
Numerical Analysis

Raphael Hauser

with thanks to Endre Süli
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Recap on Cubic Splines

Proposition

The set of cubic splines on a given set of knots x0 < x1 < · · · < xn is a

vector space.

Given nodes x0, x1, . . . , xn and function values f0, f1, . . . , fn, the unique

interpolating natural spline s(x) that satisfies s(xi) = fi (i = 0, . . . , n) can

be constructed as

s(x) =

n∑
i=0

f(xi)Ci(x),

where C0, . . . , Ci are the cardinal spline basis of the vector space of natural

cubic splines on the knots x0, . . . , xn, defined by

Ci(xj) =

{
1 if i = j,

0 if i 6= j.
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Using the basis of B-splines is better, because B-splines are locally defined

by the requirement that Bi is a cubic spline with knots x0, . . . , xn and

Bi(xi) = 1 for i = 2, 3, . . . , n− 2,

Bi(x) ≡ 0, for x /∈ (xi−2, xi+2).

Each Bi consists of 4 patches of cubic polynomials on the intervals

[xi−2, xi−1], [xi−1, xi], [xi, xi+1] and [xi+1, xi+2], uniquely defined by

0 = s(xi−2) = s′(xi−2) = s′′(xi−2),

continuity of s(x), s′(x) at xi−1,

s(xi) = 1, s′(xi) = 0,

symmetry on [xi, xi+2].

xi−2 xi−1 xi xi+1 xi+2

1

1
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Construction on uniformly spaced knots:

B-spline on xi = a+ hi, where h = (b− a)/n.

Bi(x) =



0 for x < xi−2,
(x−xi−2)

3

4h3 forx ∈ [xi−2, xi−1],

−3(x−xi−1)
3

4h3 + 3(x−xi−1)
2

4h2 + 3(x−xi−1)
4h +

1

4
forx ∈ [xi−1, xi],

−3(xi+1−x)3
4h3 + 3(xi+1−x)2

4h2 + 3(xi+1−x)
4h +

1

4
for x ∈ [xi, xi+1],

(xi+2−x)3
4h3 for x ∈ [xi+1, xi+2],

0 for x > xi+2.

The ‘end’ B-splines B0, B1, Bn−1 and Bn are defined analogously by

introducing ‘phantom’ knots x−2 = a− 2h, x−1 = a− h, xn+1 = b+ h and

xn+2 = b+ 2h.
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Spline interpolation: find the cubic spline

s(x) =

n∑
j=0

cjBj(x),

that interpolates fi at xi for i = 0, 1, . . . , n. Require

fi =

n∑
j=0

cjBj(xi) = ci−1Bi−1(xi) + ciBi(xi) + ci+1Bi+1(xi).

For equally-spaced data

fi = 1
4
ci−1 + ci + 1

4
ci+1,

i.e., 

1 1
4

1
4

1
. . .

. . .
. . .

. . .
. . . 1 1

4

1
4

1




c0
c1
...

cn−1
cn

 =


f0
f1
...

fn−1
fn

 .
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For linear splines, a similar local basis of ‘hat functions’ or Linear B-splines

φi(x) exist:

φi(x) =


x− xi−1
xi − xi−1

x ∈ (xi−1, xi)

x− xi+1

xi − xi+1
x ∈ (xi, xi+1)

0 x /∈ (xi−1, xi+1)

xi−2 xi−1 xi xi+1 xi+2

1

1

and provide a C0 piecewise basis.
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Matlab:

% needs the number N of interpolation points to be defined

N=9;

% these will be the knot points and the interpolation points

x=linspace(-4,4,N);

% a vector of the values of the function f=1/(1+x^2) at the interpolation points

ypoints=1./(1+x.^2);

y=[8/(17^2),ypoints,-8/(17^2)];

% calculates the spline interpolant: see help spline

% an extended vector to include the slope at the first and last

% interpolation point - this is one of the end-point choices available with

% the matlab command spline (and is what is called option (a) in lectures)

% (f’ = -2x/(1+x^2)^2, so f’(-4) = 8/17^2 and f’(4) = -8/17^2)

s=spline(x,y);

% a fine mesh on which we plot f

fine=linspace(-4,4,200);

%> help ppval

%

% PPVAL Evaluate piecewise polynomial.

% V = PPVAL(PP,XX) returns the value at the points XX of the piecewise

% polynomial contained in PP, as constructed by SPLINE or the spline utility

% MKPP.

