Numerical Analysis Hilary Term 2018 Lectures 8–9: The Symmetric QR Algorithm

We consider only the case where A is symmetric.

Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which $A = P^{-1}BP$. Similar matrices have the same eigenvalues, since if $A = P^{-1}BP$,

$$0 = \det(A - \lambda I) = \det(P^{-1}(B - \lambda I)P) = \det(P^{-1})\det(P)\det(B - \lambda I),$$

so $det(A - \lambda I) = 0$ if, and only if, $det(B - \lambda I) = 0$.

The basic **QR** algorithm is:

```
Set A_1 = A.
for k = 1, 2, ...
  form the QR factorization A_k = Q_k R_k
  and set A_{k+1} = R_k Q_k
end
```

Proposition. The symmetric matrices $A_1, A_2, \ldots, A_k, \ldots$ are all similar and thus have the same eigenvalues.

Proof. Since

$$A_{k+1} = R_k Q_k = (Q_k^{\mathrm{T}} Q_k) R_k Q_k = Q_k^{\mathrm{T}} (Q_k R_k) Q_k = Q_k^{\mathrm{T}} A_k Q_k = Q_k^{-1} A_k Q_k,$$

where the initial of the second s

 A_{k+1} is symmetric if A_k is, and is similar to A_k .

At least when A has distinct eigenvalues, this basic QR algorithm can be shown to work $(A_k \text{ converges to a diagonal matrix as } k \to \infty$, the diagonal entries of which are the eigenvalues). However, a really practical, fast algorithm is based on some refinements.

Reduction to tridiagonal form: the idea is to apply explicit similarity transformations $QAQ^{-1} = QAQ^{T}$, with Q orthogonal, so that QAQ^{T} is tridiagonal.

Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible. If

$$H(w)A = \begin{bmatrix} \times & \times & \cdots & \times \\ 0 & \times & \cdots & \times \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \times & \cdots & \times \end{bmatrix}$$

then $H(w)AH(w)^{T}$ is generally full, i.e., all zeros created by pre-multiplication are destroyed by the post-multiplication. However, if

$$A = \left[\begin{array}{cc} \gamma & u^{\mathrm{T}} \\ u & C \end{array} \right]$$

(as $A = A^{\mathrm{T}}$) and

$$w = \begin{bmatrix} 0 \\ \hat{w} \end{bmatrix}$$
 where $H(\hat{w})u = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$,

Lectures 8–9 pg 1 of 3

it follows that

$$H(w)A = \begin{bmatrix} \gamma & u^{1} \\ \alpha & \times & \vdots & \times \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \times & \vdots & \times \end{bmatrix},$$

i.e., the u^{T} part of the first row of A is unchanged. However, then

$$H(w)AH(w)^{-1} = H(w)AH(w)^{\mathrm{T}} = H(w)AH(w) = \begin{bmatrix} \gamma & \alpha & 0 & \cdots & 0 \\ \hline \alpha & & & \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{bmatrix},$$

where $B = H(\hat{w})CH^{\mathrm{T}}(\hat{w})$, as $u^{\mathrm{T}}H(\hat{w})^{\mathrm{T}} = (\alpha, 0, \cdots, 0)$; note that $H(w)AH(w)^{\mathrm{T}}$ is symmetric as A is.

Now we inductively apply this to the smaller matrix B, as described for the QR factorization but using post- as well as pre-multiplications. The result of n-2 such Householder similarity transformations is the matrix

$$H(w_{n-2})\cdots H(w_2)H(w)AH(w)H(w_2)\cdots H(w_{n-2}),$$

which is tridiagonal.

The QR factorization of a tridiagonal matrix can now easily be achieved with n-1 Givens rotations: if A is tridiagonal

$$\underbrace{J(n-1,n)\cdots J(2,3)J(1,2)}_{Q^{\mathrm{T}}}A = R, \quad \text{upper triangular.}$$

Precisely, R has a diagonal and 2 super-diagonals,

(exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ.

Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry and tridiagonal form are preserved when Givens rotations are used.

Proof. We have already shown that if $A_k = QR$ is symmetric, then so is $A_{k+1} = RQ$. If $A_k = QR = J(1,2)^T J(2,3)^T \cdots J(n-1,n)^T R$ is tridiagonal, then $A_{k+1} = RQ =$ $RJ(1,2)^{\mathrm{T}}J(2,3)^{\mathrm{T}}\cdots J(n-1,n)^{\mathrm{T}}$. Recall that post-multiplication of a matrix by $J(i,i+1)^{\mathrm{T}}$ replaces columns i and i+1 by linear combinations of the pair of columns, while leaving columns $j = 1, 2, \ldots, i-1, i+2, \ldots, n$ alone. Thus, since R is upper triangular, the only subdiagonal entry in $RJ(1,2)^{\mathrm{T}}$ is in position (2, 1). Similarly, the only subdiagonal entries in $RJ(1,2)^{\mathrm{T}}J(2,3)^{\mathrm{T}} = (RJ(1,2)^{\mathrm{T}})J(2,3)^{\mathrm{T}}$ are in positions (2, 1) and (3, 2). Inductively, the only subdiagonal entries in

$$RJ(1,2)^{\mathrm{T}}J(2,3)^{\mathrm{T}}\cdots J(i-2,i-1)^{\mathrm{T}}J(i-1,i)^{\mathrm{T}}$$

= $(RJ(1,2)^{\mathrm{T}}J(2,3)^{\mathrm{T}}\cdots J(i-2,i-1)^{\mathrm{T}})J(i-1,i)^{\mathrm{T}}$

are in positions (j, j - 1), j = 2, ..., i. So, the lower triangular part of A_{k+1} only has nonzeros on its first subdiagonal. However, then since A_{k+1} is symmetric, it must be tridiagonal.

Using shifts. One further and final step in making an efficient algorithm is the use of shifts:

```
for k=1,2,\ldots form the QR factorization of A_k-\mu_k I=Q_k R_k and set A_{k+1}=R_k Q_k+\mu_k I end
```

For any chosen sequence of values of $\mu_k \in \mathbb{R}$, $\{A_k\}_{k=1}^{\infty}$ are symmetric and tridiagonal if A_1 has these properties, and similar to A_1 .

The simplest shift to use is $a_{n,n}$, which leads rapidly in almost all cases to

$$A_k = \begin{bmatrix} T_k & 0\\ 0^{\mathrm{T}} & \lambda \end{bmatrix},$$

where T_k is n-1 by n-1 and tridiagonal, and λ is an eigenvalue of A_1 . Inductively, once this form has been found, the QR algorithm with shift $a_{n-1,n-1}$ can be concentrated only on the n-1 by n-1 leading submatrix T_k . This process is called **deflation**.

The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix: reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

```
for m = n, n - 1, \dots 2

while a_{m-1,m} > \text{tol}

[Q, R] = qr(A - a_{m,m} * I)

A = R * Q + a_{m,m} * I

end while

record eigenvalue \lambda_m = a_{m,m}

A \leftarrow \text{leading } m - 1 by m - 1 submatrix of A

end

record eigenvalue \lambda_1 = a_{1,1}
```