
Numerical Analysis Hilary Term 2018

Lectures 14–15: Piecewise Polynomial Interpolation: Splines

Sometimes a ‘global’ approximation like Lagrange interpolation is not appropriate, e.g.,

for ’rough’ data.

On the left the Lagrange interpolant p6 ‘wiggles’ through the points, while on the right a

piecewise linear interpolant (‘join the dots’), or linear spline interpolant, s appears to

represent the data better.

Remark: for any given data s clearly exists and is unique.

Suppose that a = x0 < x1 < · · · < xn = b. Then, s is linear on each interval [xi−1, xi] for

i = 1, . . . , n and continuous on [a, b]. The xi, i = 0, 1, . . . , n, are called the knots of the

linear spline.

Notation: f ∈ Ck[a, b] if f, f ′, . . . , fk exist and are continuous on [a, b].

Theorem. Suppose that f ∈ C2[a, b]. Then,

‖f − s‖∞ ≤
1

8
h2‖f ′′‖∞

where h = max
1≤i≤n

(xi − xi−1) and ‖f ′′‖∞ = max
x∈[a,b]

|f ′′(x)|.

Proof. For x ∈ [xi−1, xi], the error from linear interpolation is

f(x)− s(x) =
1

2
f ′′(η)(x− xi−1)(x− xi)

where η = η(x) ∈ (xi−1, xi). However, |(x − xi−1)(x − xi)| = (x − xi−1)(xi − x) =

−x2 + x(xi−1 + xi)− xi−1xi, which has its maximum value when 2x = xi + xi−1, i.e., when

x− xi−1 = xi − x = 1
2
(xi − xi−1). Thus, for any x ∈ [xi−1, xi], i = 1, 2, . . . , n, we have

|f(x)− s(x)| ≤ 1

2
‖f ′′‖∞ max

x∈[xi−1,xi]
|(x− xi−1)(x− xi)| =

1

8
h2‖f ′′‖∞.

2

Note that s may have discontinuous derivatives, but is a locally defined approximation,

since changing the value of one data point affects the approximation in only two intervals.

To get greater smoothness but retain some ‘locality’, we can define cubic splines s ∈
C2[a, b]. For a given ‘partition’, a = x0 < x1 < · · · < xn = b, these are (generally

different!) cubic polynomials in each interval (xi−1, xi), i = 1, . . . , n, which are ‘joined’ at

each knot to have continuity and continuity of s′ and s′′. Interpolating cubic splines

also satisfy s(xi) = fi for given data fi, i = 0, 1, . . . , n.

Remark: if there are n intervals, there are 4n free coefficients (four for each cubic ‘piece’),

but 2n interpolation conditions (one each at the ends of each interval), n − 1 derivative

continuity conditions (at x1, . . . , xn−1) and n − 1 second derivative continuity conditions
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(at the same points), giving a total of 4n − 2 conditions (which are linear in the free

coefficients). Thus the spline is not unique. So we need to add two extra conditions to

generate a spline that might be unique. There are three common ways of doings this:

(a) specify s′(x0) = f ′(x0) and s′(xn) = f ′(xn); or

(b) specify s′′(x0) = 0 = s′′(xn) — this gives a natural cubic spline; or

(c) enforce continuity of s′′′ at x1 and xn−1 (which implies that the first two pieces are

the same cubic spline, i.e., on [x0, x2], and similarly for the last two pieces, i.e., on

[xn−2, xn], from which it follows that x1 and xn−1 are not knots! — this is usually

described as the ‘not a knot’ end-conditions).

We may describe a cubic spline within the i-th interval as

si(x) =

{
aix

3 + bix
2 + cix+ di for x ∈ (xi−1, xi)

0 otherwise

and overall, to ensure interpolation (of f), as

s(x) =


n∑

i=1

si(x) for x ∈ [x0, xn] \ {x0, x1, . . . , xn}

f(xi) for x = xi, i = 0, 1, . . . , n.

The 4n linear conditions for an interpolating cubic spline s are:

si(x
−
i ) = f(xi)

s1(x0) = f(x0) si+1(x
+
i ) = f(xi) sn(xn) = f(xn)

s′1(x0) = f ′(x0) (a) s′i(x
−
i )− s′i+1(x

+
i ) = 0 s′n(xn) = f ′(xn) (a)

or s′′1(x0) = 0 (b) s′′i (x−i )− s′′i+1(x
+
i ) = 0 or s′′n(xn) = 0 (b)

i = 1, . . . , n− 1.