%

% See also SPLINE, MKPP, UNMKPP.

plot(fine,ppval(s,fine)),pause

% the function f on the fine mesh
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f=1./(1+fine.^2);

% to see the function (in red) and the spline interpolant (in blue) on the

% same figure

hold on

plot(fine,f,’r’),pause

% marks the interpolating values (with black circles)

plot(x,ypoints,’ko’),pause

% To see how the Lagrange interpolating polynomial (in green) does:

p=lagrange(x,ypoints);

plot(fine,polyval(p,fine),’g’),pause
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Error analysis for cubic splines

Theorem (Smooth Interpolation)

Amongst all functions t ∈ C2[x0, xn] that interpolate f at the knots xi,

i = 0, 1, . . . , n, the unique function that minimizes∫ xn

x0

[t′′(x)]2 dx

is the natural cubic spline s. Moreover, for any such t,∫ xn

x0

[t′′(x)]2 dx−
∫ xn

x0

[s′′(x)]2 dx =

∫ xn

x0

[t′′(x)− s′′(x)]2 dx.

Proof. See exercises (uses integration by parts and telescopic cancellation,

and is similar to the proof of existence above). 2
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Lemma (Cauchy–Schwarz Inequality)

Let f, g ∈ C([a, b]); then,[∫ b

a
f(x)g(x) dx

]2
≤
∫ b

a
[f(x)]2 dx ×

∫ b

a
[g(x)]2 dx.

Proof. Since f2 ∈ C([a, b]), we have
∫ b
a f

2(x) dx <∞, and hence,

f ∈ L2
1(a, b), the 2-norm space with weight function w(x) ≡ 1. Likewise,

g ∈ L2
1(a, b). The Cauchy-Schwartz inequality for the inner product on

L2
1(a, b) yields

〈f, g〉 ≤ ‖f‖ × ‖g‖,

see Lecture 9. Taking squares on both sides yields the claim. 2
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Theorem

For the natural cubic spline interpolant s of f ∈ C2[x0, xn] at

x0 < x1 < · · · < xn with h = max1≤i≤n(xi − xi−1), we have that

‖f ′ − s′‖∞ ≤ h
1
2

[∫ xn

x0

[f ′′(x)]2 dx

] 1
2

and

‖f − s‖∞ ≤ h
3
2

[∫ xn

x0

[f ′′(x)]2 dx

] 1
2

.
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Proof. Write e = f − s. Take any x ∈ [x0, xn], in which case x ∈ [xj−1, xj ]

for some j ∈ 1, . . . , n.

Then e(xj−1) = 0 = e(xj) as s interpolates f . So

by the Mean-Value Theorem, there is a c ∈ (xj−1, xj) with e′(c) = 0.

Hence e′(x) =

∫ x

c
e′′(t) dt. Then the Cauchy–Schwarz inequality gives that

(
e′(x)

)2
=

[∫ x

c
e′′(t) dt

]2
≤
∣∣∣∣∫ x

c
1dt

∣∣∣∣× ∣∣∣∣∫ x

c
[e′′(t)]2 dt

∣∣∣∣ . (14.1)

Since x ∈ [xj−1, xj ], we have

∣∣∣∣∫ x

c
1dt

∣∣∣∣ ≤ h, and Theorem (Smooth

Interpolation) gives∣∣∣∣∫ x

c
[e′′(t)]2 dt

∣∣∣∣ ≤ ∫ xn

x0

[e′′(t)]2 dt ≤
∫ xn

x0

[f ′′(x)]2 dx.

Therefore, ‖f ′ − s′‖∞ = maxx∈[x0,xn] |e′(x)|
(14.1)

≤ h
1
2 ‖f ′′‖2, as claimed.
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To prove the second claim, still using x ∈ (xj−1, xj), Taylor’s Theorem

yields that there exists η(x) ∈ (xj−1, x) such that

|e(x)| =
∣∣e(xj−1) + (x− xj−1)e′(η(x))

∣∣ ≤ 0 + h
∣∣e′(η(x))∣∣ ,

hence

‖f − s‖∞ = max
x∈[x0,xn]

|e(x)| ≤ h‖e′‖∞ = h
3
2 ‖f ′′‖2,

as claimed. 2
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Recall from Lecture 13:

Theorem

Let s be the linear spline interpolation of a function f ∈ C2[a, b] at nodes

x0 < x1 < · · · < xn. Then,

‖f − s‖∞ ≤
1

8
h2‖f ′′‖∞.

Is it possible to prove a similar result for cubic splines?
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Theorem

Suppose that f ∈ C4[a, b] and s satisfies end-conditions (a). Then,

‖f − s‖∞ ≤
5

384
h4‖f (4)‖∞

and

‖f ′ − s′‖∞ ≤
9 +
√
3

216
h3‖f (4)‖∞,

where h = max1≤i≤n(xi − xi−1).

Proof. Beyond the scope of this course. 2

Similar bounds exist for natural cubic splines and splines satisfying

end-condition (c).
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