Numerical Analysis

Raphael Hauser with thanks to Endre Süli

Oxford Mathematical Institute

HT 2019

◆□ > ◆□ > ◆臣 > ◆臣 >

= 990

Recap on Cubic Splines

Proposition

The set of cubic splines on a given set of knots $x_0 < x_1 < \cdots < x_n$ is a vector space.

Given nodes x_0, x_1, \ldots, x_n and function values f_0, f_1, \ldots, f_n , the unique interpolating natural spline s(x) that satisfies $s(x_i) = f_i$ $(i = 0, \ldots, n)$ can be constructed as

$$s(x) = \sum_{i=0}^{n} f(x_i)C_i(x),$$

where C_0, \ldots, C_i are the *cardinal spline* basis of the vector space of natural cubic splines on the knots x_0, \ldots, x_n , defined by

$$C_i(x_j) = \begin{cases} 1 & \text{ if } i = j, \\ 0 & \text{ if } i \neq j. \end{cases}$$

Using the basis of **B**-splines is better, because B-splines are locally defined by the requirement that B_i is a cubic spline with knots x_0, \ldots, x_n and

$$B_i(x_i) = 1$$
 for $i = 2, 3, ..., n - 2$,
 $B_i(x) \equiv 0$, for $x \notin (x_{i-2}, x_{i+2})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Using the basis of **B**-splines is better, because B-splines are locally defined by the requirement that B_i is a cubic spline with knots x_0, \ldots, x_n and

$$B_i(x_i) = 1$$
 for $i = 2, 3, ..., n - 2,$
 $B_i(x) \equiv 0,$ for $x \notin (x_{i-2}, x_{i+2}).$

Each B_i consists of 4 patches of cubic polynomials on the intervals $[x_{i-2}, x_{i-1}]$, $[x_{i-1}, x_i]$, $[x_i, x_{i+1}]$ and $[x_{i+1}, x_{i+2}]$, uniquely defined by • $0 = s(x_{i-2}) = s'(x_{i-2}) = s''(x_{i-2})$, • continuity of s(x), s'(x) at x_{i-1} , • $s(x_i) = 1$, $s'(x_i) = 0$, • symmetry on $[x_i, x_{i+2}]$.

(ロ) (部) (注) (注) (注) (の)()

Using the basis of **B**-splines is better, because B-splines are locally defined by the requirement that B_i is a cubic spline with knots x_0, \ldots, x_n and

$$B_i(x_i) = 1$$
 for $i = 2, 3, ..., n - 2,$
 $B_i(x) \equiv 0,$ for $x \notin (x_{i-2}, x_{i+2}).$

Each B_i consists of 4 patches of cubic polynomials on the intervals $[x_{i-2}, x_{i-1}], [x_{i-1}, x_i], [x_i, x_{i+1}]$ and $[x_{i+1}, x_{i+2}]$, uniquely defined by • $0 = s(x_{i-2}) = s'(x_{i-2}) = s''(x_{i-2}),$ • continuity of s(x), s'(x) at x_{i-1} , • $s(x_i) = 1, s'(x_i) = 0,$ • symmetry on $[x_i, x_{i+2}]$. x_{i-2} x_{i-1} x_i x_{i+1} x_{i+2}

・ロン ・四 > ・ ヨン ・ ヨン ・ ヨー ・

3 / 14

Construction on uniformly spaced knots:

B-spline on $x_i = a + hi$, where h = (b - a)/n.

$$B_{i}(x) = \begin{cases} 0 & \text{for } x < x_{i-2}, \\ \frac{(x-x_{i-2})^{3}}{4h^{3}} & \text{for } x < x_{i-1}, \\ -\frac{3(x-x_{i-1})^{3}}{4h^{3}} + \frac{3(x-x_{i-1})^{2}}{4h^{2}} + \frac{3(x-x_{i-1})}{4h} + \frac{1}{4} & \text{for } x \in [x_{i-1}, x_{i}], \\ -\frac{3(x_{i+1}-x)^{3}}{4h^{3}} + \frac{3(x_{i+1}-x)^{2}}{4h^{2}} + \frac{3(x_{i+1}-x)}{4h} + \frac{1}{4} & \text{for } x \in [x_{i}, x_{i+1}], \\ \frac{(x_{i+2}-x)^{3}}{4h^{3}} & \text{for } x \in [x_{i+1}, x_{i+1}], \\ 0 & \text{for } x > x_{i+2}. \end{cases}$$

