z¢p < 1 < --- < x,, = b, we use
degree 3 polynomials

a;x® + bz + cix + d;, r € (z-1, ),
si(z) =

0 otherwise

on each of the subintervals (z;_1,2;), (i =1,...,n),



For cubic spline approximations on a = z¢p < 1 < --- < x,, = b, we use

degree 3 polynomials

a;rd + bz + cix + d;, r € (z-1, ),
si(z) =

0 otherwise

on each of the subintervals (z;_1,2;), (i=1,...,n), and we patch them

together by defining

(@) = {Z;Ll sie)  fora € [ab]\ {wo, . an},
f(x) forx=z;, (i=0,...,n).



For cubic spline approximations on a = z¢p < 1 < --- < x,, = b, we use

degree 3 polynomials

() a;rd + bz + cix + d;, r € (z-1, ),
si(z) =
' 0 otherwise

on each of the subintervals (z;_1,2;), (i=1,...,n), and we patch them

together by defining

(@) = {Z;Ll sie)  fora € [ab]\ {wo, . an},
f(zi) fore =mz;, (1=0,...,n).

To do this, we have to specify the 4n free parameters a;, b;, ¢;, d;.
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(B) first derivatives of adjacent patches must match at nodes, giving first
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To specify the 4n parameters, we can impose 4n conditions:

(A) s(z)must interpolate f at the nodes z, ..., x,,
si(z )= lim si(z) = f(z;), (i=1,...,n)
TN\ 1
si(x; ) = li/m si(x) = f(zit1), (E=1,...,n),

which yields 2n conditions;

(B) first derivatives of adjacent patches must match at nodes, giving first
order smoothness,

sg(xi_)—sgﬂ(xj):o, (t=1,...,n—1),

which yields n — 1 conditions;

(C) second derivatives of adjacent patches must match at nodes, giving
second order smoothness,

si(zy) —siq(zf)=0, (i=1,....,n—1),

which yields n — 1 conditions.
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For the final two conditions we have a choice:

(a) specify s'(zd) = f'(z0) and s'(z;;) = f'(x,) — this gives a Hermite
cubic spline ; or

(b) specify s”(z¢) = 0 = s”(x,,) — this gives a natural cubic spline; or

(c) enforce continuity of s’ at x; and x,,—1 (which implies that the first
two pieces are the same cubic spline, i.e., on [z, 2], and similarly for
the last two pieces, i.e., on [z,,—2,Z,], from which it follows that z;
and x,_1 are not knots! — this is usually described as the ‘not a
knot' end-conditions).



We may write Conditions (A), (B) and (C) complemented with one of (a),
(b) or (c) in matrix form as
Ay =g, (14.1)

with
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We may write Conditions (A), (B) and (C) complemented with one of (a),

(b) or (c) in matrix form as
Ay =g, (14.1)

with

T
Yy = (ala bla C1, dl; ag, ... 7dn71>ana bnvcn> dn)

and the various entries of g are f(x;), i€ 0,1,...,n, and f'(xg), f'(xn)
for (a), and zeros for (b).

So if A is nonsingular, this implies that y = A~ g, that is there is a unique
set of coefficients {a1,b1,c1,d1, a9, ... ,dp_1,an,bpn, cp,dn}.

We now prove that if Ay = 0 then y = 0, and thus that A is nonsingular
for cases (a) and (b) — it is also possible, but more complicated, to show
this for case (c).
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Theorem

If f(z;) =0 at the knots z;, i = 1,...,n, and f'(xo) =0 = f'(x,) for case
(a), then s(x) =0 for all x € [z, zy].

Proof. Consider

" (@) da = Y () da
\/xo %\/‘rll n .
= s @], Y [ s do
i=1 =1 Y Ti-1

using integration by parts. However,

/x " @)l (@) de = (2) / () da = () [si(@)E, =0

i—1 i—1

"n

since s;

(x) is constant on the interval (z;_1, ;) and s;(x;—1) = 0 = s;(z;).



Thus, matching first and second derivatives at the knots, telescopic

cancellation gives
Tn n
[ @rae= 3 @@
o i=1
= si(z1)s7 (1) — 1 (z0)s7 (20)

+ sh(w2)sy(x2) — s(w1)s (1) + -+
+ sp_1(@n—1)8p_1 (Tn—1) — 85,1 (Tn—2)55_1 (Tn—2)
+ 53(@n)8p (Tn) — 53 (Tn—1)87 (Tn-1)

= sp(@n)sy(2n) — 51 (20)sY (z0)-
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[T @ra = Y @@l

0 i=1
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which implies that s/ (z) = 0 and thus s;(z) = ¢;z + d;.



