Numerical Analysis

Raphael Hauser
with thanks to Endre Siili

Oxford Mathematical Institute

HT 2019



Recap on Cubic Splines

Proposition
The set of cubic splines on a given set of knots xog < 1 < --- < Ty is a
vector space.

Given nodes xg,z1,...,x, and function values fo, f1,..., fn, the unique
interpolating natural spline s(x) that satisfies s(x;) = f; (i =0,...,n) can
be constructed as

s(@) =3 f@)Cilw),
=0

where Cy, ..., C; are the cardinal spline basis of the vector space of natural
cubic splines on the knots xg, ..., x,, defined by
1 if i =7,

Cilas) = {o if i J.



Using the basis of B-splines is better, because B-splines are locally defined
by the requirement that B; is a cubic spline with knots =z, ..., z, and

Bi(z;) =1 fori=2,3,...,n—2,
Bi(z) =0, forx ¢ (xi_2,xit2).
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Each B; consists of 4 patches of cubic polynomials on the intervals
[Ti—o2,xi—1], [Ti—1,24], [, Tit1] and [xi41, Ti42], uniquely defined by
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@ symmetry on [x;, Tito].
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Construction on uniformly spaced knots:
B-spline on x; = a + hi, where h = (b—a)/n.

0 for x < x;_9,
% forx € [x;_2, xi—1],
) — _3(56—49:;371)3 + 3(96—46;»‘;271)2 + 3(90—4?71) + ; forz € [z; 1,4,
_3(1,~L1L;x)3 N S(a:iﬁ;a:)Q + Monmo) 4 7 forze [z, Tig1],
% for € [xi11,xiy
L0 for x > x;49.

The ‘end’ B-splines By, By, B,,—1 and B,, are defined analogously by
introducing ‘phantom’ knots x_o =a —2h, x_1 =a—h, £,+1 = b+ h and
LTn+2 = b + 2h.



Spline interpolation: find the cubic spline

n
x) = chB x
§=0

that interpolates f; at x; for i = 0,1,...,n. Require

ZCJ i(25) = cic1Bi—1(x;) + ¢iBi(x;) + civ1Biyi ().



Spline interpolation: find the cubic spline
n
x) = ZCJ‘B x
§=0
that interpolates f; at x; for i = 0,1,...,n. Require
ZCJ i(25) = cic1Bi—1(x;) + ¢iBi(x;) + civ1Biyi ().

For equaIIy—spaced data

fi=ici1+ ¢+ jcia,

i.e.,
Los o fo
i1 c1 fi
1 1 Cn—1 Jn—1
11 Cn In



For linear splines, a similar local basis of ‘hat functions' or Linear B-splines

¢i(x) exist:

r — T;—1
= e T € (l‘i_l,xi)
Tj — Tj—1
_ T —x;
gilz) =9 ZTHL 5 ¢ (@i, iq1)
Ti — Ti+1
0 x ¢ (Tim1,Tit1)
1
T Tit1 Tit2

and provide a C" piecewise basis.



Matlab:

% needs the number N of interpolation points to be defined
N=9;

% these will be the knot points and the interpolation points
x=linspace(-4,4,N);

% a vector of the values of the function f=1/(1+x"2) at the interpolation points
ypoints=1./(1+x.2);
y=[8/(17"2) ,ypoints,-8/(17°2)1;

% calculates the spline interpolant: see help spline

% an extended vector to include the slope at the first and last

% interpolation point - this is one of the end-point choices available with
% the matlab command spline (and is what is called option (a) in lectures)
% (£7 = -2x/(1+x72)"2, so £’(-4) = 8/17°2 and f’(4) = -8/17°2)
s=spline(x,y);

% a fine mesh on which we plot f
fine=linspace(-4,4,200);

%> help ppval

% PPVAL Evaluate piecewise polynomial.

% V = PPVAL(PP,XX) returns the value at the points XX of the piecewise

% polynomial contained in PP, as constructed by SPLINE or the spline utility

% MKPP.

% See also SPLINE, MKPP, UNMKPP.
plot(fine,ppval(s,fine)),pause

% the function f on the fine mesh



f=1./(1+fine."2);

% to see the function (in red) and the spline interpolant (in blue) on the
% same figure

hold on

plot(fine,f,’r’) ,pause

% marks the interpolating values (with black circles)
plot(x,ypoints, ’ko’) ,pause

% To see how the Lagrange interpolating polynomial (in green) does:
p=lagrange(x,ypoints);
plot(fine,polyval(p,fine),’g’),pause






Error analysis for cubic splines

Theorem (Smooth Interpolation)

Amongst all functions t € C?[xg,z,] that interpolate f at the knots x;,
1=0,1,...,n, the unique function that minimizes