(1)

We may write this as Ay = g, with

y = (a1, b1, c1, d1, a2, . . . , dn−1, an, bn, cn, dn)T

and the various entries of g are f(xi), i = 0, 1, . . . , n, and f ′(x0), f
′(xn) and zeros for (a)

and zeros for (b).

So if A is nonsingular, this implies that y = A−1g, that is there is a unique set of coefficients

{a1, b1, c1, d1, a2, . . . , dn−1, an, bn, cn, dn}. We now prove that if Ay = 0 then y = 0, and

thus that A is nonsingular for cases (a) and (b) — it is also possible, but more complicated,

to show this for case (c).

Theorem. If f(xi) = 0 at the knots xi, i = 0, 1, . . . , n, and additionally f ′(x0) = 0 = f ′(xn)

for case (a), then s(x) = 0 for all x ∈ [x0, xn].

Proof. Consider∫ xn

x0

(s′′(x))2 dx =
n∑

i=1

∫ xi

xi−1

(s′′i (x))2 dx

=
n∑

i=1

[s′i(x)s′′i (x)]
xi

xi−1
−

n∑
i=1

∫ xi

xi−1

s′i(x)s′′′i (x) dx
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using integration by parts. However,∫ xi

xi−1

s′i(x)s′′′i (x) dx = s′′′i (x)

∫ xi

xi−1

s′i(x) dx = s′′′i (x) [si(x)]xi

xi−1
= 0

since s′′′i (x) is constant on the interval (xi−1, xi) and si(xi−1) = 0 = si(xi). Thus, matching

first and second derivatives at the knots, telescopic cancellation gives∫ xn

x0

(s′′(x))2 dx =
n∑

i=1

[s′i(x)s′′i (x)]
xi

xi−1

= s′1(x1)s
′′
1(x1)− s′1(x0)s′′1(x0)

+ s′2(x2)s
′′
2(x2)− s′2(x1)s′′2(x1) + · · ·

+ s′n−1(xn−1)s
′′
n−1(xn−1)− s′n−1(xn−2)s′′n−1(xn−2)

+ s′n(xn)s′′n(xn)− s′n(xn−1)s
′′
n(xn−1)

= s′n(xn)s′′n(xn)− s′1(x0)s′′1(x0).

However, in case (a), f ′(x0) = f ′(xn) =⇒ s′1(x0) = 0 = s′n(xn), while in case (b) s′′1(x0) =

0 = s′′n(xn). Thus, either way, ∫ xn

x0

(s′′(x))2 dx = 0,

which implies that s′′i (x) = 0 and thus si(x) = cix + di. Since s(xi−1) = 0 = s(xi), s(x) is

identically zero on [x0, xn]. 2

Constructing cubic splines. Note that (1) provides a constructive method for finding

an interpolating spline, but generally this is not used. Motivated by the next result, it is

better to find a good basis.

Proposition. The set of natural cubic splines on a given set of knots x0 < x1 < · · · < xn
is a vector space.

Proof. If p, q ∈ C2[a, b] =⇒ αp+ βq ∈ C2[a, b] and p, q ∈ Π3 =⇒ αp+ βq ∈ Π3 for every

α, β ∈ R. Finally, the natural end-conditions (b) =⇒ (αp+βq)′′(x0) = 0 = (αp+βq)′′(xn)

whenever p′′ and q′′ are zero at x0 and xn. 2

Best spline bases: the Cardinal splines, Ci, i = 0, 1, . . . , n, defined as the interpolatory

natural cubic splines satisfying

Ci(xj) = δij =

{
1 i = j

0 i 6= j,

are a basis for which

s(x) =
n∑

i=0

f(xi)Ci(x)

is the interpolatory natural cubic spline to f .

Preferred are the B-splines (locally) defined by Bi(xi) = 1 for i = 2, 3, . . . , n − 2,

Bi(x) ≡ 0 for x /∈ (xi−2, xi+2), Bi a cubic spline with knots xj, j = 0, 1, . . . , n, with special
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definitions for B0, B1, Bn−1 and Bn.