The 'end' B-splines B_0 , B_1 , B_{n-1} and B_n are defined analogously by introducing 'phantom' knots $x_{-2} = a - 2h$, $x_{-1} = a - h$, $x_{n+1} = b + h$ and $x_{n+2} = b + 2h$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → つへぐ

Spline interpolation: find the cubic spline

$$s(x) = \sum_{j=0}^{n} c_j B_j(x),$$

that interpolates f_i at x_i for $i = 0, 1, \ldots, n$. Require

$$f_i = \sum_{j=0}^n c_j B_j(x_i) = c_{i-1} B_{i-1}(x_i) + c_i B_i(x_i) + c_{i+1} B_{i+1}(x_i).$$

Spline interpolation: find the cubic spline

$$s(x) = \sum_{j=0}^{n} c_j B_j(x),$$

that interpolates f_i at x_i for $i = 0, 1, \ldots, n$. Require

$$f_i = \sum_{j=0}^n c_j B_j(x_i) = c_{i-1} B_{i-1}(x_i) + c_i B_i(x_i) + c_{i+1} B_{i+1}(x_i).$$

For equally-spaced data

$$f_i = \frac{1}{4}c_{i-1} + c_i + \frac{1}{4}c_{i+1},$$

i.e.,

$$\begin{pmatrix} 1 & \frac{1}{4} & & & \\ \frac{1}{4} & 1 & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & 1 & \frac{1}{4} \\ & & & & \frac{1}{4} & 1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \\ c_n \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{n-1} \\ f_n \end{pmatrix}.$$

For linear splines, a similar local basis of 'hat functions' or Linear B-splines $\phi_i(x)$ exist:

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}} & x \in (x_{i-1}, x_i) \\ \frac{x - x_{i+1}}{x_i - x_{i+1}} & x \in (x_i, x_{i+1}) \\ 0 & x \notin (x_{i-1}, x_{i+1}) \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

æ

and provide a C^0 piecewise basis.

Matlab:

```
% needs the number N of interpolation points to be defined
N=9:
% these will be the knot points and the interpolation points
x=linspace(-4.4.N);
\% a vector of the values of the function f=1/(1+x^2) at the interpolation points
vpoints=1./(1+x.^2);
v=[8/(17^2).vpoints.-8/(17^2)];
% calculates the spline interpolant: see help spline
% an extended vector to include the slope at the first and last
% interpolation point - this is one of the end-point choices available with
% the matlab command spline (and is what is called option (a) in lectures)
% (f' = -2x/(1+x^2)^2, so f'(-4) = 8/17^2 and f'(4) = -8/17^2)
s=spline(x,y);
% a fine mesh on which we plot f
fine=linspace(-4.4.200);
%> help ppval
%
% PPVAL Evaluate piecewise polynomial.
     V = PPVAL(PP,XX) returns the value at the points XX of the piecewise
%
     polynomial contained in PP, as constructed by SPLINE or the spline utility
%
%
    MKPP
%
%
     See also SPLINE, MKPP, UNMKPP.
plot(fine,ppval(s,fine)),pause
% the function f on the fine mesh
                                                                       ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●
```

6 / 14

```
f=1./(1+fine.^2);
% to see the function (in red) and the spline interpolant (in blue) on the
% same figure
hold on
plot(fine,f,'r'),pause
```

```
% marks the interpolating values (with black circles)
plot(x,ypoints,'ko'),pause
```

```
% To see how the Lagrange interpolating polynomial (in green) does:
p=lagrange(x,ypoints);
plot(fine,polyval(p,fine),'g'),pause
```