Thus, matching first and second derivatives at the knots, telescopic

cancellation gives

[ @rae= 3 @@
o i=1
= si(x1)s)(21) — 51(w0)sY (o)
+ sy(w2)sh(22) — sy(a1)sy (1) + -+
+ Spo1(@n-1)Sp_1(Tn—1) — 551 (Tn—2) s 1 (Tn—2)
+ sp(@n)sp(@n) — s, (2n—1)sp(Tn-1)
= sp(@n)sy(2n) — 51 (20)sY (z0)-
However, in case (a), f'(z0) = 0= f'(xn) = s (zo) = 0= s}, (z,), while
in case (b) s/(xz0) =0 = s/ (x,). Thus

[ @ —o,

o
which implies that s/ (z) = 0 and thus s;(z) = ¢;z + d;. Since however
s(xi—1) = 0= s(x;), s(z) is identically zero on [xq, zy]. O



Constructing cubic splines. Note that (14.1) provides a constructive
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Constructing cubic splines. Note that (14.1) provides a constructive
method for finding an interpolating spline, but generally this is not used.
Motivated by the next result, it is better to find a good basis.

Proposition
The set of natural cubic splines on a given set of knots xg < x1 < -+ < Tp,
is a vector space.

Proof. If p, q € C?[a,b] then ap + Bq € C?[a, b]; also p, q € TI3 implies that
ap + Bq € 1l for every a, 5 € R.

Finally, the natural end-conditions (b) imply that

(ap + Bq)"(x0) = 0 = (ap + Bq)" (zn)

whenever p” and ¢” are zero at xg and z,,. O

10 / 13



Best spline bases: the Cardinal splines, C;, i = 0,1,...,n, defined as the
interpolatory natural cubic splines satisfying

1 i=j
Cz’(xj)=5z‘j={ 0 it

are a basis for which

s(z) =Y fla:)Ci(x)
=0

is the interpolatory natural cubic spline to f.
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Best spline bases: the Cardinal splines, C;, i = 0,1,...,n, defined as the
interpolatory natural cubic splines satisfying

1 1=
Ci(xz;) = 6;; = ) )
(x]) J { 0 l#],
are a basis for which

=" f@)Cilw)
=0

is the interpolatory natural cubic spline to f.

Preferred are the B-splines (locally) defined by
Bi(z;) =1 fori =2,3,...,n—2,

x) =0 for x ¢ (xi—2,xi+2), B; a cubic spline with knots z;,
=0,1,...,n, with special definitions for By, By, B,,—1 and B,,.
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Example/construction: Cubic B-spline with knots 0,1,2,3,4. On [0, 1],
B(z) = az®

for some a in order that B, B’ and B” are continuous at x = 0 (recall that
B(x) is required to be identically zero for z < 0). So

B(1) =a, B'(1)=3a, and B"(1) = 6a.
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Example/construction: Cubic B-spline with knots 0,1,2,3,4. On [0, 1],
B(z) = az®
for some «a in order that B, B’ and B” are continuous at 2z = 0 (recall that
B(x) is required to be identically zero for z < 0). So
B(1) =a, B'(1)=3a, and B"(1) = 6a.
On [1,2], since B is a cubic polynomial, using Taylor's Theorem,
B"(1)

5 (z—1)2+ Bz —1)°

B(z)= B(1)+B'(1)(z—-1)+

= a+3a(z—1)+3a(x—1)>+ Bz —1)3

for some 3, and since we require B(2) = 1, then =1 — 7a.
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Example/construction: Cubic B-spline with knots 0,1,2,3,4. On [0, 1],
B(z) = az®
for some «a in order that B, B’ and B” are continuous at 2z = 0 (recall that
B(x) is required to be identically zero for z < 0). So
B(1) =a, B'(1)=3a, and B"(1) = 6a.
On [1,2], since B is a cubic polynomial, using Taylor's Theorem,

B//(].)

= 1)+ B - 1)

B(z)= B(1)+B'(1)(z—-1)+

= a+3a(z—1)+3a(x—1)>+ Bz —1)3

for some 3, and since we require B(2) =1, then 5 =1 —T7a. Now, in
order to continue, by symmetry, we must have B'(2) =0, i.e.,

3a +6a(x — 1)pm2 +3(1 — Ta)(x —1)2_, =3 —-12a =0

and hence a = 1.



for x <0
for z €[0,1]
for z € [1,2]
for x € [2,3]
for = € [3,4]
for z > 4.
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So

0
3o’
D B (GRS (G (CE e
—iB-2)’+1B-2)+ 1B -2)+}
ja—a)
0

for
for
for
for
for
for

More generally: B-spline on z; = a + hi, where h = (b —a)/n.

3(:13 — xi71)3

0
(z —zi2)®
4h3

3(1’ — Ti—-1 2 3(27 — :Eifl)

4h3
3(37i+1 — JJ)

4h?

[¥]

T
+

+
3(£Ei+1 — 33) +

4h3

N SN

4h?
(Tit2 —x)°
4h3
0

)
3($i+1 — ac)
4h

)

for

for

for

for

for

for

T < Ti—2

x € [$i72755i71}
x € [-'177;—175131']

x € [Ti, Tit1]

x € [Tit1, Tita)

x> Tit2.
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