Example/construction: Cubic B-spline with knots 0, 1, 2, 3, 4. On [0, 1],

B(x) = ax3

for some a in order that B, B′ and B′′ are continuous at x = 0 (recall that B(x) is required

to be identically zero for x < 0). So

B(1) = a, B′(1) = 3a, and B′′(1) = 6a.

On [1, 2], since B is a cubic polynomial, using Taylor’s Theorem,

B(x) = B(1) +B′(1)(x− 1) +
B′′(1)

2
(x− 1)2 + β(x− 1)3

= a+ 3a(x− 1) + 3a(x− 1)2 + β(x− 1)3

for some β, and since we require B(2) = 1, then β = 1 − 7a. Now, in order to continue,

by symmetry, we must have B′(2) = 0, i.e.,

3a+ 6a(x− 1)x=2 + 3(1− 7a)(x− 1)2x=2 = 3− 12a = 0

and hence a = 1
4
. So

B(x) =



0 for x < 0
1
4
x3 for x ∈ [0, 1]

− 3
4
(x− 1)3 + 3

4
(x− 1)2 + 3

4
(x− 1) + 1

4
for x ∈ [1, 2]

− 3
4
(3− x)3 + 3

4
(3− x)2 + 3

4
(3− x) + 1

4
for x ∈ [2, 3]

1
4
(4− x)3 for x ∈ [3, 4]

0 for x > 4.

More generally: B-spline on xi = a+ hi, where h = (b− a)/n.

Bi(x) =



0 for x < xi−2
(x− xi−2)3

4h3
for x ∈ [xi−2, xi−1]

−3(x− xi−1)3

4h3
+

3(x− xi−1)2

4h2
+

3(x− xi−1)
4h

+
1

4
for x ∈ [xi−1, xi]

−3(xi+1 − x)3

4h3
+

3(xi+1 − x)2

4h2
+

3(xi+1 − x)

4h
+

1

4
for x ∈ [xi, xi+1]

(xi+2 − x)3

4h3
for x ∈ [xi+1, xi+2]

0 for x > xi+2.

xi−2 xi−1 xi xi+1 xi+2

0

0.5

1

B
i(
x

)
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The ‘end’ B-splines B0, B1, Bn−1 and Bn are defined analogously by introducing ‘phantom’

knots x−2, x−1, xn+1 and xn+2. The (cubic) B-spline basis is only locally affected if some

xi is changed. But note this is not true of the resulting spline itself.

Spline interpolation: find the cubic spline

s(x) =
n∑

j=0

cjBj(x),

which interpolates fi at xi for i = 0, 1, . . . , n. Require

fi =
n∑

j=0

cjBj(xi) = ci−1Bi−1(xi) + ciBi(xi) + ci+1Bi+1(xi).

For equally-spaced data

fi = 1
4
ci−1 + ci + 1

4
ci+1,

i.e., 

. . . . . . . . .
1
4

1 1
4

1
4

1 1
4

1
4

1 1
4

. . . . . . . . .





...

ci−2
ci−1
ci
ci+1

ci+2
...


=



...

fi−1
fi
fi+1

...

 .

The first few and last few rows of this system depend on the type of spline under consid-

eration. For natural cubic splines, see Problem Sheet 7, Question 11.

For linear splines, a similar local basis of ‘hat functions’ or Linear B-splines φi(x)

exist:

φi(x) =


x− xi−1
xi − xi−1

x ∈ (xi−1, xi)

x− xi+1

xi − xi+1

x ∈ (xi, xi+1)

0 x /∈ (xi−1, xi+1)

xi−2 xi−1 xi xi+1 xi+2

0

0.5

1

φ
i(
x

)

and provide a C0 piecewise basis.
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Listing 1: demo lec14 spline vs lagrange.m

1 N = 9; % number of interpolation points

2 x = linspace(-4, 4, N); % the knots

3

4 % values at knots

5 f = @(x) 1 ./ (1 + x.^2);

6 fp = @(x) -2*x ./ (1 + x.^2)^2;

7 ypoints = f(x);

8

9 % an extended vector padded with the slope at the first and last

10 % interpolation points , see "help spline ": end -point choices available

11 % with the matlab command spline (called option (a) in lecture notes ).

