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Richardson Extrapolation

Extrapolation is based on the general idea that if Th is an approximation to

T , computed by a numerical approximation with (small!) parameter h, and

if there is an error formula of the form

T = Th +K1h+K2h
2 + · · ·+O(hn) (16.1)

then T = Tk +K1k +K2k
2 + · · ·+O(kn) (16.2)

for some other value, k, of the small parameter.

In this case subtracting (16.1) from (16.2) gives

(k − h)T = kTh − hTk +K2(kh
2 − hk2) + · · ·

i.e., the linear combination

kTh − hTk
k − h︸ ︷︷ ︸

“extrapolated formula”

= T + K2kh︸ ︷︷ ︸
2nd order error

+ · · ·
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In particular if only even terms arise:

T = Th +K2h
2 +K4h

4 + · · ·+O
(
h2n
)

and k = 1
2h : T = Th

2
+K2

h2

4
+K4

h4

16
+ · · ·+O

(
h2n

22n

)
then T =

4Th
2
− Th
3

− K4

4
h4 + · · ·+O

(
h2n
)
.

This is the first step of Richardson Extrapolation. Call this new, more

accurate formula

T
(2)
h :=

4Th
2
− Th
3

,

where T
(1)
h := Th.
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Then the idea can be applied again:

T = T
(2)
h +K

(2)
4 h4 +K

(2)
6 h6 + · · ·+O(h2n)

and T = T
(2)
h
2

+K
(2)
4

h4

16
+K

(2)
6

h6

64
+ · · ·+O(h2n)

so T =
16T

(2)
h
2

− T (2)
h

15︸ ︷︷ ︸
T
(3)
h

+K
(3)
6 h6 + · · ·+O(h2n)

is a more accurate formula again.

Inductively we can define

T
(j)
h :=

1

4j−1 − 1

[
4j−1T

(j−1)
h
2

− T (j−1)
h

]
for which

T = T
(j)
h +O(h2j)

so long as there are high enough order terms in the error series.
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Example 1: approximation of π by inscribed polygons in unit circle.

For a regular n-gon, the circumference = 2n sin(π/n) ≤ 2π, so let

cn = n sin(π/n) ≤ π, or if we put h = 1/n,

cn =
1

h
sin(πh) = π − π3h2

6
+
π5h4

120
+ · · ·

so that we can use Richardson Extrapolation. Indeed c2 = 2 and

c2n = 2n sin(π/2n) = 2n
√

1
2(1− cos(π/n)) (using cos(2θ) = 1− 2 sin2 θ)

= 2n
√

1
2(1−

√
1− sin2(π/n)) = 2n

√
1
2(1−

√
1− (cn/n)2) .

So1 c4 = 2.8284, c8 = 3.0615, c16 = 3.1214. Extrapolating between c4 and

c8 we get c
(2)
4 = 3.1391 and similarly from c8 and c16 we get c

(2)
8 = 3.1214.

Extrapolating again between c
(2)
4 and c

(2)
8 , we get c

(3)
4 = 3.141590 . . ..

1

This expression is sensitive to roundoff errors, so we rewrite it as

c2n = cn/
√

1
2
+ 1

2

√
1− (cn/n)2.
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Example 2: Romberg Integration. Consider the Composite Trapezium Rule

for integrating T =

∫ b

a
f(x) dx:

Th =
h

2

f(a) + f(b) + 2

2n−1∑
j=1

f(xj)


with x0 = a, xj = a+ jh and h = (b− a)/2n.

Recall from Lecture 3 that

the error is (b− a)h212f
′′(ξ) for some ξ ∈ (a, b). If there were an

(asymptotic) error series of the form∫ b

a
f(x) dx− Th = K2h

2 +K4h
4 + · · ·

we could apply Richardson Extrapolation as above to yield

T −
4Th

2
− Th
3

= K4h
4 + · · · .
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There is such as series: the Euler–Maclaurin formula∫ b

a
f(x) dx− Th = −

r∑
k=1

B2k

(2k)!
h2k[f (2k−1)(b)− f (2k−1)(a)]

+(b− a)h
2r+1B2r+2

(2r + 2)!
f (2r+2)(ξ)

where ξ ∈ (a, b) and B2k are called the Bernoulli numbers, defined by

x

ex − 1
=

∞∑
`=0

Bl
x`

`!

so that B2 = 1
6

, B4 = − 1
30

, etc. .
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Romberg Integration is composite Trapezium for n = 0, 1, 2, 3, and the

repeated application of Richardson Extrapolation.

Changing notation

(Th → Tn, h = stepsize, 2n = number of composite steps), we have

T0 =
b− a
2

[f(a) + f(b)] = R0,0

T1 =
b− a
4

[f(a) + f(b) + 2f(a+ 1
2(b− a))]

= 1
2 [R0,0 + (b− a)f(a+ 1

2(b− a))] = R1,0.

