
Numerical Analysis Hilary Term 2018

Lectures 8–9: The Symmetric QR Algorithm

We consider only the case where A is symmetric.

Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which

A = P−1BP . Similar matrices have the same eigenvalues, since if A = P−1BP ,

0 = det(A− λI) = det(P−1(B − λI)P ) = det(P−1) det(P ) det(B − λI),

so det(A− λI) = 0 if, and only if, det(B − λI) = 0.

The basic QR algorithm is:

Set A1 = A.

for k = 1, 2, . . .

form the QR factorization Ak = QkRk

and set Ak+1 = RkQk

end

Proposition. The symmetric matrices A1, A2, . . . , Ak, . . . are all similar and thus have the

same eigenvalues.

Proof. Since

Ak+1 = RkQk = (QT
kQk)RkQk = QT

k (QkRk)Qk = QT
kAkQk = Q−1k AkQk,

Ak+1 is symmetric if Ak is, and is similar to Ak. 2

At least when A has distinct eigenvalues, this basic QR algorithm can be shown to work

(Ak converges to a diagonal matrix as k → ∞, the diagonal entries of which are the

eigenvalues). However, a really practical, fast algorithm is based on some refinements.

Reduction to tridiagonal form: the idea is to apply explicit similarity transformations

QAQ−1 = QAQT, with Q orthogonal, so that QAQT is tridiagonal.

Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible.

If

H(w)A =


× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×


then H(w)AH(w)T is generally full, i.e., all zeros created by pre-multiplication are de-

stroyed by the post-multiplication. However, if

A =

[
γ uT

u C

]
(as A = AT) and

w =

[
0

ŵ

]
where H(ŵ)u =


α

0
...

0

 ,
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it follows that

H(w)A =


γ uT

α × ... ×
...

...
...

...

0 × ... ×

 ,
i.e., the uT part of the first row of A is unchanged. However, then

H(w)AH(w)−1 = H(w)AH(w)T = H(w)AH(w) =


γ α 0 · · · 0

α

0
...

0

B

 ,

where B = H(ŵ)CHT(ŵ), as uTH(ŵ)T = (α, 0, · · · , 0); note that H(w)AH(w)T is

symmetric as A is.

Now we inductively apply this to the smaller matrix B, as described for the QR factoriza-

tion but using post- as well as pre-multiplications. The result of n − 2 such Householder

similarity transformations is the matrix

H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),

which is tridiagonal.

The QR factorization of a tridiagonal matrix can now easily be achieved with n−1 Givens

rotations: if A is tridiagonal

J(n− 1, n) · · · J(2, 3)J(1, 2)︸ ︷︷ ︸
QT

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =



× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0
...

...
...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 ×


(exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ.

Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry

and tridiagonal form are preserved when Givens rotations are used.

Proof. We have already shown that if Ak = QR is symmetric, then so is Ak+1 = RQ.

If Ak = QR = J(1, 2)TJ(2, 3)T · · · J(n − 1, n)TR is tridiagonal, then Ak+1 = RQ =

Lectures 8–9 pg 2 of 3



RJ(1, 2)TJ(2, 3)T · · · J(n−1, n)T. Recall that post-multiplication of a matrix by J(i, i+1)T

replaces columns i and i + 1 by linear combinations of the pair of columns, while leaving

columns j = 1, 2, . . . , i− 1, i + 2, . . . , n alone. Thus, since R is upper triangular, the only

subdiagonal entry in RJ(1, 2)T is in position (2, 1). Similarly, the only subdiagonal entries

in RJ(1, 2)TJ(2, 3)T = (RJ(1, 2)T)J(2, 3)T are in positions (2, 1) and (3, 2). Inductively,

the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)TJ(i− 1, i)T

= (RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)T)J(i− 1, i)T

are in positions (j, j − 1), j = 2, . . . i. So, the lower triangular part of Ak+1 only has

nonzeros on its first subdiagonal. However, then since Ak+1 is symmetric, it must be

tridiagonal. 2

Using shifts. One further and final step in making an efficient algorithm is the use of

shifts:

for k = 1, 2, . . .

form the QR factorization of Ak − µkI = QkRk

and set Ak+1 = RkQk + µkI

end

For any chosen sequence of values of µk ∈ R, {Ak}∞k=1 are symmetric and tridiagonal if A1

has these properties, and similar to A1.

The simplest shift to use is an,n, which leads rapidly in almost all cases to

Ak =

[
Tk 0

0T λ

]
,

where Tk is n− 1 by n− 1 and tridiagonal, and λ is an eigenvalue of A1. Inductively, once

this form has been found, the QR algorithm with shift an−1,n−1 can be concentrated only

on the n− 1 by n− 1 leading submatrix Tk. This process is called deflation.

The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

for m = n, n− 1, . . . 2

while am−1,m > tol

[Q,R] = qr(A− am,m ∗ I)

A = R ∗Q+ am,m ∗ I
end while

record eigenvalue λm = am,m

A← leading m− 1 by m− 1 submatrix of A

end

record eigenvalue λ1 = a1,1
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