12 y = [fp(x(1)) ypoints fp(x(end ))];

13

14 % a data structure containing the pieces of the spline

15 s = spline(x, y);

16

17 fine = linspace(-4, 4, 500);

18 h = figure (1); clf; lw = ’linewidth ’;

19 plot(fine , ppval(s, fine), lw ,2); % see "help ppval"

20 ff = f(fine);

21

22 % Plot function

23 hold on

24 plot(fine , f(fine), ’r--’, lw ,2);

25 plot(x, ypoints , ’ko’, lw ,2)

26 % Compare to Lagrange interpolating polynomial

27 p = lagrange_poly(x, ypoints );

28 plot(fine , polyval(p, fine), ’g-’, ’color’ ,[0 0.5 0], lw ,2);

29

30 set(get(h, ’children ’), ’fontsize ’, 16)

31 legend(’spline ’, ’func’, ’knots’, ’lagrange ’)

32 ylim ([-0.2 1.1]); xlim ([-4.1 4.1])

33 xlabel(’x’)
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Error analysis for cubic splines

Theorem. Amongst all functions t ∈ C2[x0, xn] that interpolate f at xi, i = 0, 1, . . . , n,

the unique function that minimizes ∫ xn

x0

[t′′(x)]2 dx

is the natural cubic spline s. Moreover, for any such t,∫ xn

x0

[t′′(x)]2 dx−
∫ xn

x0

[s′′(x)]2 dx =

∫ xn

x0

[t′′(x)− s′′(x)]2 dx.

Proof. See exercises (uses integration by parts and telescopic cancellation, and is similar

to the proof of existence above). 2

We will also need:

Lemma. (Cauchy–Schwarz inequality): if f, g ∈ C[a, b], then[∫ b

a

f(x)g(x) dx

]2
≤
∫ b

a

[f(x)]2 dx

∫ b

a

[g(x)]2 dx.

Proof. For any λ ∈ R,

0 ≤
∫ b

a

[f(x)− λg(x)]2 dx =

∫ b

a

[f(x)]2 dx− 2λ

∫ b

a

[f(x)g(x)] dx+ λ2
∫ b

a

[g(x)]2 dx.

The result then follows directly since the discriminant of this quadratic must be nonposi-

tive. 2

Theorem. For the natural cubic spline interpolant s of f ∈ C2[x0, xn] at x0 < x1 < · · · <
xn with h = max1≤i≤n(xi − xi−1), we have that

‖f ′ − s′‖∞ ≤ h
1
2

[∫ xn

x0

[f ′′(x)]2 dx

] 1
2

and ‖f − s‖∞ ≤ h
3
2

[∫ xn

x0

[f ′′(x)]2 dx

] 1
2

.

Proof. Let e := f − s. Take any x ∈ [x0, xn], in which case x ∈ [xj−1, xj] for some

j ∈ {1, . . . , n}. Then e(xj−1) = 0 = e(xj) as s interpolates f . So by the Mean Value

Theorem, there is a c ∈ (xj−1, xj) with e′(c) = 0. Hence e′(x) =

∫ x

c

e′′(t) dt. Then the

Cauchy–Schwarz inequality gives that

|e′(x)|2 ≤
∣∣∣∣∫ x

c

dt

∣∣∣∣ ∣∣∣∣∫ x

c

[e′′(t)]2 dt

∣∣∣∣ .
However, the first required inequality then follows since for x ∈ [xj−1, xj],

∣∣∣∣∫ x

c

dt

∣∣∣∣ ≤ h and

because the previous theorem gives that∣∣∣∣∫ x

c

[e′′(t)]2 dt

∣∣∣∣ ≤ ∣∣∣∣∫ x

c

[f ′′(t)]2 dt

∣∣∣∣ ≤ ∫ xn

x0

[f ′′(x)]2 dx.
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The remaining result follows from Taylor’s Theorem. 2

Theorem. Suppose that f ∈ C4[a, b] and s satisfies end-conditions (a). Then,

‖f − s‖∞ ≤
5

384
h4‖f (4)‖∞

and

‖f ′ − s′‖∞ ≤
9 +
√

3

216
h3‖f (4)‖∞,

where h = max1≤i≤n(xi − xi−1).
Proof. Beyond the scope of this course. 2

Similar bounds exist for natural cubic splines and splines satisfying end-condition (c).
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