Extrapolation then gives

R1,1 =
4R1,0 −R0,0

3
.

with error O(h4). Also

T2 =
b− a
8

[f(a) + f(b) + 2f(a+ 1
2(b− a))

+ 2f(a+ 1
4
(b− a)) + 2f(a+ 3

4
(b− a))]

=
1

2

[
R1,0 +

b− a
2

[f(a+ 1
4
(b− a)) + f(a+ 3

4
(b− a))]

]
= R2,0.
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Extrapolation gives

R2,1 =
4R2,0 −R1,0

3

with error O(h4).

Extrapolation again gives

R2,2 =
16R2,1 −R1,1

15

now with error O(h6). At the ith stage

Ti = Ri,0 =
1

2

[
Ri−1,0 +

b− a
2i−1

2i−1∑
j=1

f

(
a+

(
j − 1

2

)
b− a
2i−1

)
︸ ︷︷ ︸

evaluations at new interlacing points

.



Extrapolate

Ri,j =
4jRi,j−1 −Ri−1,j−1

4j − 1
for j = 1, 2, . . .

9 / 13



Extrapolation gives

R2,1 =
4R2,0 −R1,0

3

with error O(h4). Extrapolation again gives

R2,2 =
16R2,1 −R1,1

15

now with error O(h6).

At the ith stage

Ti = Ri,0 =
1

2

[
Ri−1,0 +

b− a
2i−1

2i−1∑
j=1

f

(
a+

(
j − 1

2

)
b− a
2i−1

)
︸ ︷︷ ︸

evaluations at new interlacing points

.



Extrapolate

Ri,j =
4jRi,j−1 −Ri−1,j−1

4j − 1
for j = 1, 2, . . .

9 / 13



Extrapolation gives

R2,1 =
4R2,0 −R1,0

3

with error O(h4). Extrapolation again gives

R2,2 =
16R2,1 −R1,1

15

now with error O(h6). At the ith stage

Ti = Ri,0 =
1

2

[
Ri−1,0 +

b− a
2i−1

2i−1∑
j=1

f

(
a+

(
j − 1

2

)
b− a
2i−1

)
︸ ︷︷ ︸

evaluations at new interlacing points

.



Extrapolate

Ri,j =
4jRi,j−1 −Ri−1,j−1

4j − 1
for j = 1, 2, . . .

9 / 13



Extrapolation gives

R2,1 =
4R2,0 −R1,0

3

with error O(h4). Extrapolation again gives

R2,2 =
16R2,1 −R1,1

15

now with error O(h6). At the ith stage

Ti = Ri,0 =
1

2

[
Ri−1,0 +

b− a
2i−1

2i−1∑
j=1

f

(
a+

(
j − 1

2

)
b− a
2i−1

)
︸ ︷︷ ︸

evaluations at new interlacing points

.



Extrapolate

Ri,j =
4jRi,j−1 −Ri−1,j−1

4j − 1
for j = 1, 2, . . .

9 / 13



This builds a triangular table:

R0,0

R1,0 R1,1

R2,0 R2,1 R2,2
...

...
...

. . .

Ri,0 Ri,1 Ri,2 . . . Ri,i

Theorem: C. Trapezium C. Simpson . . . . . . Romberg
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Notes

1 The integrand must have enough derivatives for the Euler–Maclaurin

series to exist (the whole procedure is based on this!).

2 Rn,n →
∫ b

a
f(x) dx in general much faster than Rn,0 →

∫ b

a
f(x) dx.

11 / 13



A final observation: because of the Euler–Maclaurin series, if

f ∈ C2n+2[a, b] and is periodic of period b− a, then f (j)(a) = f (j)(b) for

j = 0, 1, . . . , 2n− 1, and then∫ b

a
f(x) dx− Th = (b− a)h

2n+1B2n+2

(2n+ 2)!
f (2n+2)(ξ)

compared to ∫ b

a
f(x) dx− Th = (b− a)h

2

12
f ′′(ξ)

for nonperiodic functions!

That is, the Composite Trapezium Rule is extremely accurate for the

integration of periodic functions.

If f ∈ C∞[a, b], then Th →
∫ b
a f(x) dx faster than any power of h.
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f ∈ C2n+2[a, b] and is periodic of period b− a, then f (j)(a) = f (j)(b) for

j = 0, 1, . . . , 2n− 1, and then∫ b

a
f(x) dx− Th = (b− a)h

2n+1B2n+2

(2n+ 2)!
f (2n+2)(ξ)

compared to ∫ b

a
f(x) dx− Th = (b− a)h

2

12
f ′′(ξ)

for nonperiodic functions!

That is, the Composite Trapezium Rule is extremely accurate for the

integration of periodic functions.
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a f(x) dx faster than any power of h.
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Example: the circumference of an ellipse with semiaxes A and B is∫ 2π

0

√
A2 sin2 φ+B2 cos2 φ dφ.

For A = 1 and B = 1
4 ,

T8 = 4.2533,

T16 = 4.2878,

T32 = 4.2892 = T64 = · · · (to 4 decimal places).
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