Numerical Analysis Hilary Term 2018
Lecture 1: Lagrange Interpolation

These lecture notes are adapted from the numerical analysis textbook by Siili and Mayers.
This first lecture comes from Chapter 6 of the book.

Notation: II,, = {real polynomials of degree < n}

Setup: given data f; at distinct x;, ¢ =0,1,...,n, with zg < z; < --- < x,, can we find a
polynomial p,, such that p,(z;) = f;? Such a polynomial is said to interpolate the data.
E.g.:

constant n = 0 linear n =1 quadratic n = 2

Theorem. dp, € 11, such that p,(x;) = f; fori =0,1,...,n.

Proof. Consider, for k =0,1,...,n, the “cardinal polynomial”

_ (@—m) (@ —mpn) (@ — ) - (2 — @)
Ent) = (o a0y (o — )k — we) e (an — ) © @

Then
Lpi(z;) =0 for i=0,....,k—1,k+1,...,n and L,x(x) = 1.

So now define

k=0
e n
pn(xz>:kaLn,k($z):fz for i:O)lw"an' O
k=0

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree < n is unique.

Proof. Consider two interpolating polynomials p,,, g, € II,,. Their difference d,, = p,—q. €

I1,, satisfies d,,(zx) = 0 for k =0,1,...,n. i.e., d, is a polynomial of degree at most n but
has at least n + 1 distinct roots. Algebra —= d,, =0 = p, = q,. d
Matlab:

>> help lagrange
LAGRANGE Plots the Lagrange polynomial interpolant for the
given DATA at the given KNOTS
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>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);

I I I I I I I I I
1 1.05 11 1.15 1.2 1.25 1.3 1.35 1.4

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]1);
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Data from an underlying smooth function: Suppose that f(z) has at least n + 1
smooth derivatives in the interval (xg,x,). Let fi, = f(zx) for k = 0,1,...,n, and let p,
be the Lagrange interpolating polynomial for the data (zy, fx), k =0,1,...,n.

Error: how large can the error f(x) — p,(z) be on the interval [zg, ,]7

Theorem. For every x € [xg, x,] there exists & = &(x) € (xg, x,) such that

Fr)

o) & (@) = pule) = (0 o) (r —20) - (& = )
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where f("*1 is the (n + 1)-st derivative of f.

Proof. Trivial for z =z, k =0,1,...,n as e(x) = 0 by construction. So suppose x # xy.
Let ()
def exr
t) = e(t) — m(t
o) 2 eft) ~ £ 55x(0),
where ot
T(t) = (t—20)(t —21)- - (t —2)
— tn+1 - (sz> tn+"'<_1)n+1$0$1"'l‘n
i=0
€ HnJrl'
Now note that ¢ vanishes at n + 2 points  and xy, £k = 0,1,...,n. = ¢’ vanishes at
n + 1 points &, ..., &, between these points = ¢” vanishes at n points between these

new points, and so on until ¢+ vanishes at an (unknown) point & in (g, z,). But

§I() = (0 = G 0) = £ () = S+ 1)
since p("*)(t) = 0 and because 7(t) is a monic polynomial of degree n+ 1. The result then

follows immediately from this identity since ¢p("*Y(¢) = 0.
O

Example: f(z) =log(1+z) on [0,1]. Here, |f™*V(&)] = n!/(14+ &)™ < nlon (0,1). So
le(x)| < |m(z)|n!/(n+ 1) < 1/(n+1) since |x — x| < 1 for each z, xx, K =0,1,...,n,in
[0,1] = |7(z)| < 1. This is probably pessimistic for many z, e.g. forz = 1, (1) < 2-("+1)
as |3 — zal < b

This shows the important fact that the error can be large at the end points, an effect
known as the “Runge phenomena” (Carl Runge, 1901). There is a famous example due
to Runge, where the error from the interpolating polynomial approximation to f(z) =
(1+2%)~! for n+1 equally-spaced points on [—5, 5] diverges near 45 as n tends to infinity:
try this example with lagrange

Building Lagrange interpolating polynomials from lower degree ones.
Notation: Let @);; be the Lagrange interpolating polynomial at zy, k =1,...,J.

Theorem.
(= 2:)Qiy1(z) — (. — 2;)Qi 1 (x)

ZL’j—Ii

Qij(r) =

(3)

Proof. Let s(z) denote the right-hand side of (3). Because of uniqueness, we simply wish
to show that s(zy) = fi. For k =i+ 1,...,j — 1, Qis1(xx) = fr = Qij—1(xx), and hence

(zr — 2:)Qigr (1) — (g — 25) Qi j—1 ()

ZEj—Ii

S(l’k) = = fk-
We also have that Q;11;(z;) = f; and Q;;—1(z;) = f;, and hence
s(wi) = Qij1(w:) = fi and s(v;) = Qiyr4(7;) = fj.
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Comment: this can be used as the basis for constructing interpolating polynomials. In
books: may find topics such as the Newton form and divided differences.
Generalisation: given data f; and g; at distinct z;, e = 0,1,...,n, withxg <z, <--- <
T, can we find a polynomial p such that p(x;) = f; and p/'(z;) = ¢;7

Theorem. There is a unique polynomial py,.; € Iy,41 such that po,.i(x;) = f; and
Phnir (@) = gi for i =0,1,...,n.

Construction: given L, x(x) in (1), let

Hyo(x) = [Log(2)]*(1 = 2(x — zx) Ly, 1. (1))
and K, ;(z) = [Lni(2)]*(z — xy).

Then .
Pont1 () = D [fuHnp(2) + gp Ko p(2)] (4)

k=0
interpolates the data as required. The polynomial (4) is called the Hermite interpolating
polynomial.

Theorem. Let py, 1 be the Hermite interpolating polynomial in the case where f; = f(x;)
and g; = f'(x;) and f has at least 2n+2 smooth derivatives. Then, for every = € [xg, z,],

2 [ ()

1) = powa(a) = [(@ = o)l =)+ 2~ 2] g

where £ € (g, z,) and "2 is the (2n + 2)nd derivative of f.
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