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Richardson Extrapolation

Extrapolation is based on the general idea that if T}, is an approximation to
T, computed by a numerical approximation with (small!) parameter h, and
if there is an error formula of the form

T = Ty,+ Kih+Kyh®+ -+ O(h") (16.1)
then T = Ty + K1k + Kok? +--- + O(k"™) (16.2)

for some other value, k, of the small parameter.
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In this case subtracting (16.1) from (16.2) gives
(k — h)T = KTy, — hTy + Ko(kh® — hk?) + - -
i.e., the linear combination
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In particular if only even terms arise:
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In particular if only even terms arise:

T = T,+Koh®+ Ksh'+ -+ O (h*")
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This is the first step of Richardson Extrapolation. Call this new, more

accurate formula
4Ty — Ty,
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Then the idea can be applied again:
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is a more accurate formula again. Inductively we can define
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for which '
T =T +O(h¥)

so long as there are high enough order terms in the error series.



Example 1: approximation of 7 by inscribed polygons in unit circle.




Example 1: approximation of 7 by inscribed polygons in unit circle.

For a regular n-gon, the circumference = 2nsin(w/n) < 27, so let
¢n, = nsin(w/n) < m, or if we put h = 1/n,

so that we can use Richardson Extrapolation.




Example 1: approximation of 7 by inscribed polygons in unit circle.
For a regular n-gon, the circumference = 2nsin(w/n) < 27, so let
¢n, = nsin(w/n) < m, or if we put h = 1/n,

so that we can use Richardson Extrapolation. Indeed co = 2 and

Con = 2nsin(w/2n) = 2n\/%(1 — cos(m/n)) (using cos(260) = 1 — 2sin* )

= 2ny/3(1— V1 —sin(x/n) = 200/ 5(1 — /T~ (ca/n)?) .




Example 1: approximation of 7 by inscribed polygons in unit circle.
For a regular n-gon, the circumference = 2nsin(w/n) < 27, so let
¢n, = nsin(w/n) < m, or if we put h = 1/n,

so that we can use Richardson Extrapolation. Indeed co = 2 and

Con = 2nsin(w/2n) = Qn\/%(l — cos(m/n)) (using cos(260) = 1 — 2sin* )
= 2ny/3(1— V1 —sin(x/n) = 200/ 5(1 — /T~ (ca/n)?) .

Sol ¢4 = 2.8284, cg = 3.0615, c16 = 3.1214.

This expressnon is sensitive to roundoff errors, so we rewrite it as

czn—cn/\/ + — (en/n)2.




Example 1: approximation of 7 by inscribed polygons in unit circle.
For a regular n-gon, the circumference = 2nsin(w/n) < 27, so let
¢n, = nsin(w/n) < m, or if we put h = 1/n,

so that we can use Richardson Extrapolation. Indeed co = 2 and

Con = 2nsin(w/2n) = Qn\/%(l — cos(m/n)) (using cos(260) = 1 — 2sin* )
= 2ny/3(1— V1 —sin(x/n) = 200/ 5(1 — /T~ (ca/n)?) .

Sol ¢4 = 2.8284, cg = 3.0615, c16 = 3.1214. Extrapolating between ¢4 and

cg we get cz(f) = 3.1391 and similarly from cg and c1g we get cgg) =3.1214.

This expressnon is sensitive to roundoff errors, so we rewrite it as

CQn—Cn/\/ + /1= (ca/n)2.




Example 1: approximation of 7 by inscribed polygons in unit circle.
For a regular n-gon, the circumference = 2nsin(w/n) < 27, so let
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with 9 = a, z; = a+ jh and h = (b —a)/2".
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Example 2: Romberg Integration. Consider the Composite Trapezium Rule
b

for integratingT:/ f(z)da:

5 271
T=1 [f(a) FI0)+2 Y f)
j=1

with 2o =a, z; =a —|—jh and h = (b—a)/2". Recall from Lecture 3 that
the error is (b — a)% f”(f) for some £ € (a,b). If there were an
(asymptotic) error series of the form

b
/ f(z)dz — T}, = Koh? + K4h* +

we could apply Richardson Extrapolation as above to yield

ATy — Ty,
T—2T:K4h4+



There is such as series: the Euler—Maclaurin formula
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Romberg Integration is composite Trapezium for n =0, 1,2, 3, and the
repeated application of Richardson Extrapolation.
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Rt = 431,03— Roo
with error O(h%). Also
Ty = 27 0) + F0) + 2 (at (0 a)
+2f(at 16— a) +2f(a+ 3(b— a)]
= 5 [R5 fat 10— a) + flat 30— a))]
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Extrapolate

YR -1 — Rio1
4 -1

Ri’jz forj:1,2,...



This builds a triangular table:

Rop

Rip Ry
Rso Ra 1
Rip R;1

Theorem: C. Trapezium C. Simpson

R o
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Notes

© The integrand must have enough derivatives for the Euler—-Maclaurin
series to exist (the whole procedure is based on this!).

b b
Q@ R,,— / f(z)dx in general much faster than R, o — / f(x)de.
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A final observation: because of the Euler—Maclaurin series, if
f € C¥2[q,b] and is periodic of period b — a, then fU)(a) = £ (b) for
j=0,1,...,2n —1, and then
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for nonperiodic functions!
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/ F@)dz— Ty = (b—a)

compared to
h2

()

/ F@)dz —Ty = (b—a)

for nonperiodic functions!

That is, the Composite Trapezium Rule is extremely accurate for the
integration of periodic functions.

If f e C>®[a,b], then T}, — f;f(a:) da faster than any power of h.
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Example: the circumference of an ellipse with semiaxes A and B is

2
/ \/A2 sin? ¢ + B2 cos? ¢ dé.
0

ForAzlandB:%,
Ty = 4.2533,
Tis = 4.2878,
T30 = 4.2802 =Ty =--- (to 4 decimal places).
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