Numerical Analysis Hilary Term 2018
Lecture 2: Newton—Cotes Quadrature

See Chapter 7 of Stili and Mayers.

Terminology: Quadrature = numerical integration
Setup: given f(zy) at n + 1 equally spaced points xy = xo+ k- h, k =0,1,...,n, where
h = (z, — xo)/n. Suppose that p,(z) interpolates this data.

Idea: does

/ Fla)de ~ / () da? (1)

0 o

We investigate the error in such an approximation below, but note that

Tn

/;" pn(z) de = zn: F(@1) - Log(z) dz

0 o k=0
n

_ ’;) Flaw) - /x Lox(z) do 2)

n

where the coefficients -
wy, = / L, (x)dz (3)

0

k=0,1,...,n, are independent of f. A formula
b n
| f@)dex 3 wef ()
a k=0

with 2, € [a,b] and wy independent of f for k = 0,1,...,n is called a quadrature
formula; the coefficients wy, are known as weights. The specific form (1)—(3), based on
equally spaced points, is called a Newton—Cotes formula of order n.

Examples:

Trapezium Rule: n =1 (also known as the trapezoid or trapezoidal rule):

4

Zo h T

Proof.

/aflpl(x)dl’: f(xo) /xl x—xll dz +f(x1) /ml T7I0 4ge

0

Simpson’s Rule: n = 2:
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[ 5@ de = 510+ 47() + (o)

D2

o h z; h To
Note: The trapezium rule is exact if f € II;, since if f € I} = p; = f. Similarly,
Simpson’s Rule is exact if f € Ily, since if f € Il = py = f. The highest degree of
polynomial exactly integrated by a quadrature rule is called the (polynomial) degree of
accuracy (or degree of exactness).

Error: we can use the error in interpolation directly to obtain

[ — @) dr = [ T 0 6w

0 0 (n—l—l)

so that N ]
" _ (n+l) 4
L1 = pelada| < oy max 1500 [ ()] da, 4)
which, e.g., for the trapezium rule, n = 1, gives
1 T — T r — x0)°
[ sy = O ) 4] < P a0
y) EE[I&II]

In fact, we can prove a tighter result using the Integral Mean-Value Theorem':

Theorem. /xlf(x) dr — W[f(xo) + f(z1)] = —@1;2%)3]‘”(5) for some ¢ €
(Io,xl). ’
Proof. See problem sheet. O

For n > 1, (4) gives pessimistic bounds. But one can prove better results such as:

Theorem. Error in Simpson’s Rule: if f”” is continuous on (xg, z3), then

T2 — _ 5
[ seyae = 2T ) g+ fa)] < P max (770

Proof. Recall / pa(x)de = 1h[f(xo) +4f(x1) + f(xg)], where h = z9 — 21 = 21 — 0.
Consider f(zo) — 2f(z1) + f(x2) = f(x1 — h) — 2f(x1) + f(z1 + h). Then, by Taylor’s

Theorem,

flxy = h) f@r) = hf'(w1) + 302 f7 (1) = §1° " (1) + 350" (&)
—2f(x1) = —2f(x1) +
Ff b h) )+ hf () + SRR () + R () + b ()
'Integral Mean-Value Theorem: if f and g are continuous on [a, b] and g(z) > 0 on this interval, then there

b b
exists an 7 € (a,b) for which / f(@)g(z)dx = f(n)/ g(z) dz (see problem sheet).
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for some & € (9, x1) and & € (1, x2), and hence

f@o) = 2f (1) + f(z2) = R2f"(w1) + £R" (&) + (&) (5)
= R f"(x1) + LR (&),

the last result following from the Intermediate-Value Theorem? for some &5 € (&1,&) C
(0, z2). Now for any x € [xo, 23], we may use Taylor’s Theorem again to deduce

[ rwar= g [ ars ) [0 a

1—h x1—h

+1f"(z1) /951

xr1—

1 rith " . 4
ta ) ST @)@ —a)de

= th(xll)_+ %h?’f//(xl) + %th////(Th)
= %h[f<$0) + 4f(x1> + f((L’z)] + %h5f////<n2> . %lﬁf””(fg)

Ty — Xo

= [Tnwas s (255 6 - 5@

z1+h
(x —z1)*do + %f’”(xl)/ 1 . (x —x1)* da

r]—

where 7y (x) and 79 € (29, x2), using the Integral Mean-Value Theorem and (5). Thus,
taking moduli,

8
< _ 5 "
< 35 qgo (P2~ o) max [FT()]

1 @) = paa)) do

0

as required. O

Note: Simpson’s Rule is exact if f € II3 since then " = 0.

In fact, it is possible to compute a slightly stronger bound.

Theorem. Error in Simpson’s Rule II: if f”” is continuous on (xg, z3), then

2 T2 — o _ (1‘2 - IO)E’ "
P de = R ) + 4 f () + )] = el )
for some € € (xg, x2).
Proof. See Siili and Mayers, Thm. 7.2. O

2Intermediate-Value Theorem: if f is continuous on a closed interval [a,b], and ¢ is any number between
f(a) and f(b) inclusive, then there is at least one number £ in the closed interval such that f(£) = c. In particular,
since ¢ = (df (a) +ef(b))/(d+ e) lies between f(a) and f(b) for any positive d and e, there is a value £ in the closed
interval for which d - f(a) +e- f(b) = (d+e) - f(§).
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