7 / 14

Error analysis for cubic splines

Theorem (Smooth Interpolation)

Amongst all functions $t \in C^2[x_0, x_n]$ that interpolate f at the knots x_i , i = 0, 1, ..., n, the unique function that minimizes

$$\int_{x_0}^{x_n} [t''(x)]^2 \,\mathrm{d}x$$

is the natural cubic spline s. Moreover, for any such t,

$$\int_{x_0}^{x_n} [t''(x)]^2 \,\mathrm{d}x - \int_{x_0}^{x_n} [s''(x)]^2 \,\mathrm{d}x = \int_{x_0}^{x_n} [t''(x) - s''(x)]^2 \,\mathrm{d}x.$$

Error analysis for cubic splines

Theorem (Smooth Interpolation)

Amongst all functions $t \in C^2[x_0, x_n]$ that interpolate f at the knots x_i , i = 0, 1, ..., n, the unique function that minimizes

$$\int_{x_0}^{x_n} [t''(x)]^2 \,\mathrm{d}x$$

is the natural cubic spline s. Moreover, for any such t,

$$\int_{x_0}^{x_n} [t''(x)]^2 \,\mathrm{d}x - \int_{x_0}^{x_n} [s''(x)]^2 \,\mathrm{d}x = \int_{x_0}^{x_n} [t''(x) - s''(x)]^2 \,\mathrm{d}x.$$

Proof. See exercises (uses integration by parts and telescopic cancellation, and is similar to the proof of existence above).

Lemma (Cauchy–Schwarz Inequality)

Let $f,g\in \mathrm{C}([a,b]);$ then,

$$\left[\int_a^b f(x)g(x)\,\mathrm{d}x\right]^2 \le \int_a^b [f(x)]^2\,\mathrm{d}x \ \times \ \int_a^b [g(x)]^2\,\mathrm{d}x.$$

・ロ・・(型・・モー・・モー・ モー・クタク)

Lemma (Cauchy–Schwarz Inequality) Let $f, g \in C([a, b])$; then, $\left[\int_{a}^{b} f(x)g(x) dx\right]^{2} \leq \int_{a}^{b} [f(x)]^{2} dx \times \int_{a}^{b} [g(x)]^{2} dx.$

Proof. Since $f^2 \in C([a, b])$, we have $\int_a^b f^2(x) dx < \infty$, and hence, $f \in L^2_1(a, b)$, the 2-norm space with weight function $w(x) \equiv 1$.

Lemma (Cauchy–Schwarz Inequality) Let $f, g \in C([a, b])$; then, $\left[\int_{a}^{b} f(x)g(x) dx\right]^{2} \leq \int_{a}^{b} [f(x)]^{2} dx \times \int_{a}^{b} [g(x)]^{2} dx.$

Proof. Since $f^2 \in C([a, b])$, we have $\int_a^b f^2(x) dx < \infty$, and hence, $f \in L_1^2(a, b)$, the 2-norm space with weight function $w(x) \equiv 1$. Likewise, $g \in L_1^2(a, b)$. The Cauchy-Schwartz inequality for the inner product on $L_1^2(a, b)$ yields

$$\langle f,g\rangle \le \|f\| \times \|g\|,$$

・ロト ・同ト ・ヨト ・ヨト ・ヨー

see Lecture 9. Taking squares on both sides yields the claim.

For the natural cubic spline interpolant s of $f \in C^2[x_0, x_n]$ at $x_0 < x_1 < \cdots < x_n$ with $h = \max_{1 \le i \le n} (x_i - x_{i-1})$, we have that

$$||f' - s'||_{\infty} \le h^{\frac{1}{2}} \left[\int_{x_0}^{x_n} [f''(x)]^2 \, \mathrm{d}x \right]^{\frac{1}{2}}$$

and

$$||f - s||_{\infty} \le h^{\frac{3}{2}} \left[\int_{x_0}^{x_n} [f''(x)]^2 \, \mathrm{d}x \right]^{\frac{1}{2}}$$

Proof. Write e = f - s. Take any $x \in [x_0, x_n]$, in which case $x \in [x_{j-1}, x_j]$ for some $j \in 1, ..., n$.