/x ()] da

0

is the natural cubic spline s. Moreover, for any such t,

Tn

/x:n [t" ()] dz — /g:n [s"(2)]2 dz = / " (z) — s"(2)]2 da.

z0




Error analysis for cubic splines

Theorem (Smooth Interpolation)

Amongst all functions t € C?[xq, z,] that interpolate f at the knots x;,
1=0,1,...,n, the unique function that minimizes

/x ()] da

0
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Proof. See exercises (uses integration by parts and telescopic cancellation,
and is similar to the proof of existence above). O



Lemma (Cauchy-Schwarz Inequality)
Let f,g € C([a,b]); then,

[/abf(x)g(:v) doc]2 < /ab[f(m)]2dx « /ab[g(m)]Qd:c.
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Proof. Since f? € C([a,b]), we have f f?(z) dz < oo, and hence,

f € L3(a,b), the 2-norm space with weight functlon w(z) = 1.



Lemma (Cauchy-Schwarz Inequality)
Let f,g € C([a,b]); then,

[/abf(x)g(x)dxr < /ab[f( N2dz x /ab[g(x)]de.

Proof. Since f? € C([a,b]), we have f f?(x)dz < oo, and hence,
f € L3(a,b), the 2-norm space with weight functlon w(x) =1. Likewise,
g € L3(a,b). The Cauchy-Schwartz inequality for the inner product on
L3(a,b) yields

(fr9) < A1 gl

see Lecture 9. Taking squares on both sides yields the claim.



Theorem

For the natural cubic spline interpolant s of f € C?[xg,z,] at
ro<x1 < - <Xy with h = ma,xlgign(wi = IL'i_l), we have that

2

I — 8lloo < B2 [/m [f”(x)]de]

0

and

2

1f = slloo < 3 U [f”(x)]de]

0
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Proof. Write e = f — s. Take any x € [xg, z,], in which case z € [z;_1, ;]
forsome j €1,...,n.
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Proof. Write e = f — s. Take any = € [zq, z,], in which case z € [z;_1, zj]
for some j € 1,...,n. Then e(zj_1) = 0 = e(x;) as s interpolates f.
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Proof. Write e = f — s. Take any = € [zq, z,], in which case z € [z;_1, zj]
for some j € 1,...,n. Then e(z;—1) = 0 = e(x;) as s interpolates f. So
by the Mean-Value Theorem, there is a ¢ € (zj_1,z;) with €'(c) = 0.
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C
2 * ?
(¢(2) = [ / ¢ (1) dt}
C

/Cm 1dt /j[e”(t)]2dt’. (14.1)

/ 1dt’ < h, and Theorem (Smooth

< X

Since x € [x;_1, %], we have

Interpolation) gives

[ eror dt] < [Tewpas [

0 o

1a1)
< hz|[f"|l2, as claimed.

11 / 14

Therefore, || f" — 5'[|oo = maX,e(zg 4] €/ (2)]



To prove the second claim, still using z € (;_1,;), Taylor's Theorem
yields that there exists 7(z) € (xj_1, ) such that

le(2)] = [e(zj—1) + (z — zj-1)¢'(n(2))] < 0+ he'(n(x))],

12 / 14



To prove the second claim, still using z € (;_1,;), Taylor's Theorem
yields that there exists 7(z) € (xj_1, ) such that

le(a)] = |e(zj—1) + (x — zj—1)¢' (n(2))| < 0+ R (n(x))],
hence

3
If = sllec = max le(z)] < hlle'lloo = 2 1f |2,

[x()yxn

as claimed. O
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Recall from Lecture 13:

Theorem
Let s be the linear spline interpolation of a function f € C?[a,b] at nodes
o < x1 < -+ < xpn. Then,

1
1f = slloo < GhZ[F"loo-
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Recall from Lecture 13:

Theorem
Let s be the linear spline interpolation of a function f € C?[a,b] at nodes
o < x1 < -+ < xpn. Then,

1
1f = slloo < GhZ[F"loo-

Is it possible to prove a similar result for cubic splines?
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Theorem
Suppose that f € C*[a,b] and s satisfies end-conditions (a). Then,

_ 4
15 = slloe < oz B1FD o
and /3
9+
157 = oo < 2= B3SO e,

where h = maxlgign(xi — xi—l)-
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Theorem

Suppose that f € C*[a,b] and s satisfies end-conditions (a). Then,

. 4
15 = slloe < oz B1FD o

and

9++3

3

1" = slloo <

where h = maxlgign(a:i — xi—l)-

Proof. Beyond the scope of this course.

Similar bounds exist for natural cubic splines and splines satisfying

end-condition (c).

14 / 14
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