Proof. Write e = f - s. Take any $x \in [x_0, x_n]$, in which case $x \in [x_{j-1}, x_j]$ for some $j \in 1, ..., n$. Then $e(x_{j-1}) = 0 = e(x_j)$ as s interpolates f.

・ロト ・日 ・ モー・ モー・ うへぐ

Proof. Write e = f - s. Take any $x \in [x_0, x_n]$, in which case $x \in [x_{j-1}, x_j]$ for some $j \in 1, ..., n$. Then $e(x_{j-1}) = 0 = e(x_j)$ as s interpolates f. So by the Mean-Value Theorem, there is a $c \in (x_{j-1}, x_j)$ with e'(c) = 0.

(日) (同) (E) (E) (E) (0)(0)

Proof. Write e = f - s. Take any $x \in [x_0, x_n]$, in which case $x \in [x_{j-1}, x_j]$ for some $j \in 1, ..., n$. Then $e(x_{j-1}) = 0 = e(x_j)$ as s interpolates f. So by the Mean-Value Theorem, there is a $c \in (x_{j-1}, x_j)$ with e'(c) = 0. Hence $e'(x) = \int_c^x e''(t) dt$.

Proof. Write e = f - s. Take any $x \in [x_0, x_n]$, in which case $x \in [x_{j-1}, x_j]$ for some $j \in 1, ..., n$. Then $e(x_{j-1}) = 0 = e(x_j)$ as s interpolates f. So by the Mean-Value Theorem, there is a $c \in (x_{j-1}, x_j)$ with e'(c) = 0. Hence $e'(x) = \int_c^x e''(t) dt$. Then the Cauchy–Schwarz inequality gives that

$$(e'(x))^2 = \left[\int_c^x e''(t) dt\right]^2$$

$$\leq \left|\int_c^x 1dt\right| \times \left|\int_c^x [e''(t)]^2 dt\right|.$$
 (14.1)

・ロ・・(型・・モー・モー・)
、 でのので

Proof. Write e = f - s. Take any $x \in [x_0, x_n]$, in which case $x \in [x_{j-1}, x_j]$ for some $j \in 1, ..., n$. Then $e(x_{j-1}) = 0 = e(x_j)$ as s interpolates f. So by the Mean-Value Theorem, there is a $c \in (x_{j-1}, x_j)$ with e'(c) = 0. Hence $e'(x) = \int_c^x e''(t) dt$. Then the Cauchy–Schwarz inequality gives that

$$(e'(x))^2 = \left[\int_c^x e''(t) dt\right]^2$$

$$\leq \left|\int_c^x 1 dt\right| \times \left|\int_c^x [e''(t)]^2 dt\right|.$$
 (14.1)

Since $x \in [x_{j-1}, x_j]$, we have $\left| \int_c^x 1 \mathrm{d}t \right| \le h$,

・ロ・・聞・・聞・・日・

Proof. Write e = f - s. Take any $x \in [x_0, x_n]$, in which case $x \in [x_{j-1}, x_j]$ for some $j \in 1, \ldots, n$. Then $e(x_{j-1}) = 0 = e(x_j)$ as s interpolates f. So by the Mean-Value Theorem, there is a $c \in (x_{j-1}, x_j)$ with e'(c) = 0. Hence $e'(x) = \int_c^x e''(t) dt$. Then the Cauchy–Schwarz inequality gives that

$$(e'(x))^2 = \left[\int_c^x e''(t) dt\right]^2$$

$$\leq \left|\int_c^x 1dt\right| \times \left|\int_c^x [e''(t)]^2 dt\right|.$$
 (14.1)

Since $x \in [x_{j-1}, x_j]$, we have $\left|\int_c^x 1 dt\right| \le h$, and Theorem (Smooth Interpolation) gives

$$\left| \int_{c}^{x} [e''(t)]^{2} \, \mathrm{d}t \right| \leq \int_{x_{0}}^{x_{n}} [e''(t)]^{2} \, \mathrm{d}t \leq \int_{x_{0}}^{x_{n}} [f''(x)]^{2} \, \mathrm{d}x.$$

Therefore, $||f'-s'||_{\infty} = \max_{x \in [x_0, x_n]} |e'(x)| \stackrel{(14.1)}{\leq} h^{\frac{1}{2}} ||f''_{\varpi}||_2$, as claimed.

To prove the second claim, still using $x \in (x_{j-1}, x_j)$, Taylor's Theorem yields that there exists $\eta(x) \in (x_{j-1}, x)$ such that

$$|e(x)| = |e(x_{j-1}) + (x - x_{j-1})e'(\eta(x))| \le 0 + h |e'(\eta(x))|,$$

To prove the second claim, still using $x \in (x_{j-1}, x_j)$, Taylor's Theorem yields that there exists $\eta(x) \in (x_{j-1}, x)$ such that

$$|e(x)| = |e(x_{j-1}) + (x - x_{j-1})e'(\eta(x))| \le 0 + h |e'(\eta(x))|,$$

hence

$$||f - s||_{\infty} = \max_{x \in [x_0, x_n]} |e(x)| \le h ||e'||_{\infty} = h^{\frac{3}{2}} ||f''||_2,$$

П

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへぐ

as claimed.

Recall from Lecture 13:

Theorem

Let s be the linear spline interpolation of a function $f \in C^2[a, b]$ at nodes $x_0 < x_1 < \cdots < x_n$. Then,

$$||f - s||_{\infty} \le \frac{1}{8}h^2 ||f''||_{\infty}.$$

イロト 不良 トイヨト イヨト

э

Recall from Lecture 13:

Theorem

Let s be the linear spline interpolation of a function $f \in C^2[a, b]$ at nodes $x_0 < x_1 < \cdots < x_n$. Then,

$$||f - s||_{\infty} \le \frac{1}{8}h^2 ||f''||_{\infty}.$$

Is it possible to prove a similar result for cubic splines?

Suppose that $f \in C^4[a, b]$ and s satisfies end-conditions (a). Then,

$$||f - s||_{\infty} \le \frac{5}{384} h^4 ||f^{(4)}||_{\infty}$$

and

$$||f' - s'||_{\infty} \le \frac{9 + \sqrt{3}}{216} h^3 ||f^{(4)}||_{\infty},$$

< □> < □> < □> < □> < □> < □>

where $h = \max_{1 \le i \le n} (x_i - x_{i-1}).$

Suppose that $f \in C^4[a, b]$ and s satisfies end-conditions (a). Then,

$$||f - s||_{\infty} \le \frac{5}{384} h^4 ||f^{(4)}||_{\infty}$$

and

$$||f' - s'||_{\infty} \le \frac{9 + \sqrt{3}}{216} h^3 ||f^{(4)}||_{\infty},$$

14 / 14

where $h = \max_{1 \le i \le n} (x_i - x_{i-1}).$

Proof. Beyond the scope of this course.

Suppose that $f \in C^4[a, b]$ and s satisfies end-conditions (a). Then,

$$||f - s||_{\infty} \le \frac{5}{384} h^4 ||f^{(4)}||_{\infty}$$

and

$$||f' - s'||_{\infty} \le \frac{9 + \sqrt{3}}{216} h^3 ||f^{(4)}||_{\infty},$$

・ロン ・四 ・ ・ ヨン ・ ヨン ・ ヨー

where $h = \max_{1 \le i \le n} (x_i - x_{i-1})$.

Proof. Beyond the scope of this course.

Similar bounds exist for natural cubic splines and splines satisfying end-condition (c).